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Preface 

In the fall of 1977, we jointly offered a graduate course in the 
Department of Psychology and Social Relations at Harvard Univer­
sity. That course, "Psychology and Social Relations 2570: Methods 
of Applied Social Research," was based on two convictions that we 
shared. The first was that our graduate students were likely some­
time in their professional careers to engage in applied social 
scientific research. At some point they would all be called upon to 
evaluate a social intervention. Our second shared conviction was 
that although the research methods we normally teach to social 
science graduate students are relevant to applied social research, a 
different general orientation toward these methods is necessary. 

As we attempted to prepare and organize the course, it became 
apparent to us that our own orientation toward applied research 
methods was not reflected in the textbooks that were available on 
research methods. Hence, at the conclusion of the course, we made 
the fateful decision that we would really organize it and turn it into 
a book. The few students who enrolled in our course might have 
been better instructed had we succeeded in organizing the material 
prior to offering the course, rather than subsequently. Had we been 
able to do that, however, this book probably would not have been 
undertaken. In a sense, then, we owe a great deal to those students. 
Only as we came to understand that the course readings were not 
entirely what we wanted, and to realize that our course structure 
left something to be desired, were we motivated to write the book. 
Those students, when they read it, are likely to be pleased to see that 
we have finally organized the course they took. 

One of the advantages of the low enrollment in that course was 
that the two of us spent nearly as much time talking to each other as 
we did talking to our students. In the subsequent years, as this book 
progressed, most of our time together was spent discussing what we 
were writing rather than actually writing it. In a very real sense, all 
of the ideas in these pages are joint products. We each learned a 
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x Preface 

great deal from the other, and our separate ideas grew into a 
common set as the book was written. Surprisingly, in the process of 
arriving at this consensus, our friendship remained intact and even 
grew. 

Our intention in writing this book was to provide a tool that 
would be useful . to those actually conducting applied research, 
regardless of the substantive domain in which they work. We 
believe that the problems of research design and validity that we 
address appear whenever social interventions are evaluated, regard­
less of the nature of those interventions. 

Because of this intention, we have attempted throughout to 
discuss on an intuitive level issues that in a more formal treatment 
might have required much more lengthy statistical arguments. In 
other words, at times we provide guidance to the researcher without 
elaborating upon the statistical proofs that support our conclusion. 
We have chosen this path in the interest of brevity and in the hope 
of keeping the arguments comprehensible to a wide range of active 
researchers. The statistical proofs that we omit are generally 
available elsewhere. At the end of the book we have suggested 
supplementary readings that present more technical material. 

Just as we do not burden the reader with statistical proofs, so also 
we have avoided an exposition of the basic statistical procedure, 
multiple regression, that underlies the analyses we discuss. This 
book should not be seen as a textbook on statistics. We presume that 
the reader is already familiar with the basics of multiple regression. 
Fortunately, excellent texts already exist. 

Although we have attempted to write a clear, straightforward 
exposition for the practitioner, it has been occasionally necessary to 
introduce rather complicated material. We present such material 
not for its own sake, but because the task facing the researcher is 
complicated. Complications arise in many ways. First, applied 
research involves inherently "noisy" data: Relationships among 
variables are inevitably weak, and measurement error is a constant 
problem. We have tried to er;nphasize these topics when discussing 
the precision of the estimate of effects. Second, in order to know 
whether the estimate of a program effect is biased, one must make a 
careful analysis of the reasons why persons are assigned to treat­
ment and comparison groups. Thus, we continually refer to the 
assumptions made about this assignment process throughout the 
book. Third, researchers are continually making implicit causal 
assumptions in their analyses of data. We have tried to spell out 
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some of these assumptions, as well as to present methods to estimate 
more complex but more realistic models. Fourth, any discussion of 
methods for applied social research must include a consideration of 
the reality of complex issues that the investigator can and should 
face. We have included a discussion of the complicating issues of 
nonindependent observations, covariates, and multiple treatment 
and outcome variables. 

The organization of the book is as follows: The first three 
chapters are introductory and explain the key concepts that are 
discussed throughout the book. Chapters 4 through 9 form·the heart 
of the book and present a discussion of the various research designs 
used to evaluate social interventions. Generally we first present the 
design; then we elaborate the traditional statistical analysis proce­
dures used to analyze the design; and finally we discuss complica­
tions in the analysis and solutions to these complications. The last 
two chapters discuss general issues in the evahiation of social 
interventions. The book can be used both as a textbook and as a 
reference book. If used as a textbook, the chapters should be read 
consecutively. If used as a reference book, the first three chapters 
should be read before reading about any particular research design. 

Although this book is a joint product hammered out during 
extended discussions, it also reflects the influence of many others on 
our thinking. We owe these others, both separately and jointly, 
many thanks. One of us, Charles M. Judd, owes much to his 
parents. His father's commitment to improving human welfare has 
been a constant reminder that all endeavors ultimately need an 
application. Morton Deutsch, Judd's dissertation advisor, has also 
been instrumental in his interest in applied social science. The depth 
and seriousness of Deutsch's thought continue as an example. As a 
graduate student, Judd took a course on the general linear model 
from John Hammond, who was then in sociology at Columbia 
University. Although. Hammond is probably not aware of his 
influence, that course has shaped much of Judd's subsequent 
thought on statistical issues. Finally, a number of others have also 
been influential, among them R. Gary Bridge, Peter Moock, and 
Janice Steil. 

In the case of. David A. Kenny, his interest in the effects of social 
interven�ions stems from many sources. His father, Thomas P.

Kenny, has been actively involved in public policy as a labor and 
community leader. It is to him that Kenny owes his initial interest in 
the topic. His undergraduate advisor, Robert Sommer, showed him 
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that social science could be used as a vehicle for positive social 
change. In his graduate training, he learned from Donald T. 
Campbell, Thomas D. Cook, Robert Boruch, Albert Erlebacher, 
and Lee Sechrest. Campbell's towering intellect and constant 
encouragement shaped and guided Kenny's graduate education. 
Cook, who was at the time beginning his secondary evaluation of 
Sesame Street, provided him with concrete experience in the 
evaluation of social interventions. After Kenny received his degree, 
others, especially Marcia Guttentag, encouraged his applied inter­
ests. 

Jointly, we wish to thank a number of colleagues and friends. 
Pierce Barker, Peter Bentler, Charles Reichardt, and Robert 
Rosenthal provided excellent critical reviews of portions of the 
manuscript. Although we did not always follow their advice, their 
comments were exceedingly helpful. A number of other reviewers 
remain anonymous to us. We hope they will realize their influence 
when they see the portions of the book they reviewed. In addition, 
James Dalton, Jon Krosnick, Lawrence La Voie, Dean Simonton, 
Merle Sprinzen, Gail Tomala, Rebecca Warner, and Stephen 
Zaccaro made valuable contributions. Our editor, Susan Milmoe, 
has also been of great help to us. She has given us the freedom to 
write the book we wanted to write and, at the same time, has been of 
assistance in providing a grant and arranging for chapter reviews. 
Finally, we thank those who assisted by typing the numerous 
chapter drafts: Jean Brumbaugh, Bev Douhan, and Mary Ellen 
Kenny. Blair Boudreau deserves special mention for her excellent 
and efficient typing of the final manuscript. 

There were a number of fortuitous events and circumstances that 
made this book possible. We acknowledge the help of the housing 
shortage in California, the postwar ha by boom, lunches with Reid 
Hastie, and three-handed hearts games. 

On a more serious note, it is to our wives, Elizabeth Judd and 
Mary Ellen Kenny, that we are most grateful, and to whom we 
dedicate this book. We thank them for their companionship, their 
encouragement, their assistance, and their patience. 

Charles M. Judd 
Cambridge, Massachusetts 

David A. Kenny 
Storrs, Connecticut 
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Introduction 

One of the original and enduring goals of the social sciences has 
been to generate knowledge and information that can be used to 
guide social policy. For instance, many of the concerns and interests 
of sociologists grew out of the discipline's original efforts to amelio­
rate the social conditions brought on by the industrial revolution 
and the subsequent urbanization of America during the last half of 
the nineteenth century (Lazarsfeld & Reitz, 1975). Likewise, 
psychologists have long been concerned with a variety of applied 
issues; for example, personnel selection and training and the diagno­
sis and treatment of mental illness have been central interests of 
psychologists since the last century. Finally, and perhaps most 
clearly, the modern study of economics grew out of efforts to 
unde�stand how government policies (or the lack thereof) affect the 
economic well-being of the country, with the aim of providing 
guidance to economic decision makers. 

Although the interest in generating information for applied 
purposes is a long-standing one in the social sciences, it has, if 
anything, grown in recent years. Three separate but interrelated 
forces have been responsible for this growth. First, newly trained 
social scientists are facing a shrinking academic job market and are 
therefore seeking employment in government and private agencies 
whose purpose is to conduct research to guide social policy. Second, 
in the last twenty years social welfare programs have grown 
enormously. As more and more money has been spent on those 
programs, administrators and policy makers have increasingly real­
ized the need to evaluate them. Hence, increasingly the government 
and private agencies have hired social scientists to conduct evalua­
tion r. Finally, as increasing amounts of money have become 
available from the federal government for applied evaluation 
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research, funds for the conduct of basic social research have been 
drying up. Among academic social scientists, it is common knowl­
edge that research into basic social processes is not being supported 
at the level it had been in the recent past. 

Although opportunities for young social scientists are increas­
ingly applied in nature, and therefore their interests are more 
applied, social scientific training has by and large been slower to 
change in this direction. Many social scientists are currently finding 
employment in the area of policy and evaluation research. Few of 
them, however, receive graduate training designed explicitly for 
such careers. They therefore find themselves inadequately prepared 
in the methodological skills necessary for applied research. 

This book grew out of the authors' belief that research in applied 
settings presupposes an orientation to data, research design, and 
statistical procedures that is different from the orientation conveyed 
in most books or courses on basic research methods. The difference 
between these orientations is, however, a difference of degree rather 
than one of kind. Applied researchers use the same set of methodo­
logical and statistical skills as basic researchers, but they use these 
skills with a different perspective than that of basic researchers. 
Our purpose in this book is to review a set of research designs that 
are particularly useful in applied research settings. We discuss both 
the merits and problems of these designs as well as strategies for 
analyzing the resulting data. Our discussion is oriented particularly 
toward the applied researcher. Thus, although what we have to say 
is likely to be informative to the basic researcher as well, our 
orientation on the methodological issues we address is quite 
different from that encountered in most basic research methods 
books. 

We can be somewhat more explicit concerning how our emphases 
in this book differ from what they would have been had we written a 
book on the design and analysis of basic social research. First, 
applied social researchers tend to employ different types of research 
designs than do their colleagues in basic research. They are perhaps 
less likely to use what we call randomized experimental designs 
because of the control of the treatment necessitated by such designs. 
Applied researchers· are more likely to use quasi-experimental 
designs, where the need for control over the treatment is somewhat 
reduced. Hence, we emphasize the design and analysis of quasi­
experiments to a greater extent in this book than we would in a book 
on basic research methods. 



Introduction 3 

More generally, the settings in which applied research is 
conducted are likely to have an impact on the research design that 
can be employed. Hence, in some contexts it may make sense to do a 
randomized experiment; in other contexts such designs are not 
feasible, and a quasi-experimental design should be used. Thus, the 
choice of research design is to some extent dictated to the applied 
researcher, whereas in basic research the choice is determined 
primarily by the researcher's predilection. An applied researcher 
must therefore be familiar with a variety of different designs and 
their analysis, whereas a basic researcher may be able to pursue his 
or her research interests effectively using a very few techniques. 

Another difference in emphasis between applied and basic social 
research emerges from differences in the type of intervention or 
program whose effects are assessed in the research. In many applied 
research projects, the social program that is evaluated is relatively 
massive. It is difficult and expensive to set up, many people are 

. involved in administering it, and its effects are likely to have both 
social and political consequences. The size and importance of 
independent variables in basic research are perhaps at a more 
modest level. Because of this difference, there may be more at stake 
in reaching valid conclusions in applied research, in the sense that it 
would be extremely costly to conclude that some social program had 
no effect when in fact it did. Thus, in the language of statistical 
analysis, the power or precision of the statistics employed is proba­
bly of greater concern to the applied researcher than to his or her 
basic research counterpart. 

Just as the size of interventions in applied research may motivate 
the researcher to pay increasing attention to the power of statistical 
procedures, so too the complexity of such interventions may intro­
duce a great deal of extraneous variation that renders conclusions 
more difficult. For instance, if we are evaluating the impact of a 
social welfare program that has been instituted on a massive scale, it 
may be quite difficult to argue that the treatment received by each 
person in the study is identical. Different individuals receive slightly 
different treatments because they deal with different staffs, remain 
in the program for different intervals, and so forth. In other words, 
in applied social research extraneous and uncontrolled variation 
may exist in the treatment or independent variable that would 
normally be controlled. in more basic research. Because of this, it 
may be more difficult to detect the effects of interventions in 
applied research, and when they exist, it may be difficult to 
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determine what factor in a multifaceted intervention is responsible 
for those effects. 

Another difference in orientation between applied and basic 
researchers concerns the emphasis typically placed on the ability to 
generalize from a research study. We might reasonably expect a 
social welfare program that shows positive effects in an evaluation 
to be implemented more widely, based on the recommendations of 
the evaluation. If such dissemination of the program is likely to 
result from the evaluation, then the researcher should have some 
confidence that the results of the evaluation research are generaliz­
able to the new population ·who will be exposed to the program. In 
basic research, it typically is not the case that the treatment 
becomes more widely distributed following the research. Hence, 
the question of generalizability may be less salient to the basic 
researcher. 

As part of the concern with generalizability in applied research, 
researchers are typically quite interested in how the intervention 
operates differently in different settings or on different populations. 
In statistical terms, applied researchers may be more interested in 
assessing interactions between the treatment variable and charac­
teristics of the sample than more basic researchers. 

All of these different emphases imply that researchers in applied 
settings must differ from their basic research colleagues in the 
breadth of concerns and methods that occupy them. They are more
likely to encounter diverse research 

'
designs, are more likely to be 

concerned with statistical precision, deal with more multidimen­
sional treatments, and must be more concerned with generalizing 
effects than basic researchers. All of this operates to increase the 
complexity of the applied researcher's task. We believe that the 
methodological concerns of the basic researcher are fundamental to 
the conduct of applied research and that, in addition, the applied 
research setting imposes many new concerns that may safely be 
ignored in a great deal of basic research. 

Given all this, the task of this book is to familiarize the reader 
with the complexity of conducting research, using many different 
research designs, in applied settings. What we have to say is likely 
to be informative to the basic researcher as well. The concerns we 
raise are relevant to basic research; they are simply more demand­
ing of attention in applied contexts. Our book differs from other 
books that consider the design and analysis of social research in that 
we hope to acquaint the reader with the complexity, the uncertain-
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ties, and the importance of design decisions in applied settings. The 
applied researcher faces a formidable set of tasks. Most books and 
courses in research methods, because they are oriented toward basic 
research, do not appreciate the complexity and diversity of these 
tasks. 

The plan of the book 

The basic model for the research designs presented in this book is 
one of program evaluation. That is, the type of applied research we 
shall be discussing is the evaluation of some intervention or 
program, delivered intentionally or not, that is expected to have 
social, economic, or psychological consequences on those exposed to 
it. 

Although the evaluation model is the basis for the research 
designs discussed in this book, evaluation constitutes, in fact, only 
one type of applied social research. Social researchers frequently 
collect data to diagnose some social problem. Such research, 
although related to the evaluation model, is not quite the same. 
Applied diagnostic research attempts to identify what treatments or 
conditions are responsible for a given outcome or situation that is 
observed. In essence, then, diagnostic research is evaluation turned 
around. In evaluation we seek the outcomes of a treatment or 
condition; in diagnosis we seek the treatment or condition that 
produces the outcome we observe. 

In addition to evaluation and diagnosis, some applied research is 
conducted in a placement model, where the goal is to match some 
treatment or person to a situation where the most beneficial 
outcomes can be obtained. In the placement model, the researcher is 
aware of the treatment (this may be a person as in personnel 
placement) to be delivered and the outcome that is desired. Data are 
gathered to locate the precise conditions under which the treatment 
is most likely to· achieve the desired outcome. 

In the next chapter the basic model for the conduct and analysis 
of evaluation research is presented. This model, which holds in 
general, regardless of the specific research design employed, is one 
in which persons or other units that the program is expected to 
affect have been assigned to levels of the treatment (including, 
perhaps, no treatment) and subsequently some outcome variable or 
variables are measured that are expected to show the impact of the 
treatment. Within this general model we can differentiate between 
specific research designs by considering three factors: 
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I. The first factor is the way in which assignment of units to 
treatment conditions has been or is conducted - in other words, 
what rule or variable has determined treatment assignment. Essen­
tially there are three sorts of assignment rules or variables: a 
random assignment rule where each unit has a known probability of 
assignment to each treatment condition; a known but nonrandom 
assignment rule where assignment is based on some known variable 
such as a pre-treatment measure of the unit; and an unknown 
assignment rule where the variable that determined assignment is 
not only unmeasured but unknown. 

2. The second factor for differentiating among research designs
concerns the presence or absence of a pre-treatment measure or 
pretest. 

3. The third factor refers to the manner in which comparisons
between treatment conditions are made. We can either observe 
different persons in the different treatment conditions or we can 
expose everyone to all of the treatment conditions. In the for mer 
situation, treatment effects are estimated by comparisons between 
persons. In the latter case, treatment effects are estimated by 
comparisons within persons. 

Having discussed the basic evaluation model in Chapter 2, we 
proceed in Chapter 3 to identify a set of criteria, called research 
validities, that can be used to evaluate the quality of information 
generated by social research designs. 

Chapters 4 through 9 present the research designs that are the 
heart of the book. The discussion of each design is roughly broken 
into three parts. First the design is defined and decisions that must 
be made by the researcher in using the design are identified. Next 
we discuss how each design has been classically or traditionally 
analyzed. This discussion includes what we see as being the major 
problems or oversights of the traditional analysis. The third part 
presents some complexities of analysis and design or alternative 
analysis procedures to the classic strategies, which at least in part 
eliminate the problems of the classic strategies. In each of these 
chapters we discuss the advantages and disadvantages of alternative 
analysis strategies in terms of the criteria identified in Chapter 3. 

The design discussed in Chapter 4 is the randomized experimen­
tal design, where units have been randomly assigned to treatment 
conditions. 

Chapter 5 discusses the regression discontinuity design. In this 
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design, the assignment rule is known but nonrandom, and pre­
treatment measures are gathered. In fact, the assignment variable is 
a pre-treatment measure. 

Chapter 6 discusses the nonequivalent control group design, 
which is probably the most widely employed quasi-experimental 
design. It is_defined by an unknown and nonrandom assignment rule 
coupled with pre-treatment measures of the outcome variable. 

Interrupted time-series designs are discussed in Chapter ·7. 
Unlike the other designs, time-series designs make treatment 
comparisons within a unit across time rather than between units. 
The assignment variable for this design can be random, known, or 
unknown. 

Chapter 8 discusses miscellaneous quasi-experimental designs. 
For all of these designs the assignment rule is unknown and a 
pre-treatment measure is gathered. Chapter 8 also presents a series 
of issues that affect design and analysis decisions in quasi­
experiments. 

Chapter 9 concludes the di�cussion of designs with the post-only 
correlational design. Here, the assignment variable is unknown and 
pre-treatment measures are not taken. The data are thus exclusively 
cross-sectional. 

In a more traditional nomenclature for these designs, Chapter 4 
covers experiments, Chapters 5 through 8 cover quasi-experiments, 
and Chapter 9 discusses correlational designs. Quasi-experiments 
differ from randomized experiments in that the assignment rule is 
not random. In quasi-experiments the researcher has access to the 
units prior to the treatment. Correla tional designs are similar to 
quasi-experiments in that the assignment rule is not random. Unlike 
quasi-experiments, however, in correlational designs the researcher 
has access to the units at only one point in time. 

In Chapter 10, having presented our basic discussion of the 
various designs, we consider a variety of further issues that often 
confront the applied researcher regardless of the specific designs 
that he or she employs. These issues include the process of identify­
ing and probing for mediating and interacting variables in treat­
ment effects, the need for and techniques of secondary analysis of 
applied research data, and procedures for generalizing effects 
across repeated independent evaluation studies that all examine 
similar treatments. 

Chapter 11 closes with a review of the major themes that have 
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occurred throughout the book. Here we also review the research 
designs we have covered and provide some final comments on their 
strengths and weaknesses. 

Our intention in writing this book has been to construct a text 
that could flow with a course. Thus, the topics we develop at later 
points in the book in some sense build upon what has preceded them. 
At the same time, we hope that this book can be used as a reference 
source, so that a researcher who, for instance, is designing a 
nonequivalent control group study can refer to the appropriate 
chapter for guidance. If the reader plans to use this book more for 
the latter purpose than for the former, we nevertheless encourage 
him or her to read at least the next two chapters before skipping on 
to designs of particular interest. 



2 

The basic evaluation model 

In the first chapter we defined the basic evaluation model as 

one in which persons or other units that the program is ex­
pected to affect have been assigned to levels of the treat­
ment (including, perhaps, no treatment) and subsequently 
some outcome variable or variables are measured that are 
expected to show the impact of the treatment. 

The purpose of this chapter is to discuss this basic model in more 
detail, to present its rationale, and to provide an overview of how 
treatment effects in general are estimated. An understanding of this 
basic model and its estimation is central to the rest of the book, in 
that nearly all we discuss subsequently is a variant of it. 

To define the model in more detail and present its rationale, we 
shall use an example of an applied evaluation that might be 
conducted: the evaluation of the impact of day care on the 
emotional development of children. Suppose that we were hired as 
researchers to estimate this impact. If we knew little about the 
design of social research, we might decide to evaluate the day-care 
program by putting all the children available to us into day care and 
subsequently keeping track of their emotional development. The 
problem with such a study, of course, is that we have no idea of how 
the children would develop if they had not been put into day care. 
Hence we are unable to determine whether the emotional develop­
ment we see in day care is different from what it would have been 
had the children been left in their homes. 

We thus must include some sort of other treatment in our 
research in order to establish a baseline comparison group ·with 
which to compare the children receiving the day-care treatment. 
This alternative treatment condition is frequently called a compari-

9 
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son or control group. For purposes of comparison with the treatment 
group, we frequently want the comparison group to receive exactly 
the treatment that would have been received by all children had the 
day-care program not been instituted. 

Now that we have decided that both treatment and comparison 
groups are necessary to assess the impact of day care, the next step 
is to determine how the children might be assigned to one or the 
other condition. Sometimes this decision can be made by the 
researcher; more often it is made by some other agency or some 
process outside of the researcher's control. Ideally, we would like 
children to be assigned to conditions in such a way that, in the 
absence of treatment effects, the children in the treatment and 
comparison conditions do exactly the same on measures of 
emotional development that are subsequently administered. How 
might we do this? . 

It might seem that one way would be to measure all the children 
on emotional development prior to treatment administration, then 
to match children who score similarly, and to divide them, once 
matched, into treatment and comparison groups. For instance, we 
might decide to match boys with girls on initial development and 
then, within each male-female pair, the boy would be assigned to 
the treatment condition and the girl would be assigned to the 
comparison condition. All unmatched children would be omitted 
from the study. 

Although this assignment procedure would seem to accomplish 
the desired result of assuring comparable groups, in fact it probably 
would not. Even if initially each of the boys were matched with a 
girl, boys and girls might be developing at different rates. Hence, in 
the absence of treatment effects, the boys in the treatment condition 
would be expected to differ from the girls in the comparison 
condition on a test of emotional development administered at a later 
point, after the treatment had been delivered. 

The only way to be certain that the children in the two conditions 
would score the same on this post-treatment measure in the absence 
of treatment effects is to make the assignment on the basis of some 
variable that is unrelated to the subsequent outcome or post­
treatment measure. However, because assignment is determined 
well before the outcome measure is taken and because we hope to 
observe treatment effects, there is no actual characteristic of the 
children that we can be sure would be uncorrelated with the 
outcome in the absence of treatment effects. Hence, to achieve the 
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desired result with any certainty, assignment should not be based on 
any characteristic of the children. In fact, the only way to have 
confidence that the variable used for assignment will be uncorre­
lated with the 011tcome in the absence of treatment effects is to use a 
variable that, within the limits of probability, is uncorrelated with 
all other variables: a variable whose values are randomly generated. 
This, then, is the rationale for randomized experimentation, in 
which subjects are assigned randomly to treatment conditions. 

Frequently researchers are not able to employ a random assign­
ment rule because of constraints in the situation where the research 
is conducted. For instance, in our example, it may be that day-care 
centers cannot afford to take as many children below the age of 2 
because younger .children require more attention and hence increase 
the day-care center's costs. A random rule might put more young 
children in the center than could be afforded. Nevertheless, the 
administrators of the center may want some younger children in the 
research because they are interested in day care's effects on them as 
well as on older children. Hence the researcher is faced with the 
need to assign children to the treatment and comparison conditions 
in part on the basis of age. He or she divides all the children into two 
groups above and below age 2, and within each group randomly 
assigns children to conditions using different probabilities of assign­
ment. For the younger children, 30% are in the day-care treatment, 
70% are in the comparison condition. Among the older children, 
80% are in the day-care treatment, 20% are in the comparison 
condition. This assignment plan is depicted in Table 2.1. With this 
assignment plan we would not expect children in the treatment and 
comparison groups to score equally on the outcome measure even in 
the absence of treatment effects, unless we first equated children on 
age. We would expect that the children in the two conditions would 
score the same in the absence of treatment effects so long as we 
looked at only one age group at a time. Thus, valid comparisons can 
be made between the two conditions if we first equate for age, which 
is the variable on which assignment was probabilistically based. As 
in Chapter I, the variable on which assignment is based is called the 
assignment variable or the assignment rule. 

The general principle from this example is that when the assign­
ment rule is other than random, we need to control for it in order to 
make valid comparisons between the treatment groups. If we 
control for the assignment variable, whether statistically or by 
making comparisons only within its levels, then we can have 



12 Estimating the effects of social interventions 

Table 2.1. Probabilistic assignment to treatments based on age 

Age 

Less than 2 years 

Greater than 2 years 

Treatment group 

30% 

80% 

Comparison group 

70% 

20% 

Total 

100% 

100% 

confidence that the comparison of treatment and comparison groups 
would show no difference in the absence of treatment effects. 

Sometimes the researcher is faced with a situation in which the 
assignment rule is neither random nor based on some known 
variable. For instance, in the day-care example, if the researcher 
could not control assignment and therefore did not know on what 
basis children had been assigned to treatment groups, it would be 
extremely difficult to equate groups on the basis of the assignment 
variable. In such cases, we frequently attempt to equate on the 
assignment variable indirectly, by using pre-treatment measures as 
stati�tical controls. Such a procedure approximates controlling for 
the unknown assignment variable when various assumptions are 
met concerning the relationship between the unknown assignment 
variable and the pretest and concerning the expected growth 
between the pre- and posttests. 

If the assignment variable is unknown and no pretest measures 
are taken, as in the post-only correlational design, approximating 
control over the assignment variable becomes very difficult, though 
still worth attempting. 

This example, as we have presented it, parallels the presentation 
of research designs in this book. The basic problem in nearly all of 
these designs is the problem of defining and controlling the assign­
ment variable. If it is random, as in randomized experiments, it does 
not need to be controlled, for it is uncorrelated with the outcome. If 
it is known, it is relatively easy to control, although further compli­
cations arise. If it is unknown, we approximate its control either by 
using pretest measures or by making assumptions about the posttest 
measures when pretests are not available. 

Estimation 

Although there are differences among the designs in this book, we 
shall employ what is called the general linear model throughout to 
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estimate treatment effects. We shall usually present this general 
linear model in its multiple regression form, although analysis of 
variance and analysis of covariance are also subsumed under it. 
Because multiple regression is the general technique for estimating 
effects under the general linear model, in the pages that follow we 
present an overview of it and the relevant terminology. This section 
of the chapter should not be assumed to substitute, however, for a 
more formal exposure to multiple regression and analysis of vari­
ance that we presume the reader has already received. 

In the estimation of treatment effects we are interested primarily 
in estimating relationships between variables and then making 
causal inferences about those relationships based on other pieces of 
information. There exist a variety of techniques for calculating the 
relationship between two variables. One common way to estimate 
the relationship between two variables is to collect data from a 
number of units (N of them) on the two variables (X; and Y;) and 
plot the resulting points on a graph. An easy way to summarize the 
resulting scatter diagram, as it is called, is by fitting a straight line 
to the points in such a way that deviations of the points from the line 
are minimized. 

The formula for a straight line is 

Y; = h0 + h1X; 

where X; and Y; are variables, b0 is the intercept of the line on the Y 
axis, and b1 is the slope. We wish to fit a straight line to the data 
points of the scatter diagram so that deviations of points from it are 
in some way minimized. In other words, we shall fit the equation 

Y; = ho + h1X; + e; 

where e; represents the deviations between each Y; and Y;, where }:; 
is defined as 

Y; = h0 + h1X; 

We wish to solve for values of the coefficients b0 and h1 in such a 
manner that e; across all N observations is minimized. If we simply 
decided to minimize the sum of e; across the observations, an 
infinite number of coefficients is possible. What is usually done is to 
solve for the coefficients that minimize the sum of e/ across all the 
observations. The resulting solution for the coefficients is called the 
least-squares solution. 

Simple and multiple regression yield these least-squares coeffi-
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cients. In the case of multiple regression, where we have three or 
more variables, one dependent ( Y;) and two or more independent 
(Xi;, X2;, and so on), we solve for the values of the coefficients in the 
equation 

Y; = ho + b1X1; + b 2Xu + · · · + e;

that minimize the sum of the squared deviations. 
The interpretation of the coefficients in this equation is straight­

forward: The intercept b0 represents the expected value of Y; when 
all of the independent variables, X's, equal zero. Each of the slope 
coefficients, or the regression coefficients (bh b2, ... ), indicates the 
predicted change in Yi associated with a one-unit change in its 
independent variable, with all other variables-held constant. It is 
this last phrase that renders multiple regression quite powerful. 
Suppose that Xii were defined as the treatment variable and X2; was 
the known assignment rule in a study where randomized assignment 
was not employed. The coefficient of the treatment variable then 
estimates the treatment effect with the assignment variable held 
constant, even though Xii and Xu are correlated. 

In. this example, we have defined Xii as the treatment variable. 
This may be done in the case of two conditions, a treatment group 
and a comparison group, by setting Xli at one if an individual is in 
the treatment condition, and at zero if an individual is in the 
comparison condition. Independent variables that have this sort of 
dichotomous nature are commonly called dummy variables. A more 
extended discussion of them is given in Chapter 4. 

Because the regression coefficient for the treatment variable, b., 
is the best estimate of the treatment effect, researchers usually want 
to determine whether it is statistically different from zero. Tests of 
statistical inference are used to achieve this purpose. These tests 
require assumptions about the nature of the residuals. One assump­
tion of particular importance in applied social research is that these 
residuals are independent. In other words, any residual does not give 
any information concerning the magnitude of any other residual. 
This assumption is particularly crucial in time-series designs 
(Chapter 7). 

The interpretation of regression coefficients depends on the units 
in which the independent variables and the dependent variable are 
measured. If two predictors are measured in different units, then it 
is difficult to compare the magnitude of their coefficients. Occasion-



The basic evaluation model 15 

ally, when such comparisons are informative, the regression equa­
tion may be computed with all variables standardized [(X; - X)/sx, 
where X is the mean of X; and sx is the standard deviation]. In 
such cases, the resulting coefficients (standardized regression coef­
ficients or P;'s) are interpreted in units of standard deviations. 
Although these standardized coefficients are useful for comparisons 
among predictors within an equation, they render interpretation 
more difficult than the unstandardized coefficients in other cases. 
For instance, if we are comparing effects between two different 
samples, the standardized coefficients should not be used because 
their magnitude depends on the standard deviations of the variables 
within the two samples. With only a few exceptions, we shall prefer 
the unstandardized or raw regression coefficients in this book. 

The regression coefficients enable us to predict each Y; from any 
combination of values on the independent variables. In this sense 
they are informative about the linear relationship between the 
dependent variable and the independent variables. They do not, 
however, succinctly inform us of how accurate our predictions are. 
Some multiple regression equations may generate quite accurate 
predictions, whereas others may not. An index of the accuracy of 
prediction would be quite helpful. 

It is quite easy to calculate the degree to which our predicted Y; 
or Y; diverges from the actual Y; for each observation. The differ­
ence between these two is the residual in the regression equation, 
the sum of the square of which is minimized by the least-squares 
solution. Hence, we might use, as an index of the accuracy of the 
regression prediction, the sum 

N 

� - 2L.. (Y; - Y;) 
i-1 

The value of this sum is quite variable, because it depends on the 
units in which Y is measured. Therefore, we need to compare this 
sum with an index of how good our prediction of Y would be if we 
did not take into account the relationship with the X's. If we knew 
nothing about the predictors, our predicted value of Y for every case 
would be the mean of Y;, Y. If we square and sum across observa­
tions the deviation of observed Y; from Y, we have an index of 
quality of prediction given no information concerning the X vari­
ables. 

In light of this, the ratio 
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N 
' ... 2L. (Y; - Y;) 
i=l 

N 

L (Y; - Y)2
i-1 

can be interpreted as the degree to which errors of prediction of Y; 
given the set of X;'s are smaller than errors of prediction given no 
information about the X/s. The lower limit to this ratio is zero, in 
which case the numerator is zero and we perfectly predict Y; given 
the X/s. The upper limit of the ratio is one, where if equals Y, in
which case we have gained no predictive power from the set of X;'s 
at all. 

As an index of the degree to which our use of the X/s to predict Y; 
improves our prediction from that made without the X,'s, it makes 
sense to compute the difference between the above ratio and one. 
This difference score is what is traditionally referred to as the 
squared multiple correlation coefficient: 

N 
' ... 2L. (Y; - Y;) 

Ri = I - _;-_1 ___ _ N 

L (Y; - Y)2
i=l 

This coefficient tells us the proportion of the total variation in Y; 
that can be "explained" by the relationship between Y; and the 
predictors. It can be rewritten as 

N 

L <Yi - Y)2

Ri = _; __ , ___ _ N 

L (Y; - Y)2
i=l 

The square root of this is called the multiple correlation coefficient. 
At times, we present in this book equations in which some 

variables are unmeasured or hypothetical. For instance, if the 
assignment variable is unknown, we may nevertheless wish to 
include it in an equation. Whenever hypothetical or unknown 
variables are in.eluded in an equation, the equation is known as a 
structural equation. Multiple regression analysis cannot ordinarily 
be used to estimate the coefficients of such equations. They gener-
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ally require other procedures, known as structural modeling tech­
niques, as discussed in Cha pt er 9.

Conclusion 

In this chapter we have presented the basic evaluation model and 
developed the rationale for controlling the assignment variable in 
estimating treatment effects. We have further presented the basics 
of the general procedure used throughout the book to estimate 
treatment effects. In the next chapter, we define a set of research 
validities that can be used to discriminate among research designs 
and analysis strategies. 



3 

Validity in social research 

The goal of both the applied and basic social researcher is to 
generate information that is as accurate, generalizable, and other­
wise valid as possible. The purpose of this chapter is to discuss the 
ways in which research is valid or invalid. In other words, we review 
criteria by which we can evaluate the information gathered and 
conclusions generated by social research. Without such criteria it 
would be difficult to choose among research designs or among 
analysis strategies. 

Four different types of research validity are reviewed. The 
foµrfold division and the names we employ are borrowed from Cook 
and Campbell ( 1979). Our definitions of the four validities, 
however, are substantially different from those that have been given 
elsewhere .. Thus, although this chapter owes much to others, it 
incorporates our own interpretations. 

The chapter is organized in six sections. In the first we define the 
four types of research validity. In each of the next four sections we 
discuss threats to each type of validity as well as ways to overcome 
the threats. In the final section interrelations among the four 
validities are presented. 

The definition of research validities 

The conduct of social research under the general evaluation model 
that was presented in the last chapter begins with a causal hypothe­
sis. For instance, any of the fallowing might constitute a hypothesis 
underlying some research project: 

1 Rehabilitation programs in prisons· can lead to less recidi­
vism among first-time offenders. 

18 
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2 Crowded classrooms in inner-city schools hinder the educa­
tional achievement of disadvantaged pupils. 

3 Public-appeal campaigns are effective in decreasing smok-
ing among highly educated people in metropoli�an areas. 

In form, each of these hypotheses posits a causal relationship 
between a treatment and an outcome for some population in some 
setting. All causal hypotheses that are the basis for social research 
incorporate these four components, at least implicitly. 

The hypotheses posit a causal relationship between some general 
theoretical treatment (e.g., rehabilitation programs, crowded class­
rooms, and public-appeal campaigns) and some general theoretical 
outcome (e.g., recidivism, achievement, and smoking). Likewise, 
hypotheses discuss these causal relationships for a theoretical popu­
lation and setting. When the research is actually designed, all of 
these general theoretical constructs or ideas need to be translated 
into specific instances or operations. Translating the theoretical 
constructs of the hypothesis into the specific instances of the 
research design is commonly known as operationalizing the 
constructs. Thus, to pick our first hypothesis as an example, the 
theoretical outcome, recidivism, must be operationalized, perhaps 
as number of felonies committed in the 2 years after release. In a 
parallel manner, to conduct the research we need to identify specific 
instances of the setting (prisons in general) and population (first­
time offenders). 

Once the constructs of our theoretical hypothesis have been 
operationalized, and once the research has been conducted, we must 
determine if there are any effects of the operationalized treatment. 
This involves two issues: 

1 Are the effects of sufficient size to be detectable? 
2 Are detectable effects in fact due to this treatment, or are 

there competing causal explanations? 

Finally, after we have answered these questions, we may want to 
know if the causal effects we observe among the operationalized 
constructs may be generalized to other theoretical treatments, 
outcomes, populations, and settings that are of interest. 

Conclusions of social research may be questioned at any of the 
four points we have just outlined. We might doubt the conclusions 
of social research for any of the following reasons: 
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1 The theoretical constructs of the hypothesis are not 
adequately operationalized. 

2 The research design employed is not sufficiently precise or 
powerful enough to enable us to detect causal effects among 
the operationalized constructs. 

3 The detected effects on the operationalized outcome are in 
fact due to factors in the research other than the treatment. 

4 The generalizations from the research to other constructs, 
those not operationalized, are inappropriate. 

Each of these four concerns can be called an aspect of the validity of 
social research. 

We shall refer to the first as construct validity, the second as 
conclusion validity, the third as internal validity, and the fourth as 
external validity. For our purposes, following the above discussion, 
they can be defined as follows: 

1 Construct validity: the extent to which the theoretical 
constructs of treatment, outcome, population, and setting 
have been successfully operationalized. 

2 Conclusion validity: the extent to which the research design 
is sufficiently precise or powerful for us to detect effects on 
the operationalized outcome should they exist. 

3 Internal validity: the extent to which the detected effects on 
the operationalized outcome -.are due to the operationalized 
treatment rather.than to other competing ca�ses. 

4 External validity: the extent to which the effects we observe 
among operationalized constructs can be generalized to 
theoretical constructs other than those specified in the 
original research hypothesis. 

In essence these four types of validity concern different sorts of 
relationships in the research enterprise. Construct validity refers to 
the relationships between theoretical constructs and their opera­
tions. Both conclusion and internal validity refer to the relationship 
between the operationalized treatment and operationalized 
outcome: Conclusion· validity concerns our ability to detect that 
relationship; internal validity concerns whether that relationship is 
a causal one. External validity concerns the relationship between 
the hypothesized constructs that were operationalized and other 
constructs of interest that were not. 

In the paragraphs that follow, we discuss each of these validities 
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in more detail. We identify the major ways in which each is 
threatened, as well as strategies to overcome these threats. 

Construct validity 

We defined construct validity as the extent to which the specific 
outcome measures, treatments, samples, and settings employed in 
the research represent the theoretical constructs of interest. In the 
paragraphs that follow we elaborate on this definition, point to the 
two major threats to construct validity and specify procedures for 
maximizing it. 

The reader is probably most comfortable thinking of the 
construct validity of tests or measures of attributes, for that is the 
context in which the term is most widely used (Cronbach, 1970; 
Cronbach & Meehl, 1955; Nunnally, 1978). Discussing the 
construct validity of outcome measures in social research, therefore, 
is a relatively familiar task, because outcome measures are typically 
tests that attempt to locate persons on attributes. The construct 
validity of an outcome measure is the extent to which that measure 
assesses the theoretical attribute we seek to measure. 

Every variable we measure is likely to reflect a variety of 
constructs as well as purely random error. The following equation 
illustrates this fact: 

Y = C1 + C2 + · · · + C, + E

where Y refers to some measured variable, the set of C refers to a set 
of unmeasured theoretical constructs that contribute to variation in 
Y, and E refers to random error or simply "noise" in the measure­
ment of Y. As an example, suppose that we are interested in 
identifying the effect of some civics education program on a 
political attitude. We might construct an attitude measurement 
scale and administer it to both treatment and comparison subjects. 
It is likely that individual scores on the attitude scale reflect at least 
three different constructs: the true underlying attitude we hope to 
measure (C1), the degree to which subjects seek to project socially 
desirable images of themselves ( C2), and the degree to which 
subjects have sufficient verbal skills to understand what is being 
asked of them ( C3). In addition to these three systematic sources of 
variation in the measure, there is also inevitably random noise or 
error that contributes to the scale responses (£). The question of 
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construct validity of our measure, Y, refers to the extent to which 
each of the constructs accounts for variation in Y. The question of 
reliability refers to the extent to which E accounts. for variation in Y. 
Reliability will be disc.ussed in the next section of this chapter under 
conclusion validity. 

If our measure Y has high construct validity, that is, if it truly 
measures the underlying political attitude we want it to measure, 
then the contribution of C1 to Y should be substantial. However, this 
is only a necessary, but not a sufficient condition for high construct 
validity. In addition, we wish to be assured that the contribution of 
constructs that are not of theoretical interest for the research at 
hand, C2 and C3, are relatively small. The two necessary and 
sufficient conditions for construct validity are thus (Campbell & 
Fiske, 1959): 

I Convergent validity: the extent to which variation in the 
measure is a result of variation in the theoretical construct 
of interest; and 

2 Discriminant validity: the extent to which variation in the 
measure is not a result of variation in other constructs of 
little theoretical interest. 

In the example of our political attitude scale, convergent validity 
refers to the extent to which variation in the scale is a result of 
variation in the true, underlying political attitude that is of theoreti­
cal interest. Discriminant validity refers to the extent to which 
variation in the scale is not a result of variation in the social 
desirability and verbal skills constructs that are of little theoretical 
interest. 

Just as we can discuss the construct validity of a measure that 
seeks to locate subjects on some attribute, so also we can speak of 
the construct validity of treatments, subjects or samples, and 
research settings. In any given piece of research, each of these can 
be thought of as representative of some theoretical larger class of 
treatments, samples, and settings. We may also speak of the 
convergent and discriminant validity of treatments, subjects, and 
settings. 

A specific treatment administered in a study is an attempted 
operationalization of some theoretical treatment that is the 
researcher's real interest. Thus, in the evaluation of day-care 
centers, the treatment received by children in the treated group is a 
specific day-care center, staff, and schedule. It is extremely impor-
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tant for the researcher to believe that this specific treatment is 
representative of the generic treatment of interest. Likewise the 
researcher must be convinced that theoretical constructs of little 
interest have not been operationalized in the specific treatment 
employed. For instance, the researcher is hopeful that any effects 
observed as a function of the day-care treatment are effects of day 
care per se and not of some idiosyncracies of the specific day-care 
center staff employed. 

Another well-known example illustrates the two conditions of 
treatment construct validity. Robert Rosenthal and his colleagues 
(Rosenthal & Rosnow, 1969; Rosenthal, 1976; Rosenthal & Rubin, 
1978) have repeatedly shown how experimenters' expectations or 
hypotheses may influence the outcomes of social research. In nearly 
all social research, experimenter expectations are a construct that 
we hope is not operationalized by the treatment that is actually 
administered. This is done by using researchers who are unaware of 
the research hypotheses. ·Thus we hope to deliver a treatment with 
high convergent validity (it operationalizes the theoretical treat­
ment) and high discriminant validity against the experimenter 
expectation artifact.1 

Just as we can speak of the construct validity of outcomes and 
treatments, so too we can discuss the construct validity of subjects 
or samples. The issue here is the extent to which the specific 
subjects who are measured in a study represent the theoretical 
population of interest (convergent validity) and do not represent 
populations of no theoretical interest (discriminant validity). As an 
example, suppose that we were interested in the effects of a 
mental-health treatment on schizophrenia. Patients diagnosed as 
schizophrenic had been assigned to treatment and comparison 
conditions, and subsequently treatment effects were observed. At a 
later date, rediagnoses of the subjects indicated that some of. them 
were not schizophrenic but rather manic-depressive, and it further 
appeared upon reanalysis of the research data that if the manic­
depressives were eliminated, no treatment effects were observed. In 
this case, we wished to generalize to the theoretical population of 
individuals suffering from schizophrenia. Because of the inexact­
ness of clinical diagnoses·, however, our sample has quite low 

1 Sometimes experimenter expectation effects are not a concern in applied research, because 
the treatment delivery in the research may be carried out by the staff who would regularly 
deliver the treatment even if research were not being conducted. In this case, staff 
expectations constitute part of the theoretical treatment of interest. 
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discriminant validity. We therefore are able to generalize the 
treatment effects not to the population of theoretical interest but 
rather to a population of less interest, individuals who are manic­
depressive. 

The standard procedure for ensuring the construct validity of 
subjects is to select them by random sampling from the population 
of interest.· Sampling procedures have been developed to accomplish 
this purpose (Sudman, 1976). Researchers are also well advised to 
gather demographic data on their subjects in order to describe 
adequately the population from which they come. 

We can also speak of the construct validity of the situation in 
which research is conducted. Suppose that we conducted research 
on· doctor-patient interactions in hospital settings. We would like 
our chosen setting to be representative of the theoretical construct 
of interest: the stereotypic hospital setting. It may be that the 
setting chosen for research is not a hospital setting, but rather an 
outpatient clinic. We would then want to make sure that our setting 
had construct validity, that our effects are not exclusively generaliz­
able to the population of outpatient clinics rather than to the 
intended population of hospital settings. 

Threats to construct validity 

There are two types of threats to construct validity. First, we may 
encounter low construct validity because we have failed to develop a 
construct theory. That is, we may not have defined the theoretical 
constructs in enough detail to operationalize them successfully. 
Second, even if we have a well-developed· theory concerning the 
theoretical constructs, we may fail to examine empirically the 
interrelations among successive operationalizations. Such a failure 
can lead to quite low construct validity in spite of a well-developed 
construct theory. 

Developing an adequate construct theory means that we have 
thought about the "nomological net" in which the construct is 
embedded {Cronbach & Meehl, 1955). This nomological net repre­
sents the way in which the construct relates to other constructs and 
to potential operationalizations. Linkages among the theoretical 
constructs need to be considered for the fallowing two reasons. First, 
we would like to achieve high discriminant validity and so our 
construct theory must tell us that the construct and some other 
construct of little interest are not the same. Second, we may wish to 
operationalize a construct other than the one of theoretical interest, 
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if the original one is relatively inaccessible and if our theory 
indicates that the original construct is caused by the more accessible 
one. To use an example from marketing research, telephone surveys 
typically assess liking for a product. This construct is assumed to 
cause the construct that is of more interest to the researchers, that 
is, purchasing. Liking is simply easier to operationalize. 

Linkages between constructs and potential operationalizations 
are of practical importance, because they guide the researcher in 
the choice of what to measure. Every measure or operationalization 
represents a theoretical hypothesis concerning the relationship 
between the unmeasurable construct and its indicators. Hypotheses 
about the validity of an operationalization should be based on 
experience, convention, common sense, and prior research. 

A well-developed construct theory, including a precise theoretical 
definition of the construct and the specification of the nomological 
net in which it lies, should give rise to a number of potential 
operationalizations. By employing a few of these simultaneously 
and by examining the relationships among them we can gain 
confidence in the construct validity of our measures. Unless we 
operationalize constructs in more than one way, we cannot .examine 
our construct theory empirically. 

If we employ multiple operationalizations, or indicators as they 
are also known, we should expect them to correlate with each other. 
This is so because we believe them to correlate highly with the 
unmeasured construct. Given certain assumptions, it is possible to 
estimate the correlations between the indicators and the unmea­
sured construct from the observed correlations among the indica­
tors. In certain cases, then, by examining the relationships among 
multiple indicators we can infer the relationship between each 
indicator and the construct of interest. This relationship is of 
fundamental importance, for it represents the convergent construct 
validity of the indicators. 

Suppose, for instance, that we have two outcome measures, Y1 
and Y2, which we assume to be indicators of the unmeasured 
construct of interest, C1•2 We assume that variation in each Y is in 
part caused by C1 and in part is due to a host of other factors, 
including random error. In addition, we assume that all causes of 
variation in Y1, other than the construct of interest, C1, are uncorre­
lated with all other causes of variation in Y2• In essence, we are then 

2 In the following models we assume that all variables and constructs have been standard­
ized. 
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Figure 3.1. Causal model of two indicators. 

assuming the causal model for our two measures depicted in Figure 
3.1. The constructs C2, C3, C4, and C5 represent unmeasured sources 
of systematic variation in Y1 and Y2 in addition to the common 
cause Ci. Random error in Yi and Y2 is represented by Ei and £2• 
The effects of the construct of interest on the indicators are 
represented by a1 and a2, which we might call the "validity 
coefficients." These are simply the correlations between the 
construct and the indicators, ry1c1 and ry2c,· 

Given the causal model of Figure 3.1, it can be shown that the 
correlation between Y1 and Y2 equals the product of the two validity 
coefficients, or 

If we assume that both Yi and Y2 are equally good indicators of C1' 
then we can estimate the magnitude of the validity coefficients as 

r _:_r - �Y,C1 - Y2C1 - Y1Y2 

If we have three indicators of C1' assuming that all causes of 
each, other than C1, are uncorrelated, we can estimate the validity 
coefficient for each indicator without assuming that they are 
equally good indicators. For the model in Figure 3.2, it can be 
shown that 

Ty1y2TY2Y3 

ry,yl 
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Figure 3.2. Three-indicator causal model. 

With more than three indicators of a single construct, not only can 
we estimate their correlations with the construct, but also the 
adequacy of the assumptions behind the causal model can be tested 
(Kenny, 1979). 

Multiple indicators of a single construct can thus enable us to 
estimate the relationships between the construct and its indicators. 
They enable us to estimate the convergent validity of an operation­
alized variable. The second half of construct validity, discriminant 
validity, can also be estimated by multiple indicators when we can 
define and operationalize the construct against which we seek 
discriminant validity. Suppose, for instance, that we seek to 
measure social development as an outcome in an evaluation of 
day-care centers. We develop multiple indicators of it to assess their 
convergent validity. Further, we decide that it is important to be 
sure that our measures assess social development, and not develop­
ment in general or cognitive development. So we seek discriminant 
validity against the cognitive development construct. We might 
then develop three indicators of social development and three more 
indicators of cognitive development. If we intercorrelated all six 
indicators, the resulting matrix of correlations is a form of what is 
called a multitrait-multimethod matrix (Campbell & Fiske, 1959) 
and can be used to estimate both the convergent and discriminant 
validity of our measures.3 The former is indicated by high intercor­
relations among the measures of social development. The latter is 

3 Traditionally, the multitrait-multimethod matrix has been defined as the correlation matrix 
between indicators of different constructs measured by the same set of methods. In other 
words, methods are factorially crossed with constructs. In our example, methods are nested 
within constructs. 
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suggested by what we hope will be relatively low correlations 
between indicators of the two different constructs. In other words, 
we want an indicator of a construct to be more highly correlated 
with other indicators of the same construct than it is with indicators 
of the other construct. In addition to simply checking the relative 
magnitude of the correlations to assess both types of validity, more 
formal modeling procedures have been developed to estimate 
convergent and discriminant validity from this multitrait-multi­
method matrix (Alwin, 1974; Kenny, 1979). 

Our discussion of multiple indicators has focused so far ort the 
correlations among them and how these correlations can be used to 
estimate their construct validity. There is also another source of 
information concerning the construct validity of multiple outcome 
indicators. If they all represent the theoretical construct of interest, 
they all might be expected to show roughly similar effects of the 
treatment. In other words, we can use the magnitude of treatment 
effects on multiple outcome measures to inform us about the 
construct validity of those outcome measures. If we find treatment 
effects for one indicator, we should expect them on another indica­
tor of the same construct (convergent validity), and we might not 
expect them on indicators of a different construct (discriminant 
validity). The simultaneous analysis of treatment effects on multi­
ple outcome measures is thus an important procedure for ascertain­
ing construct validity. In each of the s.ubsequent chapters, where we 
discuss the analysis of specific designs we shall devote attention to 
the analysis of multiple outcomes. 

All of the examples we have given of multiple operationalizations 
of constructs to assess construct validity have concerned outcome 
variables. The same logic, however, if not quite the analytic rigor, 
can be used to assess the construct validity of treatments, samples, 
and settings through multiple operationalizations. For instance, 
suppose that we have a theoretical population of interest. If we took 
multiple samples that we believe represented that population, we 
could examine if treatment effects were similar in each and thus 
gain some assurance of convergent validity. Likewise, discriminant 
validity could be assessed by comparing effects on samples from the 
population of interest to the effects on samples from another 
theoretical population. 

In sum, there are two fundamental steps for maximizing 
construct validity in social research. The first step consists of the 
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development of a precise and well-defined construct theory. The 
second step is to employ multiple indicators of treatments, 
outcomes, samples, and settings wherever possible. This latter step 
may involve a trade-off with efficiency (and perhaps other trade­
offs as well), but it is the best way of assessing the adequacy of the 
construct theory. 

Conclusion validity 

Conclusion validity was defined earlier as the extent to which the 
research is sufficiently precise or powerful enough to enable us to 
detect treatment effects. In fact, however, there are two types of 
conclusion errors that can be made concerning the presence of 
treatment effects. The first type of error is to conclude that. 
treatment effects exist when in fact they do not. The second type of 
error is to conclude that treatment effects do not exist when they in 
fact do. This distinction is identical to the Type I versus Type II 
error distinction that is a fundamental part of most introductory 
statistics textbooks. 

Our definition of conclusion validity focuses on the second type of 
conclusion errors: the extent to which we can detect treatment 
effects should they exist. This focus is due to two factors. First, most 
social researchers are routinely trained to be sensitive to Type I 
errors, concluding that treatment effects exist when in fact they do 
not. Methods courses usually are geared toward the use of inf eren­
tial statistics to estimate the probability of Type I conclusion errors. 
We routinely fix a, the probability of Type I errors, at some value, 
and then report the presence or absence of treatment effects given 
this probability. The second reason for focusing on Type II conclu­
sion errors is that they acquire more importance in many applied 
research settings than they perhaps have in more basic research 
settings. All too often in the last 20 years, evaluations of education, 
rehabilitation, and social welfare programs conclude that these 
programs have little effect. In part this may be due to failures to 
detect effects when in fact they exist. Given the expense of putting 
together and administering these social welfare programs, it is 
crucial that any effects that they engender be detected. 

In discussing conclusion errors, it is important to distinguish 
these errors from what we might call bias in the estimate of 
treatment effects. In the case of bias, we misestimate the magnitude 
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of treatment effects because for some reason or another we have 
failed to control adequately for some competing causal explanation. 
Bias occurs when threats to internal validity have not been effec­
tively eliminated, with the result that treatment effects are either 
over- or underestimated. In the case .of conclusion errors, we 
properly estimate the magnitude of treatment effects, but we reach 
inappropriate conclusions about their presence when they are 
compared with other sources of variation in the data. Conclusions 
about the presence or absence of treatment effects are always made 
by comparing some measure of effect size with other sources of 
variation in the data. In conclusion errors, we correctly calculate the 
treatment effect size, but we inappropriately conclude that the 
effect is not reliable when compared to other variation in the data. 

In order to identify the sources of Type II conclusion errors, it is 
helpful to return to the model of sources of variation in indicators 
developed earlier. In that model, variation in an indicator was due to 
(1) variation in the theoretical construct of interest; (2) variation in 
other constructs; and (3) random error variation. The model was 
illustrated by referring to a political attitude scale as the measure, 
the true underlying political attitude as the construct of interest, 
and social desirability and verbal ability as other systematic sources 
of variation. We assume that the treatment, if it was effective, 
affects only the theoretical construct of interest, the underlying true 
political attitude, and not the other sources of variation in the 
measure. 

Conclusions about the presence or absence of treatment effects 
compare variation in the outcome measure due to the treatment 
with other sources of variation in the measure. To the extent that 
variation due. to sources other than the construct of interest is 
substantial and uncontrolled, nonsignificant treatment effects will 
be reported. In other words, as irrelevant sources of variation in the 
outcome measure get large, so treatment effects look relatively 
small. Hence we may conclude that they do not reliably exist. 

The choice of procedures for overcoming the conclusion validity 
threat of irrelevant sources of variation in the outcome measure 
depends on whether the irrelevant variation is systematic or 
random. If we suspect that constructs other than the construct of 
interest are substantially responsible for variation in the outcome, 
and we wish to improve our precision or conclusion validity, then we 
should attempt to control statistically for the irrelevant variation. 
Control over irrelevant but systematic variation in the outcome 
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measure can be achieved either through the use of a blocking 
variable or through the analysis of covariance. These procedures are 
discussed in detail in the next chapter. If we suspect that the 
irrelevant sources of variation in the outcome measure are due 
primarily to random noise or error rather than to systematic 
sources, we might attempt to derive an outcome measure from 
multiple indicators that is more reliable. Alternatively, we might 
use structural modeling procedures, discussed in Chapter 9, to 
estimate treatment effects on the unmeasured construct, removing 
irrelevant error variation from its indicators. 

Conclusion errors may also be caused by the use of insufficiently 
powerful treatment variables. Suppose, for instance, that we are 
interested in evaluating the effect of psychotherapy on depressed 
patients. It may be that those effects reliably emerge only when 

·patients are in psychotherapy for an extended period of time. If the
treatment condition exposed patients to only a single or a few
psychotherapy sessions, effects of the treatment might not be found.
We would then mistakenly conclude that psychotherapy does noth­
ing for depression, when in fact the evaluation has not been
sufficiently sensitive to demonstrate· its effects. The solution to this
sort of threat to conclusion validity is to employ treatment levels
that are relatively extreme if we wish to detect treatment effects. A
more extended discussion of the choice of levels of the treatment
variable is included in the next chapter. Although extremity tends
to enhance conclusion validity, it makes little sense to employ more
extreme levels than are ever likely to emerge outside of the research.
It may not be worth much to find out that psychotherapy affects
depressive patients if that effect emerges after 10 years of intensive
therapy.

In addition to a lack of precision due to irrelevant sources of 
variation and insufficiently po':Verful treatments, conclusion errors 
can also be made if we have not gathered data from enough 
observations and if those observations are quite heterogeneous. It is 
a well-documented fact that statistical precision or the ability to 
detect effects increases directly as the number of subjects increases 
(Cohen, 1969). In fact, if a researcher can estimate in advance the 
magnitude of the expected treatment effect, a "power analysis" can 
be conducted to determine the sample size necessary to ensure that 
a Type II error is avoided. Such· a procedure is strongly recom­
mended for all who engage in evaluation research. Where there is 
disagreement about the expected magnitude of treatment effect, the 
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conservative strategy (although also the most costly strategy) is to 
calculate the needed number of observations based on the smallest 
estimate. 

Just as using too few subjects can lower conclusion validity, so 
using subjects who are quite heterogeneous can have the same 
effect. In essence this is a cause of Type II errors because it 
increases irrelevant variation in the outcome variable. One source of 
heterogeneity of subjects' outcome scores can arise if the treatments 
that are delivered to them are not uniform within any condition. 
Hence, heterogeneity of treatment is also a threat to conclusion 
validity. 

A final source of conclusion error in social research occurs when 
inappropriate assumptions are made concerning the independence 
of observations. Statistical tests are routinely based on the assump­
tion that observations are independent. Frequently, however, this 
assumption may be questionable. For instance, if we are examining. 
children in a classroom for the effect of some curriculum treatment, 
the inevitable and intense interaction among those children throws 
into question the independence assumption, if the children are the 
unit of analysis. Usually the effect of inappropriately assuming 
independence is on Type I conclusion errors: We may report 
treatment effects when in fact they do not exist. In some cases, 
however, the inappropriate assumption of independence can lead to 
Type II conclusion errors. A more extended discussion of the 
independence assumption is included in Chapter 8. 

Internal validity 

We earlier defined internal validity as the extent to which detected 
treatment effects on the outcome variable are due to the treatment 
of interest rather than to other competing causes. In other words, 
internal validity concerns the adequacy of the causal conclusions 
that are reached from the observed relationship between treatment 
and outcome. It concerns not only the question of whether or not 
such a relationship is causal, but also whether our estimate of its 
magnitude is unbiased, in the sense discussed in the previous 
section. 

There are a variety of threats to internal validity that have been 
enumerated by Campbell and Stanley (1963) and by Cook and 
Campbell (1979). In the following paragraphs we review some of 
these threats. Before doing so, however, it is worth noting that the 
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presence of different sorts of threats depends on the nature of 
treatment comparisons. As we discussed in the first chapter, and as 
we shall highlight again in Chapter 11, comparisons between 
treatments can be made either within the same subjects or between 
subjects. Some of the threats that we review below are threats when 
comparisons are made within subjects. Others are threats when 
comparisons are made between subjects. It is helpful in discussing 
these threats to identify how they are dependent on the nature of the 
treatment comparisons. 

1. Selection: If different subjects are assigned to the treatment
and comparison conditions or, equivalently, if treatment compari­
sons are made between subjects, and if a nonrandom assignment 
rule is used, then we can expect to observe differences on the 
outcome measure even in the absence of treatment effects. Selection 
is a source of bias whenever treatment comparisons are made 
between subjects and a nonrandom assignment rule is used. Because 
this combination of between-subjects comparisons and nonrandom 
assignment is frequently the basis for quasi-experimental research, 
examples of selection as a source of bias are easy to find. Deutsch 
and Collins ( 1951) attempted to demonstrate that interracial hous­
ing projects led to a decrease in racial prejudice and discriminatory 
behavior. They thus compared prejudice outcome measures between 
those living in interracial housing and those living in segregated 
housing. In spite of the authors' valiant efforts to eliminate the 
competing cause of selection, it is probably the case that some of the 
differences found between the two groups were due to the fact that 
the people in them were different. Those who decided in 1950 to live 
in an interracial environment were without doubt different sorts of 
people from those who lived in a segregated environment. 

2. Maturation: If treatment comparisons are made within
subjects and if subjects are first observed in the comparison condi­
tion and then in the treatment condition, it is likely that any 
subject's two outcome scores will differ because he or she has 
matured during the interval between the com.parison and treatment 
observations. Maturation is a potential source of bias whenever 
treatment comparisons are made within subjects and the order in 
which subjects are observed under the treatment and comparison 
conditions is nonrandom - for example, subjects are first observed 
under the comparison condition and then under the treatment 
condition. to illustrate the threat of maturation, suppose that we 
were interested in the effects of an alcohol education program on 
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drinking. To observe subjects' drinking prior to the treatment, or 
under the comparison condition, all subjects kept a record of their 
behavior over a 3-year period. After exposure to the education 
program, a record was again kept of the subjects' drinking over a 
3-year period. Because the 3-year observation in the comparison 
condition was recorded prior to the 3-year observation in the 
treatment condition for all subjects, maturational differences in 
drinking are confounded with treatment effects. 

3. History: Whenever maturation is a source of bias in estimating
treatment effects, history is likely to be as well. In the above 
example, all subjects matured from the comparison condition obser­
vations to the treatment condition observations. In addition, various 
historical events occurred that potentially affect the outcome vari­
able of interest. For instance, the price of alcohol may increase 
dramatically during the course of the research, resulting in a 
general decrease in drinking throughout the population. Just as with 
maturation, history is a potential source of bias whenever treatment 
comparisons are made within subjects and whenever the order of 
observation of individual subjects under treatment and control 
conditions is not determined randomly. 

4. Mortality: If subjects drop out of the research for some
unknown reason, then subject mortality is a potential source of bias 
in designs where treatment comparisons are made within subjects. 
Suppose that subjects were observed first under a comparison 
condition and then only a subsample was observed under the 
treatment condition. That subsample is likely to differ in unknown 
ways from those who dropped out after the comparison observa­
tions. This difference is a source of bias. 

5. Testing: It has been shown that simply asking a subject's
opinion may influence that opinion or its centrality to the subject at 
a later point in time. For instance, Bridge, Reeder, Kanouse, 
Kinder, Nagy, and Judd (1977) found that subjects who had 
previously been interviewed about cancer were subsequently more 
concerned about cancer than respondents whose previous interview 
did. not refer to cancer. In research designs that involve within­
subject treatment comparisons and a nonrandom order of treatment 
exposure, such testing effects are a potential source of bias in 
estimating treatment effects. 

6. Regression artifact: It is a well-known fact that extreme
observations tend to be less extreme if remeasured. A trivial 
example illustrates the point: Suppose that we compute the week-
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by-week batting average of some baseball player who has a lifetime 
average of .300. If, for a given week, the computed average is .170, 
the chances are excellent that the average the following week will be 
closer to .300. This phenomenon, known as regression toward the 
mean, may be a threat to internal validity in research designs that 
involve within-subject treatment comparisons. An example from 
Campbell ( 1969) illustrates the potential bias. In 1955 the State of 
Connecticut observed a sharp increase in traffic fatalities and hence 
introduced a vigorous law enforcement program to reduce speeding. 
In 1956, there were many fewer traffic fatalities than in the 
previous year. In this example, the treatment comparison is made 
within the same subject (i.e., Connecticut) and there exist two 
competing causal explanations for the 1955-6 fatality difference: 
( 1) an actual treatment effect, and (2) the tendency for an extreme 
observation to regress toward the mean. 

Although it may be clear from this example how regression to the 
mean can be a source of bias, the nature of the regression artifact is 
often a source of confusion. A more detailed discussion of the 
phenomenon appears in Chapter 8. 

7. Instrumentation: If different outcome measures are used for
gathering the observations in the various treatment conditions, then 
the treatments may look different in the absence of treatment 
effects. Instrumentation in this sense is a threat to internal validity 
regardless of whether treatment comparisons are made within or 
between subjects. 

As should be clear from our discussion of construct validity, 
outcome measures can differ from each other in two ways. They 
may be different indicators of the same underlying construct. They 
may also be indicators of different constructs. Each of these 
differences may be responsible for an instrumentation threat to 
internal validity. If the measures given to the different treatment 
conditions are all indicators of the same construct but employ 
different metrics or use different scales, then metric differences are 
confounded with treatment effects unless transformations are used 
to derive a common metric. If the outcome measures assess different 
constructs in the different conditions, no transformations can render 
them comparable. An additional instrumentation threat can also 
arise when a measure has floor or ceiling effects, that is, when it 
lacks interval properties. 

As we have defined the above threats to internal validity, selec­
tion is a threat only when between-subject treatment comparisons 
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are made; and maturation, history, mortality, testing, and regres­
sion are threats only when treatment comparisons are made within 
subjects. However, if subjects have not been assigned randomly to 
the different conditions of a between-subjects design and these 
subjects are observed over time, then differential maturation, 
history, mortality, testing, and regression all become potential 
sources of bias. In other words, selection can interact with the 
within-subject threats. 

l. Selection by maturation: Whenever selection is a threat, it is 
likely that the treatment groups differ not only initially but also in 
their rate of growth or maturation. Differential maturation between 
treatment conditions is a common source of bias. 

As Campbell and Erlebacher ( 1970) point out, a selection by 
maturation interaction frequently leads to the erroneous conclusion 
that a compensatory treatment (one designed to help a population 
that is disadvantaged in some way) has a negative effect. It usually 
is the case that individuals who receive lower scores on measures of 
learning or achievement are growing at a slower rate than individu­
als who score more highly. A compensatory educational program 
might be given to these slower learners after a pre-treatment test 
and their post-treatment scores compared with the scores of a group 
of faster learners who received no treatment. If the compensatory 
treatment had no effect at all, the difference between the pre­
treatment and post-treatment scores.Jar the untreated faster learn­
ers would be greater than the same difference for those who· learn 
more slowly and received the ineffective treatment. Because the 
group receiving the treatment grew less, one might conclude that 
the treatment had a negative effect. In fact, however, differential 
growth rates explain the difference, and the treatment had no effect 
at all. 

2. Selection by history: Treatment groups that are formed by a 
nonrandom assignment rule may be affected differently by experi­
ences and historical events occurring in the pretest-posttest inter­
val. They also may be expected to be exposed to different events 
during the interval. Differences that exist between groups on the 
outcome measure may be attributable, therefore, to different histo­
ries to which the groups are exposed. 

3. Selection by mortality: Treatment groups that differ prior to 
the treatment as a result of employing a nonrandom assignment rule 
may show differential mortality rates. That is, more subjects may 
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drop out in one condition than another because different types of 
subjects are included in the various conditions. Estimates of treat­
ment effects that do not take account of this differential mortality 
will be biased. 

4. Selection by testing: Treatment groups that differ initially as a 
result of nonrandom assignment may be affected to different 
degrees by taking a pretest. They thus may show different testing 
effects, which become a source of bias in estimating treatment 
effects. 

5. Selection by regression artifact: Treatment groups that differ 
initially as a result of a nonrandom assignment rule may be 
differentially extreme on their pretest scores and thus may exhibit 
differing degrees of regression to the mean. 

In addition to interactions between selection and the within­
subject threats, the treatment itself may interact with various 
threats, with the result that treatment effects are estimated with 
bias. As will become clear, however, these treatment interaction 
threats may be alternatively seen as problems of construct validity, 
or more specifically as problems of the construct validity of the 
treatment, instead of problems of internal validity. The line between 
construct validity and internal validity becomes hazy at this point. 

1. Treatment by mortality: Of the treatment interactions, this one 
is probably most clearly a threat to internal validity rather than a 
construct validity problem. It may be that the different treatments 
cause differential mortality in the treatment groups, even when a 
random assignment rule has been used. When subjects drop out of 
one group but not out of another, or when different sorts of subjects 
drop out in the various treatment conditions, then subsequent 
treatment effects that are estimated on the remaining subjects are 
biased. 

Because this threat is a problem even in randomized experimen­
tal designs, we discuss it in more detail in the next chapter. It is 
worth noting here, however, how this treatment by mortality threat 
can be looked upon as a problem of construct validity rather than as 
a source of bias. It may be that the treatment exerts its effect by 
selecting out those individuals who can potentially be affected. For 
instance, suppose that we were evaluating a dn�g rehabilitation 
program. The program may be effective by providing an incentive to 
drug abusers who are already motivated to change their drug usage. 
Those who are not so motivated will drop out of the rehabilitation 
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program. If the treatment exerts its effect in part through subject 
selection, then differential mortality can be seen as a part of the 
treatment program rather than as a source of bias. 

2. Treatment by testing: It may be that the presence of a pretest 
sensitizes subjects to the treatment they are about to receive. In 
such cases, the treatment effect can be said to depend on the 
presence of the pretest. If we wish to generalize the treatment effect 
to a situation where a pretest would not normally be included, then 
a treatment by testing interaction is a source of bias. Equally 
plausibly, however, we could argue that the treatment had low 
construct validity because we wish to generalize to a treatment that 
does not normally include a pretest. This treatment by testing 
interaction is discussed further in the next chapter where we suggest 
procedures for estimating its magnitude. 

There are a series of other problems that can also be seen either 
as threats to internal validity or, alternatively, as problems in the 
construct validity of the treatment. For instance, individuals in a 
control group where no treatment is received may realize that they 
are receiving no treatment and may be motivated to try harder or 
otherwise compensate for their lack of treatment. Cook and Camp­
bell ( 1979) label this threat compensatory rivalry. Administrators 
of the experiment may also feel a need to compensate "deprived" 
comparison groups, a threat that Cook and Campbell name 
compensatory equalization of treatment. It may also be the case 
that a treatment is never delivered, or is delivered very incomplete­
ly. Further, if subjects in the comparison group are in close 
proximity to treated subjects, there may be some diffusion or 
contagion of the treatment, such that the desired differences 
between the groups are minimized. Just the opposite may also 
occur: Treated subjects may end up receiving more than just the 
treatment, they may be accorded more attention, and other experi­
ences may happen to them as a group. All of these threats to 
internal validity concern the nature of the treatment variable in the 
experimental setting. The treatment may be less than intended; it 
may be more or different than intended; the untreated group may 
not be untreated. Threats of this nature have been seen as threats to 
internal validity in that they constitute competing causes for 
obtained posttest differences. They are better seen as construct 
validity threats, however, because they concern the nature of the 
treatment variable and its relationship to the theoretical treatment 
construct. 
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Most of the threats to internal validity are eliminated as compet­
ing explanations for treatment effects when a random assignment 
rule is used. Certain of the threats are not, however, taken care of 
through the use of a random assignment rule. The two threats that 
were described as treatment interactions remain potential sources of 
bias in randomized experimental designs. Differential mortality (a 
treatment by mortality interaction) is a source of bias even with 
random assignment. Likewise, a treatment by testing interaction 
remains a threat unless subjects are also randomly assigned to 
pretest/no pretest conditions. In sum, any of the threats to internal 
validity that are not likely to be eliminated through the use of a 
random assignment rule can be alternatively seen as threats to 
construct validity, and therefore not as threats to internal validity. 

External validity 

External validity, as we have defined it, is the most difficult of the 
four validities to achieve. It has been defined as the extent to which 
the effects observed in a study can be generalized to theoretical 
constructs other than those specified in the original research 
hypothesis. Just as construct validity concerns the relation between 
constructs and operationalizations for outcomes, treatments, 
samples, and settings, so too we can speak of the external validity of 
each of these. In other words, we might seek to generalize from the 
outcomes, treatments, samples, and settings in our original research 
hypothesis to others that were originally unspecified. 

The definition of externa1 validity that we have given differs in 
two major ways from the usual notion. First, we are defining it as 
generalization from construct to construct rather than as general­
ization from various observed samples, outcomes, treatments, and 
settings. Second, although social scientists are quite comfortable 
discussing the external validity of samples, or even of settings, our 
definition includes its relevance for treatments and outcomes. 

We normally think that the demands of external validity are met 
by engaging in some form of random sampling from a known 
population to ensure that we can generalize observed relationships 
from our sample to the population of interest. As we have defined 
the four validities, however, sampling procedures that enable us to 
generalize from an obse�ed group of subjects to a population of 
interest are relevant to construct validity rather than to external 
validity. They enable us to have confidence that the theoretical 
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construct of interest is represented or adequately operationalized in 
the research at hand. Although generalization from observations to 
theoretical populations of interest is the domain of construct validi­
ty, generalization from the theoretical population or construct that 
was operationalized (or sampled) to other populations or constructs 
of interest is the domain of external validity. 

An example illustrates the distinction. The television program 
Sesame Street was evaluated by researchers at Educational Testing 
Service (Ball & Bogatz, 1970) who decided to examine its effect on 
the cognitive development of disadvantaged preschool children. The 
theoretical population of interest to which they wished to generalize 
consisted· of preschool children from poor f amities. To achieve this 
generalization they engaged in a fairly elaborate sampling proce­
dure. Through this sampling they could have confidence that the 
theoretical population of interest was represented in the study. 
According to our definition, this sampling procedure is designed to 
maximize the construct validity of the sample, that is, to enable the 
researchers to generalize from a specific operation to a theoretical 
construct of interest. The procedure to ensure the construct validity 
of the sample is exactly parallel to what is to be done to ensure the 
construct validity for outcome measures: Define the construct or 
theoretical population of interest and then choose multiple examples 
of it for actual measurement. 

The external validity concern in the Sesame Street evaluation is 
not whether we can generalize to disadvantaged preschoolers, but 
rather whether we can generalize the observed effects to other 
populations (e.g., advantaged preschoolers) that were not actually 
operationalized in the research.4 Likewise, the external validity of 
outcome measures concerns the confidence with which we can 
generalize from the construct measured (e.g., reading readiness) to 
other unmeasured constructs (e.g., cooperative play). 

According to this definition, the only tool to increase external 
validity is theory that defines the relationshi·ps between constructs, 
theory validated by prior research, experience, and common sense. 
In the example above, researchers who wish to generalize the 
observed effects of Sesame Street to advantaged preschoolers must 
engage in theoretical speculation on the way in which social and 

4 In fact, a small sample of advantaged preschoolers was included in the research so that, 
strictly speaking, generalization to this population was alsd a construct validity task. To 
illustrate the distinction between construct and external validity, however, we are pretend­
ing that this small sample was not included in the research. 
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economic status should, or should not, interact with the television 
program. This speculation is informed by prior research and experi­
ence. We might conceive of different theoretical populations as 
departing from the sampled population along a gradient of similari­
ty. Some theoretical populations are quite similar to the sampled 
population; others are less similar. Generally the confidence that we 
have in generalization to populations not operationalized depends 
on the population's location on this gradient of similarity. Such 
gradients of similarity can also be used for generalization to 
outcome, treatment, and setting constructs that were not operation­
alized in the research. 

If the theory and experience that guide . external validity are 
inadequate, that is, if the construct to which we wish to generalize is 
too far removed from the construct that was operationalized, then 
the only option open to us is to transform a concern of external 
validity into a problem of construct validity. In other words, if we 
wish to generalize to a construct that was not operationalized in the 
research, and we do not have confidence in the theory and experi­
ence that should guide the generalization, then our only option is to 
conduct more research, operationalizing the new construct to which 
we wish to generalize. For example, to be confident in the general­
ization to advantaged children in the evaluation of Sesame Street, 
the researcher would need to conduct more research using a sample 
of children from the advantaged population. In this research, what 
used to be an external validity problem is now a construct validity 
problem. 

Occasionally it happens that researchers wish to engage in 
generalizations to many different populations or constructs. They 
may be fearful about engaging in theoretical generalization and 
hence simultaneously sample from all the different populations of 
interest. In other words, in one piece of research they attempt to 
operationalize simultaneously many different constructs so as to 
generalize to them all. This response to external validity concerns, 
turning them into many simultane6us issues ·of construct validity, 
has a price in that it usually lowers the conclusion validity of the 
research. Instead of a sample of N units from a single population, 
the research may employ six samples, each of N/6 units, from six 
populations. In this case, the confidence that Type II conclusion 
errors have been avoided in the case of any one of the populations is 
substantially lower than if the full sample, of N units, had been 
chosen from the population. 
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Relationships and priorities among· validities 

The reader will probably have noticed that our recommendations 
for valid research contradict each other at various points. For 
instance, if generalization to all members of a population is desired, 
then the researcher is advised to sample fr01n the diversity of that 
population. On the other hand, a diverse and heterogeneous sample 
will increase the probability of Type II conclusion errors unless 
steps are taken to control statistically for the diversity. 

The purpose of this final section is to make explicit some of the 
interrelations and conflicts between the various validities. Once that 
is accomplished, we close with a few comments concerning priorities 
among the validities and the ways in which competing claims on 
social researchers make their tasks anything but simple. The follow­
ing pairs of validities may conflict. 

1. Construct and conclusion validities: In order to maximize 
construct validity, we have advised the researcher to take two steps. 
First, he or she must develop a definition and theory of the 
construct. Second, it is wise to sample multiple and diverse 
instances of possible indicators of the construct. This second recom­
mendation often may, and usually does, conflict with the need to 
redu�e irrelevant variation in outcome measures, a prerequisite for 
avoiding Type II conclusion errors. For instance, if the researcher 
wants to generalize effects of a treatment to all members of some 
population, he or she should sample the full range of that popula• 
tion. The heterogeneity of the resulting sample is likely to introduce 
substantial unexplained variation in the outcome variable, which in 
turn may swamp relatively small treatment effects. In a parallel 
manner, conducting research in a variety of settings also introduces 
irrelevant variance, as does operationalizing the treatment in a 

variety of ways. Occasionally the irrelevant variation in the outcome 
measure that these multiple operationalizations introduce can be 
controlled statistically so that there is no loss in conclusion validity. 
The researcher is strongly advised to search for characteristics of 
the sample or settings that explain variation in the outcome and that 
can be controlled. 

2. Construct ·and internal validities: As we argued in both this 
chapter and the last, the most effective procedure for maximizing 
internal validity is to conduct a randomized experiment in which 
subjects are assigned randomly to the treatment conditions. Experi­
mental research designs are most easily accomplished in special 
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settings where strict control can be maintained over factors that 
might constitute competing causes to the treatment. Thus, for 
instance, in such settings we can make sure that the only differences 
between various conditions are intended differences. Because the 
need for such control implies a special setting, it may also necessi­
tate the use of a set of volunteer subjects who interrupt their regular 
schedule to participate and the use of a treatment specially 
constructed so that it may be manipulated effectively. As a result, 
the construct validity of setting, sample, and treatment may be 
compromised as threats to internal validity are eliminated. 

3. Conclusion and internal validity: Suppose that we are inter­
ested in showing the effects of higher levels of self-esteem on 
academic achievement among secondary school children. We may 
decide that internal validity is extremely important and therefore 
we conduct a randomized experiment. We want to assign children 
randomly to different levels of self-esteem. To accomplish this, we 
must manipulate self-esteem in some way; we must have an experi­
mental treatment that affects self-esteem. In whatever way we 
decide to carry out this manipulation, it will probably be the case 
that the manipulated levels of self-esteem will not be very extreme. 
Try as we may, we probably will not be very �uccessful in causing 
large changes in subjects' self-esteem. We have seen that with 
nonextreme levels of the treatment we may make Type II conclusion 
errors; we may decide that treatment effects do not exist when in 
fact they would be found if we measured the full range of naturally 
occurring self-esteem. Hence, by seeking to manipulate self-esteem 
we may gain internal validity at the expense of a decrease in 
conclusion validity. Randomized experiments require that we 
manipulate the treatment. Ethical.and practical considerations may 
require that we limit the range of the treatment variable. 

The potential conflicting claims of the various validities necessi­
tate· priority decisions among them. Is the researcher more 
concerned about sound generalizations to the population of interest, 
or is he or she more concerned with avoiding a Type II conclusion 
error and so wishes to restrict the heterogeneity of the research 
sample? Is internal validity to be maximized at the expense of 
construct validity, if manipulating the treatment means transforming 
it to something different than it usually is? Decisions such as these 
are always made by rese�rchers. All too often, however, they are 
made without a great deal of thought and reflect research traditions 
as much as .the necessary priorities for a specific research problem. 
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Laboratory, experimental research has traditionally placed inter­
nal validity at the top of its priority list. If causal statements cannot 
be made, research that attempts solely to verify theory may be of 
little value. Construct validity has also been important to laboratory 
research, with particular attention being given to the construct 
validity of the independent variable. External and conclusion validi­
ties have traditionally been relatively neglected. The probability of 
committing Type II conclusion errors has usually not even been 
assessed. 

Researchers in applied. settings, evaluating the effects of some 
social program, must emphasize conclusion validity and the 
construct validity of samples and settings to a greater extent than in 
laboratory research. Conclusion validity is important for applied 
research, we have argued, because of the number of studies that 
have found little or no effects for large social programs. Construct 
validity of populations and settings is important, for the purpose of 
such research is to gain knowledge about an effect in a specific 
setting for a given population rather than to gain more basic 
theoretical knowledge of causal relationships in the abstract. 

Although conclusion validity and the construct validity of 
samples and settings may be more important in applied research 
than in basic laboratory research, internal validity and the construct 
validity of treatments and outcomes are not less important. Clearly 
the researcher wishes to eliminate bompeting causes for any treat­
ment effects observed. Likewise, it is important that the treatment 
as delivered and the measured outcomes represent the theoretical 
constructs of interest. 

Therefore, we suggest that the applied researcher is more subject 
to the conflicting claims of research validities than his or her 
colleague in laboratory research. The latter scientist can rely on the 
priorities among the research validities that have been established 
by a research tradition. For the applied researcher, on the other 
hand, there is no tradition-given set of priorities. There may be 
occasions or situations where conclusion validity is supremely 
important. At other times, issues of construct validity may be 
paramount. More likely than not, all of the coqtlicting claims will 
seem to be undeniably important to the applie4 social researcher. 
We take no final position concerning which of f�ese claims should 
be heeded most closely. :; 
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Randomized experiments 

In the last chapter four sources of invalidity in social research were 
identified. Much of the rest of this book details the ways in which 
various research designs and strategies of analysis affect the validity 
of applied social research. In the present chapter we are concerned 
with randomized experimental designs, designs that are. maximally 
efficient at eliminating threats to internal validity. 

Randomized experiments are defined by the use of a random 
assignment rule in assigning experimental units to treatment condi­
tions. Because of its importance, discussion of the definition of a 
random assignment rule is in order. A random assignment rule is 
one in which the probability that any subject receives any given 
treatment is known and is other than one or zero. It is sometimes 
mistakenly thought that a random assignment rule requires that the 
probability of a subject's assignment to one treatment is equal to his 
or her assignment to any other treatment. In fact, it is entirely 
possible to engage in random assignment with the additional condi­
tion that the number of subjects in one treatment is different from 
the number in some other treatment. The best-known applied 
example of such unequal random assignment is the New Jersey 
graduated work incentive experiment (Rees, 1974), where the 
experimenters decided to ensure that more subjects received some 
treatments than received others. 

In order to carry out a randomized experiment, it is usually 
necessary for the researcher to control and actively manipulate the 
treatment or independent variable of interest. There may be 
instances where the researcher believes that a random assignment 
rule has been used, but the researcher himself or herself has not had 
direct control over assigning units to treatment conditions. In fact, 
however, it is quite unlikely that a truly random assignment rule has 
been used unless the researcher assures randomization through the 
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use of a table of random numbers, flipping coins, or some similar 
procedure. 

Randomized experiments are the research design of choice if the 
goal is to maximize internal validity. The reader will recall from the 
preceding chapter that internal validity is the extent to which we 
can reach causal conclusions about treatment effects. In a general 
sense, there are three conditions that are necessary for asserting 
causality between two variables (Kenny, 1979): (1) covariation or 
correlation between them; (2) time precedence of cause to effect; 
and (3) lack of spuriousness. Most of the threats to internal validity 
concern this third condition, our ability to rule out spuriousness, 
where spuriousness is defined as covariation between treatment and 
outcome due to shared common causes. For example, if subjects in 
the treatment and comparison groups differed prior to treatment, as 
in the nonequivalent control group design (Chapter 6), then those 
differences may be responsible for both treatment assignment and 
any observed differences on the outcome measure. Hence, covaria­
tion of treatment and outcome would not be due to a causal effect 
but rather to a shared common cause: selection. 

Randomized experiments maximize internal validity by ruling 
out spuriousness through the use of a random assignment rule. 
Without delving into the theory of randomization, its rationale is 
intuitively reasonable. In order to rule out spuriousness, we need to 
be assured that no characteristics of the subjects (e.g., personalities, 
backgrounds) are correlated with the treatments received by them. 
Randomization, correctly carried out, assures no such correlations 
on the average. If the assignment rule is random, then subject 
characteristics cannot be expected to correlate with treatment more 
than one time in twenty (given an a level of .05). 

The organization of the remainder of this chapter is as follows. 
First we discuss issues of design in randomized experiments. In 
particular, we focus on three design issues. The first concerns the 
selection of treatment levels and control or comparison groups. We 
then discuss the issue of the unit of analysis in randomized experi-

. ments. The final design issue we discuss concerns aspects of the 
research design that can increase conclusion validity. Following this 
elaboration of design issues, we devote most of the remainder of the 
chapter to the statistical analysis of randomized experiments. In the 
analysis section we discuss the traditional use of analysis of variance 
and analysis of covariance in experimental designs. We then show 
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how these analyses are subsumed under the general analytic proce­
dure of multiple regression that we discussed in Chapter 2. Finally, 
we discuss problems that typically emerge in the use of randomized 
experiments in applied social research. 

Experimental design issues 

Before conducting any research, three questions should be 
answered: 

l What is the nature of the program or treatment to be 
evaluated? 

2 What are the relevant outcomes to be assessed? 
3 What is the population to be examined for treatment 

effects? 

There exist considerable differences of opinion concerning how 
researchers should answer these questions. One major part of this 
controversy is the degree of independence of the researcher from the 
staff of the program to be evaluated. At one extreme is Michael 
Scriven (l 974), who argues for goal-free evaluation. According to 
Scriven, the researcher should not even ask the program staff or 
administrators about outcomes or the treatment. At the other 
extreme, Edwards, Guttentag, and Snapper (I 975) present an 
elegant procedure that quantifies the opinions of program adminis­
trators about relevant outcomes and control groups. 

Once general answers to these questions have been reached, the 
researcher must make a decision about the overall type of design 
that is both feasible and informative. A great deal of information 
must be weighed in reaching this decision, information about both 
the feasibility of maintaining a research design in a given applied 
setting and the validity of the conclusions that are likely to emerge. 
Randomized experiments may be more feasible in some types of 
settings than in others. For instance, there may be lotteries, in which 
the distribution of some resource is naturally randomized (e.g., 
Staw, 1974). Whenever the resource or treatment is scarce (i.e., 
demand is greater than supply), experiments may be feasible if­
administrators can be convinced that a random distribution is as 
fair as any other sort of distribution rule. Cook and Campbell 
( 1979) have discussed other conditions under which randomized 
experiments may be feasible. 
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Once a general decision has been made about the use of a random 
assignment rule, a series of more specific design decisions must be 
made. These design decisions can be grouped into. three sets: 

I Decisions concerning treatment presentations and combina­
tions 

2 Decisions concerning the experimental unit to be observed 
3 Decisions to increase conclusion validity 

We discuss these three sets in detail below. 

Treatment selection and presentation decisions 

There are a series of interrelated issues concerning treatment 
selection and presentation that are discussed below. First, we define 
factorial designs and distinguish between crossed and nested 
designs. Next, we focus on issues in selecting treatment levels to be 
observed. The use of repeated measurement designs in which units 
are exposed to multiple treatments is then discussed. Finally, the 
important issue of defining what constitutes an adequate control or 
comparison group is elaborated upon. 

Factorial designs. In experiments there exist one or more 
experimental factors, each of which has at least two levels. Each 
subject in the research receives one or more combinations of levels 
of each of the different factors. For example, the graduated work 
incentive experiment conducted in New Jersey to evaluate the 
effects of a negative income tax (Rees, 1974) manipulated two 
experimental factors: the "basfo benefit" or amount paid to a family 
with no other source of income, and an "implicit tax rate" ot rate at 
which benefits were reduced as family income rose. The families 
that were the subjects in the study were assigned to a treatment 
condition that was defined by a specific combination of the two 
factors. Four different levels of the "basic benefit" and three levels 
of the "implicit tax rate" were combined or crossed to create the 
twelve experimental treatment conditions. The four levels of the 
basic benefit were defined by the percentage of "poverty-level" 
income provided to the family: 125%

1 
100%, 75%, and 50%. The 

three implicit tax rate levels, rates at -which the benefit declined as 
earned income rose, were 30%, 50%, and 70%. Crossing these two 
factors yields twelve treatment conditions to which subjects could 
have been assigned. This fully crossed factorial design is depicted in 
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Table 4.1. Crossed factorial design employed in the 
graduated work incentive experiment 

Implicit tax rate 

Basic benefit 30% 50% 

125% x x 
100% x x 

75% x x 
50% x x 

From Rees, 1974. 
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70% 

x 
x 
x 
x 

Table 4.1. Each family, or experimental unit, was randomly 
assigned to a cell of the factorial design and observed under only 
that one specific treatment combination. In experimental terminolo­
gy, f amities were nested within treatments. 1 

It might seem that a crossed factorial design is more complex 
than it need be if our purpose is simply to assess the effects of the 
two factors. Might it not be simpler to conduct two studies,. one on 
the effect of the basic benefit factor, using four treatments, and one 
on the effect of the implicit tax rate, using three treatment condi­
tions? The disadvantage to conducting these two studies, as 
compared with using a crossed design, is that the effects . of one 
factor may differ depending on the level of the other factor. For 
instance, variations in implicit tax rate may have different effects 
depending on whether the basic benefit is high or low. If the effect 
of one factor does in fact depend on the level of another, we have 
what is known as a statistical interaction between the two. Only in 
crossed factorial designs can such interactions be detected. So the 
first decision concerning the design of treatment conditions 
concerns whether in fact interactions between factors of interest are 
important to detect; If they are, as is usually the case, then we 
should use a crossed factorial design. 

· 

In addition to crossing experimental factors to produce treatment 
conditions, there may be occasions when factors are nested within 
other factors. For instance, suppose that we were engaged in high 

1 In fact, families were not assigned to some of the cells in this fully crossed design. Some 
treatment combinations were considered quite improbable and hence were omitted from the 
design, e.g., 125% basic benefit with a tax rate of 30%. 
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school curriculum evaluation, where one of the experimental factors 
is the type of curriculum (old versus new) taught to students. 
Teachers might then be nested within levels of the curriculum if 
some teachers were best prepared to teach the old curriculum and 
others best able to teach the new. The teacher-by-curriculum 
interaction cannot be assessed with such a nesting procedure. Only 
if teachers and curricula are crossed is the interaction testable. In 
addition to not being able to test interactions between nested 
factors, the effects of one factor are confounded with the effects of 
the other under which it is nested. In our example, different 
teachers teach the different curricula. For instance, only the older 
teachers may teach the old curriculum, whereas only the younger, 
more recently trained teachers may teach the new curriculum. If 
such is the case, then observed outcome differences between 
subjects in the two curricula may be due either to teachers' 
experience or to curricula. To overcome this confounding we might 
randomly assign teachers to levels of the curriculum factor. This 
randomization procedure would be in addition to that used to assign 
students to the treatment conditions. If teachers have been 
randomly assigned to levels of the curriculum factor, the curricula 
are unconfounded with teacher characteristics by the same logic 
that treatments are unconfounded with subject differences in any 
randomized experiment. 

If we can randomly assign teachers to the different curricula, 
then in all probability we can cross teachers with curricula.· 
Randomization of teachers to curricula means that every teacher 
has the capacity to teach every curriculum. Therefore, we might 
have each teacher teach them all. Such a crossed design is prefera­
ble to a nested design, because the interaction between teachers and 
curricula can be tested.2 

Selection of treatment levels. The researcher must inevita­
bly decide on the number and extremity of levels of an experimental 
factor to be observed in the study. Suppose, for instance, that we are 
examining the effects of length of psychotherapeutic treatment on 
emotional adjustment. We might imagine two different research 

2 Not all nested variables can be made to be crossed with the variable that they are nested 
within. For instance, classrooms that are nested within schools cannot be crossed with 
schools. 
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plans. Under plan A we include five levels of the treatment: 0 hours, 
25 hours, 50 hours, 75 hours, and 100 hours of psychotherapy. 
Under plan B we include only two levels: 0 hours and 100 hours. If 
the total number of subjects in the two designs is equal and if the 
longer a subject is in psychotherapy the stronger the effect, then 
design plan B has substantially more conclusion validity than design 
plan A. The disadvantage of choosing design plan B over A is that 
nonlinear effects of duration of psychotherapy cannot be assessed. 
If, for instance, psychotherapy has no increased effect after the 
initial 25 hours, we would be unable to detect this with plan B. The 
decision of which plan to use, of how many and which levels of a 
factor to examine, must ultimately depend on a theory or prior 
research that leads us to expect treatment effects of a particular 
sort. Decisions concerning the levels of a factor to be included are 
ultimately construct validity decisions. 

Repeated measurement designs. Up to this point we have 
assumed that subjects or experimental units are assessed under one 
and only one treatment condition. In the terminology of analysis of 
variance, subjects are nested within levels of factors. It may be 
appropriate in some settings to cross subjects with the levels of an 
experimental factor. For instance, if we had access to only a very 
few subjects, we might decide to administer all levels of an experi­
mental factor to each of them in order to assess the effects of the 
factor on as large a sample as possible. Such designs, where subjects 
are crossed with a factor, are called repeated measures designs, in 
that the same subject's outcomes are repeatedly assessed under 
different treatment conditions. In repeated measures designs, treat­
ment comparisons are made within units rather than between units, 
as was described in Chapter 1. These designs are relatively rare in 
applied social research, because the treatments typically take a long 
time to deliver and their effects may not be immediately observ­
able. 

There are a variety of advantages and disadvantages to using 
designs where subjects are measured under more than one experi­
mental treatment. The first major advantage concerns conclusion 
validity. If the experimenter has access to only a very few subjects, 
it is to his or· her advantage to measure them all under all of the .. 
treatment conditions. In addition, conclusion validity is enhanced in 
these designs by our ability to subtract out variance due to differ-
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Table 4.2. Example of a repeated measures design: 
subjects nested within factor A with repeated 
measurements on factor B 

Factor A 

Level l subj. 11 

subj. 21 

subj. n1 

Level 2 subj. 12 

subj. 22 

subj. n2 

-Level 3 subj. 13 

subj. 23 

subj. n3 

Factor B 

Levell 

x 

x 

x 

x 

x 

x 

x 

x 

x 

Level 2 

x 

x 

x 

x 

x 

x 

x 

x 

x 

Level 3 

x 

x 

x 

x 

x 

x 

x 

x 

x 

ences between subjects in their average responses. In essence each 
subject serves as his or her own control, and thus variation between 
subjects can be removed in testing treatment effects. 

The other advantage to repeated measures designs is that some 
treatments in their usual settings may happen in sequence. General­
ization of treatment effects in such settings may be easier if their 
effects have also been assessed in sequence. For instance, students in 
high schools typically are taught by five or six different teachers 
during the school day. If we are interested in examining the effects 
of teachers' experience on the level of students' academic interest, 
we might prefer a repeated measures design because such repeated 
exposure to ditf erent teachers is the setting to which we wish to 
generalize. 

The disadvantages of repeated measurement designs arise from 
certain assumptions that must be made to analyze the resulting data 
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successfully. First, it must be assumed that the effect of any 
treatment does not persist or carry over past the administration of a 
second treatment. Given the size and complexity of most interven­
tions in applied social research, it is probably unsafe to assume the 
absence of carryover effects. Second, the analysis makes a more 
technical assumption that is called the homogeneity of covariance 
assumption. The condition for meeting this assumption is that the 
correlations between all possible pairs of outcome measures are all 
equal. Unfortunately, this assumption is seldom examined. Failure 
to meet its conditions can result in biased inference tests (Harris, 
1975). 

In addition to these two problems in repeated measurement 
designs, treatment differences may also be confounded with the 
order in which the different treatments were administered. Suppose 
that we used the repeated measurement design of Table 4.2. In this 
design subjects are nested within levels of factor A and crossed with 
levels of factor B. All subjects receive level 2 of factor B after level 
1. Differences in levels are confounded with the sequence in which 
treatments are received. In order to overcome this confounding 
between sequence and levels of a factor, it is necessary to assign 
subjects randomly to different sequences. A design with three 
different sequences to which subjects might be randomly assigned is 
depicted in Table 4.3. The numbers in the body of this table refer to 
the order in which levels of factor B are received by subjects in the 
various sequence conditions. Thus, in sequence 3, subjects first 
receive level 2 of factor B, then level 3, and finally level 1. This 
design, a Latin square design, unconfounds sequence and levels of 
factor B, and thus permits their simultaneous assessment, although 
various interactions are confounded (Winer, 1971). 

Control or comparison groups. One of the most complex 
decisions facing the researcher concerns the nature of an appropri­
ate comparison group or groups. If we have a series of treatment 
conditions, we may need to assign subjects randomly to a condition 
in which no actual treatment is received. But because "no" treat­
ment is technically impossible, as all subjects are exposed to some 
set of social and psychological variables during the course of the 
research, it is important to decide what constitutes the comparison 
condition. For instance, suppose that a researcher is evaluating a 
day-care curriculum. He or she may be interested in manipulating 
experimentally both the size of the center and the extensiveness of 
planned activities for the children in the center. If the researcher 
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Table 4.3. Latin-square repeated measurement design 

Factor B 

Factor A: Sequence Level 1 Level 2 Level 3 

Sequence I subj. 11 1a 2 3 

subj. 21 I 2 3 

subj. n1 I 2 3 

Sequence 2 subj. 12 2 3 I 

subj. 22 2 3 1 

subj. n2 2 3 1 

Sequence 3 subj. 13 3 I 2 

subj. 23 3 I 2 
subj. n3 3 1 2 

"The numbers in the body of this table refer to the order in which a level 

of factor B was received. Thus, under sequence 1, level I is received first, 

then level 2, and finally level 3. 

seeks to determine the effects of day care, in addition to the effects 
of variations within day care, then he or she needs to designate a 
non-day-care comparison group. Children who are randomly 
assigned to this non-day-care group may in fact be in a variety of 
different "treatments." They may be at home with a parent, they 
may be at home with other children for whom the parent babysits, 
or they may be with a babysitter. Deciding which is theappropriate 
comparison "treatment" is a construct validity task. Two questions 
should be thought through in defining the comparison condition. 
First, what would subjects in the experimental groups be receiving 
as "treatment" if in fact no experiment were being conducted? 
Second, to what future situation or setting do we want to generalize 
results, or, in other words, what construct is being operationalized 
as the independent variable? For instance, in our day-care example, 
if "at home with parent" is defined as the comparison condition, 
then one aspect of the independent variable is being away from 
parent, whereas if the comparison condition is "with a babysitter," 
the independent variable operationalizes a somewhat different 
construct. Researchers should never choose a comparison group 
only for reasons of convenience or just for the sake of having a 
comparison group. A comparison group should provide a conceptu­
ally meaningful baseline. 
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Experimental unit decisions 

We are acting on the assumption that the researcher has already 
decided in a general manner on the population affected by the 
treatment to be evaluated. There remains, however, a number of 
crucial decisions to be made concerning the level at which the 
affected population enters the research as experimental units. In 
more concrete terms, we may be interested in the impact of a 
community mental health program on the mental health of resi­
dents. We know in a general way that the residents constitute the 
affected population. However, they may participate in the research 
at a variety of different levels or degrees of aggregation: We may 
randomly assign individuals to the treatment and measure their 
outcomes; we may randomly assign blocks of households; or the 
experimental unit may be entire communities of the affected 
population. Deciding which level is the most appropriate in any 
piece of applied research is a fundamental and frequently difficult 
problem. 

In theory, there is one central issue here: At what level do we wish 
to generalize our effects? In practice, however, there are three 
different, though related decisions to be made concerning the levels 
at which the affected population serves as experimental units. First, 
the experimenter must decide at which level he or she randomly 
assigns units to treatment conditions. In a curriculum evaluation, 
does the researcher randomly assign classrooms or individuals to 
curricula? Second, the researcher must decide at which level 
outcomes are to be measured, regardless of the level at which 
randomization took place. Third, the level of the experimental unit 
to be analyzed must be decided. 

Unfortunately, it is frequently not realized that the first and third 
decisions, concerning levels of randomization and analysis, are 
inevitably linked. Once the level of randomization of units to 
treatments has been decided, so too has the analysis level. If 
classrooms have been randomly assigned to different curricula, if 
communities have been randomly assigned to different community 
mental health programs, then, statistically speaking, there exist 
only as many degrees of freedom in the data as the number of 
experimental units assigned. An analysis that treats the individual 
as the unit when aggregates have been assigned to treatment 
conditions inappropriately overestimates the amount of information 
in the data. (See Chapter 8, however, for an e'¢ception to this rule. ) 

The level of analysis decision is dictated by the randomization 



56 Estimating the effects of social interventions 

level, but the level at which measurement is conducted may be 
independent of the level of randomization. Although we may 
randomly assign aggregate units to experimental treatments, and 
hence base the analysis on aggregates, we may measure individual 
as well as aggregate outcomes. The reverse of this, however, is 
frequently not possible. If we randomly assign individuals within 
aggregates to different experimental treatments, then the measure­
ment of aggregate outcomes is meaningless for purposes of treat­
ment comparison. The example of the community mental health 
evaluation clarifies this. If we randomly assign communities to 
types of community mental health centers, we can still assess 
individual as well as community level outcomes. That is, we can 
measure both individual measures, such as mental health attitudes 
of residents within the communities, and community measures, such 
as the extent to which community governing bodies discuss mental 
health issues. With both levels of measurement we can assess effects 
of type of center on individual and aggregate outcomes, provided, of 
course, that the analysis. uses communities as the experimental 
unit. 

If, on the other hand, individuals within communities are 
randomly assigned to one type of community mental health center 
or to another, we are unable to measure the impact of treatment on 
aggregate or community level outcomes, even though the individual 
outcomes may be measured quite well. 

In light of this discussion, three conclusions can be reached. First, 
it makes sense to measure outcomes on the finest levels possible, or 
unaggregated levels, as well as aggregate outcomes. This is true 
regardless of the unit of randomization and analysis. Second, if we 
are interested in aggregate level outcomes that are meaningless at 
the individual level (e.g., community governing bodies' reactions), it 
makes sense to assign aggregate units to treatments randomly and, 
hence, to analyze on the aggregate level. Third, analysis should be 
based on the unit that was randomly assigned. If aggregates have 
been randomly assigned, but outcomes are measured at the individ­
ual level, aggregate averages or other summary statistics should 
serve as dependent measures in the analysis. 

There is a qualification to be made to the second conclusion, 
where we recommend randomly assigning, and hence analyzing 
aggregates if the researcher is interested in aggregate outcomes. 
Th� q�a!ification concerns the int�tipretation o� agg�egate analyses 
of md1v1dual outcomes. There 1s an extensive literature (e.g., 
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Goodman, 1959; Hammond, 1973; Robinson, 1950) on the pitfalls 
of reaching individual level conclusions on the basis of aggregate 
statistics. Estimates of effect, particularly correlation coefficients, 
are typically larger with aggregate measures than with individual 
level variables. Thus, if we measure individual mental health 
attitudes, compute community averages, and correlate them with 
type of mental health treatment received by the community, that 
correlation is typically larger than if we randomly assigned individ­
uals and then correlated individual attitudes with type of treatment 
received by the individuals. The reason for this difference is the fact 
that there exists a great deal of between-individual, but within 
treatment condition, variation that is omitted from the analysis in 
the aggregate case but is not in the individual case. 

Decisions to increase conclusion validity 

Even though many of the design decisions that we have already 
discussed have implications for an experimenfs conclusion validity, 
there are a number of design modifications that can be used for the 
exclusive purpose of enhancing statistical power. As mentioned in 
the previous chapter, conclusion validity is perhaps of more impor­
tance in applied social research than in basic research because of 
the fact that the interventions we evaluate are costly and massive. 
We do not want to say that they have no effect when in fact they do. 
Therefore, techniques to increase statistical power merit serious 
consideration. 

The two basic techniques that can be used consist of: 

l The use of a randomized blocks design; and 
2 The use of analysis of covariance. 

Each of these techniques is discussed in turn. 

Randomized blocks design. The randomized blocks experi­
mental design was first used in agricultural experiments where 
researchers were interested in exploring the effects of various seed 
or fertilizer types on crop productivity. The experimental units were 
small areas of a field that were to be randomly assigned to the levels 
of an experimental factor. It became apparent to researchers that 
areas in fields differed greatly in their crop productivity, regardless 
of treatment conditions. The researchers decided that it made sense 
to group the areas in the field by their productivity and then 
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randomly assign areas within productivity groups to treatment 
conditions. In the subsequent analysis of the experimental data, 
groups of areas were treated as a factor in the analysis of variance 
model� 

This example identifies all the essential elements of the random­
ized blocks design. Experimental units, whether areas in a . field, 
individuals, or aggregates, are grouped or "blocked" on some 
variable that is expected to be highly related to the outcome 
variable to be assessed. These blocks are formed with the intention 
of increasing the similarity of units within blocks and the dissimilar­
ity of units between blocks. Random assignment of units to treat­
ment conditions is then conducted within blocks. In essence, the 
design amounts to matching units on the blocking factor and then 
randomly assigdlng units to treatments. 

The randomized blocks design increases statistical power for 
reasons similar to those that make the repeated measures design 
powerful. If the blocking variable is entered into the analysis of 
variance as a factor, and if it is highly related to the dependent 
measure, then the amount of residual error variance in the data 
against which the treatment effects are tested is substantially 
reduced. Just as in the repeated measures design each unit serves as 
its own control, so in the randomized blocks design, similar units 
within blocks are the basis for treatment comparisons. 

More statistical power is gained in a blocked design as the 
blocking variable is more highly correlated with the outcome or 
dependent variable. In addition, as units within blocks become more 
and more homogeneous with respect to the outcome measure, the 
higher becomes the power of the design. 

Besides increasing the conclusion validity of a study, the random­
ized blocks design may also reveal interesting interactions between 
treatment variables and the blocking variable. For instance, in the 
original agriculture example, a randomized blocks design may 
reveal that a particular fertilizer makes a difference in relatively 
unproductive areas of a field, but in the productive areas, the effect 
is trivial. Such. outcomes represent the interaction between the 
treatment variable and the blocking variable. This interaction is, of 
course, tested within the analysis of variance (ANOVA). In many 
applied research problems, interactions between treatment condi­
tions and characteristics of the experimental units, which may be 
used for blocking purposes, are likely to be particularly informative. 
For instance, education curricula may have different effects on 
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high-achieving versus low-achieving students, an income mainte­
nance plan may differentially affect job search behavior of the 
recently and the chronically unemployed worker, and day-care 
facilities may influence the developmental progress of precocious 
children differently than more slowly developing children. 

Analysis of covariance. The second technique for increasing 
statistical power in an experimental design is by measuring some 
variable that is related to the outcome variable, prior to administer­
ing experimental treatments, and using such a measure as a 
covariate in an analysis of covariance (ANCOVA). We shall 
discuss the analysis of covariance in more detail later in this chapter· 
(and elsewhere in the book). Suffice it here to say that it is 
analytically a very similar technique to the randomized blocks 
analysis of variance, except that the blocking variable, which is the 
covariate in ANCOVA, is treated as a continuous, interval variable 
rather than as an experimental factor having discrete levels or 
categories. In addition, as analysis of covariance is usually 
conducted, the covariate by treatment interaction, which is equiva­
lent to the blocking variable by treatment interaction, is assumed 
not to exist. 

The use of a covariate in the analysis of treatment effects 
increases the statistical power of that analysis for the same reason 
that a blocking variable increases power in the randomized blocks 
design. If the covariate is substantially correlated with the outcome 
measure, then controlling for it reduces the residual error variance 
against which treatment effects are tested. 

There are four potential difficulties in using analysis of covar­
iance to increase statistical power in randomized experiments. First, 
we must be concerned about the relationship between the covariate 
and the treatment. If the covariate is measured before treatment 
delivery .(better yet, before randomization of subjects to condition), 
and if subjects are truly randomly assigned, then the covariate and 
the treatment factor will on the average be uncorrelated. If, 
however, the researcher mistakenly employs a covariate that has 
been measured after treatment delivery, it may be that the treat­
ment affects the covariate. If the covariate is affected by the 
treatment, then controlling for it statistically through analysis of 
covariance causes us to estimate treatment effects incorrectly. In 
such a case, analysis of covariance controls for treatment effects 
reflected in the covariate while testing treatment effects. Using 
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analysis of covariance to increase power with a covariate that is 
caused by the treatment is thus inappropriate and leads to bias. 3 

The lesson from this is that the experimenter should be sure to 
measure covariates well prior to treatment delivery, and even before 
treatment assignment decisions have been randomly made. In 
addition, to be sure that the covariate and treatment are uncorre­
lated, the experimenter may wish to set up the equivalent of blocks 
on the covariate, randomly assign within blocks, but then proceed to 
analyze outcomes via analysis of covariance. The advantages of this 
strategy over the traditional randomized blocks analysis of variance 
are detailed below. 

The second potential difficulty in using ANCOVA is that the 
pretest-posttest relationship is assumed to be linear. If it is not, then 
the use of ANCOV A will not lead to any increase in power. 
Appropriate transformations may be useful in rendering the rela­
tionship linear (Mosteller & Tukey, 1977). 

The third potential problem to using ANCOVA for increasing 
power in true experiments is the assumption implicit in ANCOV A 
that the covariate and treatment do not interact.4 When they do, 
traditional analysis of covariance is inappropriate. In such cases, 
using a randomized blocks design, where such interactions are 
tested in the ANOVA, may be preferable. However, this problem is 
of minor consequence if the analysis of covariance is recast into 
multiple regression, as we shall show later in this chapter. When 
ANCOVA is reformulated in multiple regression, covariate by 
treatment interactions can be tested and interpreted. 

The fourth problem concerns the possibility that the measure­
ment of a pre-treatment variable may cause the post-treatment 
outcome to be different than it would be had no pretest been given. 
Further, it is possible that the delivery of a pretest may affect the 
posttest in some treatment conditions but not in others. The poten­
tial threat of a pretest by treatment interaction was discussed in the 
third chapter. A pretest effect and a pretest by treatment interac­
tion are problematic only if pretests would not normally be adminis­
tered in the treatment conditions to which the research results are to 
be generalized. In fact, many social programs that would be the 

3 This analysis is appropriate, however, when examining the mediation of treatment effects. 
See Chapter 10. 

4 Whether or not the covariate and treatment interact is, of course, a completely different 
question from the one of whether the covariate and the treatment are correlated. The reader 
should beware of confusing the two. 
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subject of evaluation include some sort of pre-treatment assessment 
or interview as a normal and expected component of the program. In 
such cases, pretest effects and interactions do not constitute the 
interpretive problem that they would otherwise. 

If in fact the researcher feels that a pretest is essential and yet 
suspects that pretest effects and pretest by treatment interactions 
constitute potential problems for generalization, then he or she 
would be well advised to run some experimental units without giving 
the pretest. If some subjects are randomly assigned to a no-pretest 
condition, and this pretest factor is crossed with the experimental 
treatment factor, we have what is called a Solomon four group 
design (Campbell & Stanley, 1963). Within this design the pretest 
effect and interaction can be tested. 

Comparison of ANCOV A and randomized blocks:' Feldt 
{1958) has examined the relative power of ANCOVA and the· 
randomized blocks design under the assumptions of linearity and no 
treatment by covariate interaction. If the pretest-posttest relation­
ship is less than .4, he has shown that the randomized blocks design 
is more powerful than ANCOVA. This reverses when the correla­
tion is greater than .6. The reason for this difference is that the 
randomized blocks design is less efficient because it discards 
degrees of freedom by not assuming linearity of the _pretest-posttest 
relationship. Also, it ignores.the pretest-posttest relationship within 
levels of the blocking factor. On the other hand, the randomized 
blocks design gains power because it constrains the blocking vari­
able-treatment correlation to be exactly zero, assuming randomiza­
tion within blocks. Although it is not generally recognized, it is 
possible to use ANCOVA within a randomized blocks design, using 
the blocking variable as the covariate. It seems to us that such a 
strategy would be more efficient than the traditional analysis of 
variance, even when the blocking variable-posttest correlation is 
relatively low, so long as the pretest-posttest relationship is linear. 

ANCOVA has the advantage of allowing the use of a number of 
covariates, controlling for them all simultaneously in testing treat­
ment effects. In a randomized blocks design, the use of a second 
blocking factor may create problems unless the two blocking factors 
are only weakly correlated in the population. If they are not, then 
the researcher will have trouble maintaining their orthogonality in 
the research design, a requirement for the use of analysis of 
variance. Thus, analysis of covariance is generally preferable if a 
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number of pre-treatment measures are to be used to mcrease 
statistical power. 

Analysis of randomized experiments 

Analysis of variance 

The standard analytic procedure for randomized experiments 
employing a factorial design is analysis of variance. In a design 
involving two crossed factors, it is assumed that 

Y;ik = µ + ai + (3k + a{jik + e;ik 

That is, the analysis of variance assumes that individual observa­
tions ( Y;ik) are determined by the population mean (µ) across all 
treatment conditions, plus an effect due to the first factor (ai)," an 
effect due to the second ({jk), and the interaction between the two 
(a(3ik). The sum of these effects across rows and columns is set to 
zero. In addition, there is some component of error (e;ik ) in every 
observation. It is assumed in this model that e;jk has an expectation, 
or mean, of zero, and it is normally and independently distributed. 
In addition, it is assumed that the variance in errors is the same in 
all cells of the factorial design, and that there are an equal number 
of observations in each cell. Under these assumptions, analysis of 
variance compares variation in the data associated with the treat­
ments and their interaction to residual or error variation in the data. 
These comparisons yield F statistics that are used to test the 
significance of the respective treatment effects. 

The analysis of the randomized blocks design is a straightforward 
extension of this model. One of the experimental factors, say, ai, is 
assumed to be the blocking variable rather than an experimentally 
manipulated variable.5 

5 The only complexity in this blocking analysis is that the assumption of equal numbers of 
observations per cell may be violated. For instance, if subjects are already divided up into 
blocks such as classrooms, and we then randomly assign subjects within blocks to some set 
of treatment conditions, the number of subjects in each block by treatment cell will differ if 
the number of subjects in each block varies. Unequal ·numbers of subjects in cells pose 
problems only if they result "in correlated experimental factors. Although "the cell sizes may 
differ in blocked designs, they will be proportional. By this we mean that if, for example, the 
size of one block is half the size of another, the number of subjects in a given treatment from 
the first block will be half the number in the treatment from the second block. Proportional 
cell frequencies make the treatment uncorrelated with the blocking factor. However, the 
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In a repeated measures model, where the experimental unit is 
assessed under all experimental treatments, the model behind the 
data is assumed to be 

Y;k = µ + 1f'; + Pk + e,k 

where Y,k represents the observation of subject i under treatment 
level k; µ is the population mean of all responses in all treatment­
subject combinations; 'lf'; is a constant associated with all responses 
of subject i and represents variation between subjects (in the 
previous model this component is part of e1id; Pk represents the 
effect of the different treatment conditions; and e1k is error asso­
ciated with any Y;k. Thus, we assume that each individual observa­
tion reflects a subject difference, a treatment effect, and error or 
residual variation. Treatment effects are said to be measured within 
subjects. Differences in treatment effects between subjects consti­
tute the e,k or residual variation. This treatment by subject interac­
tion is used to determine the significance of the treatment effect. 

In addition to a set of treatments in which all subjects are 
assessed, we may have another experimental factor under which 
subjects are nested. An example of such a design is found in Table 
4.3, discussed earlier, in which sequence is used as a between­
subjects factor. ·under this design, the model of observed outcomes 
IS 

Y;ik 
= 

µ + ai + 1f'; +Pk+ aPik + e;ik 

where Y;ik represents the observation of subject i, nested within level 
j, under treatment level k. The grand mean of all observations isµ; 
ai represents the· effect of the between-subject factor; 'lf'; is a 
constant associated with all observations of subject i; and Pk 
represents the effects of different treatment conditions. Under this 
model, there are two sources of variation between subjects, variation 
due to the factor under which subjects are nested, and variation due 
to subjects within levels of the factor. The significance of effects due 
to the between-subject factor is estimated by comparing the former 
source of variation with the latter. Variation in observations within 
subjects may be due to three different elements, treatment effects 
across all subjects (Pk), treatment effects that differ with the level of 
the between-subject factor (apik), and treatment effects that differ 

blocking factor by treatment interaction is partially confounded with its components. 
Appropriate analysis of variance procedures for proportional cell sizes are described in 
Winer (1971, pp. 419-22). 
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by subjects within levels of j (e;ik). Analysis of variance provides 
significant tests for the treatment effect (Pk) and treatment by 
between-subject factor interaction (apik) by comparing each of 
these sources of variation with variation due to treatment effects 
differing between subjects, or the treatment by subjects within 
group interaction (e;ik). 

Analysis of covariance 

In experiments where covariates have been assessed prior to treat­
ment assignment, analysis of covariance is routinely used to gain 
statistical power. In analysis of covariance, the statistical model is 
very similar to the analysis of variance models presented in the 
preceding section. We can think of analysis of covariance as an 
analysis of variance on dependent measures from which variation 
associated with the covariate has been subtracted out. 

The analysis of covariance model for an experiment involving one 
covariate and two crossed factors under which subjects are nested is 
the following: 

Y;ik = µ + b(Xuk - X) + ai +Pk+ aPik + e;ik 

where Y;ik and µ are defined as previously, Xuk is the covariate 
measured on individual i in treatment condition jk, and its mean 
across all subjects is X; ai, pk, and aPik are the two treatment effects 
and their interaction, and e;ik is residual error about which we make 
the same assumptions as previously. The .coefficient b is the least­
squares coefficient resulting from the regression of Y;ik on the 
covariate, controlling for treatment effects. In order to estimate the 
treatment effects in this model, we must assume that the covariate 
does not interact with treatments, that is, that b does not vary across 
levels of the treatments. This assumption is referred to as the 
homogeneity of regression assumption. 

With repeated measures designs, analysis of covariance can be 
used to reduce residual variation in testing both between and within 
subject experimental factors. In the design described by Table 4.2, 

where there is both a factor under which subjects are nested and one 
that is crossed with subjects, covariates can take one of two forms. 
There can either be one measure for each subject on the covariate, 
in which case controlling for the covariate �mly increases statistical 
power for testing the between-subject factor, or we may measure a 
covariate for each Y;ik7 thus measuring it for each subject as 
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frequently as there are treatment conditions. In this latter case the 
use of the covariate reduces residual variation against which both 
between-subject and within-subject experimental factors are 
tested.6 

Analysis of pre-post change scores 

It is frequently the case that instead of using a pre-treatment 
measure as a covariate as discussed in the previous section, differ­
ences between pre and post, or change scores, are used as the 
dependent measure in an analysis of variance. This is especially 
likely when the pretest measures the identical construct as the 
posttest, and when researchers want to present the "amount of 
change" in Y caused by the treatment. 

This change score analysis is closely related to the analysis of 
covariance. As we have already said, we can think of the analysis of 
covariance as the analysis of variance on a dependent measure that 
has been adjusted for the covariate. From the ANCOVA model, we 
see that the adjustment coefficient for the covariate is its partial 
regression coefficient, b. In the analysis of pre-post change scores, 
we also adjust the post-treatment outcome, Y;ib for the pretest, or 
covariate, but the adjustment coefficient equals one rather than b. 

In other words, we can think of analysis of covariance as an analysis 
of variance on the adjusted outcome score 

Y;ik - b(X;ik) 

where b is the partial regression coefficient of X;ib controlling for 
treatment effects.7 In the analysis of change scores we conduct an 
analysis of variance on 

Yijk - xijk 

The only difference in these two adjusted outcomes is that in the 
second the adjustment coefficient equals one. 

The conceptual difference between these two adjustment proce­
dures is important for the reader to grasp, particularly in li'ght of 
later chapters where pretest adjustment strategies are discussed at 

6 When the covariate does not vary within subjects, ANCOV A should not be performed 
within subjects. If it is performed, the degrees of freedom for error are underestimated. 
Most statistical packages ignore this problem. 

7 If this were done instead of an actual ANCOV A, the standard error of the treatment effect 
would be· artificially smaller, because the treatment-covariate correlation is ignored. 
ANCOVA should be conducted in the usual manner. 
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greater length (Chapter 6). In the analysis of covariance, the 
adjustment weight, b, is derived such that the adjusted dependent 
measure is uncorrelated with the pretest that was used as the 
covariate. In the change score analysis, this will not be the case. 
Thus, the amount of change assessed for each subject, and subse­
quently analyzed, is correlated (negatively when b < 1, as is usually 
the case) with the subject's pretest. This fact illustrates the "regres­
sion to the mean" problem that was discussed in the last chapter. 
Extremely high scores have a greater probability of change down­
wards than upwards, and vice versa for extremely low scores. In 
Chapter 3, we labeled such regression to the mean a threat to 
internal validity. However, in randomized experiments where the 

probability of an extreme pretest s�orer receiving any given treat­
ment is the same as the probability for a less extreme scorer, 
regression to the mean does not threaten internal validity. 

Although the use of change scores in randomized experiments 
does not harm internal validity, from the point of view of conclusion 
validity it is usually less .efficient than using . pretest scores as 
covariates. Because the adjusted outcome measure in analysis of 
covariance has removed all variation in Y associated with X, there is 
no other linear adjustment of Y on X that can reduce residual 
variation in Yto a greater extent. Or, to put it another way, because 
in the change score analysis variation in the adjusted outcome is 
associated with variation in the pretest, we have not reduced 
residual variance in the outcome as much as if the regression weight 
had been used. In fact, it is not unusual for the change score analysis 
to be even less powerful than an analysis of the unadjusted outcome 
variable, if the pretest-posttest correlation is less than .5. For these 
reasons, the analysis of covariance is generally preferable in 
randomized experiments to the analysis of change scores. There 
may be cases in which the two analyses yield nearly identical 
results. In such cases the change score analysis might be preferred 
because of its greater ease of interpretation. 

The use of multiple regression as a 
general analytic strategy 

As others before us have noted (e.g., Cohen, 1968; Fennessey, 
1968), the analyses of variance and covariance are specific instances 
of the more general 

·
linear model that is estimated using multiple 

regression analysis. Once this is realized, the different types of 
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analyses may all be conducted using regression. In addition, the use 
of the general linear model for the analysis of randomized experi­
ments permits the testing of certain effects that are assumed not to 
exist under the analysis of variance and covariance models, as we 
discuss in the following pages. 

It is frequently assumed that analysis of variance and multiple 
regression are quite different techniques. The former is usually used 
to answer questions concerning differences in means between treat­
ment conditions. The latter is traditionally used to assess covaria­
tion or correlation between two variables. In fact, however, beyond 
traditional assumptions concerning the measurement scale of the 
independent variables, the two sorts of questions are identical. The. 
traditional analysis of variance question can be rephrased as the 
degree to which a continuous dependent measure covaries with a set 
of discrete, categorically measured independent variables. It is 
entirely appropriate to code categorical independent variables as 
predictors in a multiple regression equation. In fact, analysis of 
variance is the specific instance of the general linear model in which 
orthogonal independent variables are measured on categorical, 
noncontinuous scales of measurement. Multiple regression is the 
more general. technique under which independent variables can be 
measured on either discrete or continuous scales and may or may 
not be correlated. 

If treatment variables in experimental research are included as 
predictors in a multiple regression equation, they must be coded or 
assigned numerical values according to some convention. Frequent­
ly, so-called dummy coding is the convention used. Dummy coding 
means that we code a separate predictor in the equation for each 
level of an experimental factor, such that an experimental unit is 
assigned a score of one on the predictor if he or she receives that 
treatment, a zero if not. A somewhat simpler alternative is to use 
the effects coding convention.8 Under such a convention, if an 
experimental factor has two levels, a predictor is created such that 
units in one level are assigned a score of - l on the predictor and 
units in the other level are assigned a score of+ l. 

As an example, we might imagine a study evaluating psychother­
apeutic treatments. There may be two experimental factors in the 

8 The results of an analysis using effects coding are preferred in this chapter because they 
yield parameters that are equivalent to those that result from analysis of variance. At other 
times, dummy coding may be preferable. 
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Table 4.4. Example of effects coding for a 2 x 2 
experimental design: Z1 = + 1 if individual therapy, 
-1 if not; Z2 = + 1 if theoretical orientation A; -1 if not 

Therapeutic setting 

Individual 

Group 

Theoretical orientation 

A 

z. = +1 
Z2 = +l 
z. = -1 

Z2 = +l 

B 

Z1 = +l 
Z2 = -1 
z. = -1 
Z2 = - 1 

study, each having two levels. The first might manipulate the 
setting in which therapy is conducted: individual versus group. The 
second factor might be two different theoretical orientations 
espoused by the therapist. For the first factor, we might code one 
variable, z., under the effects coding convention, arbitrarily assign­
ing a + 1 to those in the individual setting and a - 1 to those in the 
group setting. Likewise, a second variable, Z2, is created for the 
second factor, arbitrarily assigning a + l to those under theoretical 
orientation A and a -1 to those under theoretical orientation B. As 
can be seen from Table 4.4, each cell of the 2 x 2 experimental 
design has been assigned a unique set of values on these two new 
variables, Z 1 and Z2• 

· 

If a multiple regression analysis is conducted on the outcome 
measure, Y, in this experimental design, regressing it on the two 
coded variables, Z1 and Z2, the resulting equation will have this 
form: 

Y = h0 + h1Z1 + h2Z2 + e 

From this equation, by substituting in the proper values for Z1 and 
Z2, the values of Y predicted for each cell of the experimental d�sign 
can be generated. Thus for instance, the predicted value of Y, Y, for 
subjects in the individual setting, orientation A condition is 

Y = h0 + h1( + 1) + h2( + 1) 

Table 4.5 presents these predicted outcomes for each treatment 
" 

condition. From this table, it can be seen that the difference in the 
predicted values of Y between the two levels of therapeutic setting is 
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Table 4.5. Predicted outcomes from the linear additive model 
derived from the equation Y = b0 + b1 Z1 + b2Z2 + e, where 
Z1, Z2 are defined as in Table 4.4 

Theoretical orientation 
Therapeutic 
setting A 

Individual Y = h0 + h1( +I) + h2( + 1) 

=ho+ b1 + h1 
Group Y= h0 + b1(-l) + b2{+l) 

= h0 - h1 + h1 

B 

Y=ho + h1(+1) + h1(-t) 
= h0 + b1 - h2 

Y = ho + h1 ( -1) + bi( -1) 
= h0 - h1 - h1 

69 

2b1• The difference in predicted values of Y between the two levels 
of orientation is 2b2• It is clear, then, that these are the predicted of" 
estimated effects of the two factors. 

Although this model estimates treatment effects, it does not allow 
for their interaction. In other words, in Table 4.5 the effect of 
setting is 2b 1, regardless of the level of theoretical orientation. By 
taking the product of our two predictors, and entering this product 
into the regression equation, we can allow for and test the interac­
tion of the two treatment variables. 

In the full interactive model, the regression equation has the 
form 

Y = b0 + h.1Z1 + b2Z2 + b3Z1Z2 + e 

Under this model, the predicted values for the outcome in each cell 
of the design are presented in Table 4.6. These predicted values are 
identical to the cell means. From this table, it can be seen that the 
presence of the product term (Z1Z2) in the equation allows the 
effects of one factor to depend on the level of the other. Thus, the 
effect of setting under orientation A equals 2b1 + 2b3• Under 
orientation B, the effect of setting is equivalent to 2b1 - 2b3• 

Each of the regression coefficients in these models has associated 
with it a standard error that can be used to define its confidence 
interval and hence to test the null hypothesis that the coefficient 
equals zero in the population. These tests are equivalent to the tests 
of treatment effects and· their interaction if we were to conduct 
analysis of variance on the data. 

We have thus shown how multiple regression can be used to 
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Table 4.6. Predicted outcomes from the linear interactive model 
derived from the equation Y = b0 + h1Z1 + b2Z2 + h3Z1Z2 + e, 
where Z1, Z2 are defined as in Table 4.4 

Theoretical orientation 

Therapeutic 
setting A 

Individual Y = b0 + b1( +I) + b2( + l) 
+ b3( +I) 

= b0 + b, + b2 + b3 

Group Y = b0 + b1 ( - I) + b2( + I) 

+ b3(- l) 
= b0 - b1 + bi - b3 

B 

Y = b0 + b1 ( + I) + bi( - 1) 
+ b3(-l) 

= b0 + h1 - b2 - b3 

Y = b0 + b1 ( - 1) + bi( - I) 

+ b3(+l) 

= b0 - b1 - bi + b3 

analyze the data from a factorial experimental design that is 
traditionally analyzed using analysis of variance. The inferential 
statistics resulting from the two techniques are identical. In the 
design just discussed, subjects are nested within levels of both 
experimental factors. It is also possible to analyze repeated 
measures designs using multiple regression, either by coding 
subjects as a set of predictor variables, and thus controlling for them 
when assessing treatment effects, or by removing variation in the 
dependent measure associated with subjects prior to conducting the 
regression analysis. (See Cohen & Cohen, 1975, chap. 10, for an 
elaboration of repeated measures designs in multiple regression.) 

The major benefit to be gained from analyzing experimental data 
with multiple regression derives from the fact that predictors in a 
multiple regression equation may be measured on any measurement 
scale. Both continuous, interval-scale variables and categorical, 
nominal-scale variables may simultaneously serve as predictors. In 
addition, in multiple regression the analysis of variance assumption 
of equal cell n, or orthogonality of independent variables, is relaxed. 
Analysis of variance constitutes the special case of multiple regres­
sion in which independent variables are measured on categorical 
scales and in which independent variables are assumed to be 
uncorrelated. 

With the relaxation of these two assumptions, analysis of covar­
iance can be incorporated into the regression model. Analysis of 
covariance is incorporated by introducing both the continuously 
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measured covariate, or covariates, and the treatment variables into 
the same multiple regression equation. Thus, suppose we had 
measured some pre-treatment measure, X, in the experimental 
design discussed in the preceding analysis of variance model. We 
could either conduct analysis of covariance, treating X as a covar­
iate, as it is usually conducted, or, alternatively and identically, we 
could analyze the data using the following regression equation: 

Y = h0 + h1(X - X) + h2Z1 + h3Z2 + h4Z1Z2 + e 

Inferential tests conducted on the treatment regression coefficients 
of this model are identical to those that would result from an 
analysis of covariance conducted on the same data. 

The reason for preferring this regression over the analysis of 
covariance is that covariate by treatment interactions can be exam­
ined, tested, and interpreted in the regression, whereas in analysis of 
covariance they are assumed not to exist. If in our additive equation 
we had allowed for the possibility of treatment by covariate interac­
tions by including appropriate product terms, the regression equa­
tion would be 

Y = h0 + h1(X - X) + h2Z1 + b3Z2 + h4Z1(X - X) 

+ h5Z2(X - X) + e 

If the regression coefficient for one or both of the treatment by 
covariate interactions is statistically different from ze.ro, we have 
violated the homogeneity of regression assumption and hence should 
not conduct traditional analysis of covariance. There exists no valid 
reason at all, however, for not interpreting this regression equation 
and basing the analysis of the experimental design on it. Suppose, 
for instance, that the h4 coefficient was significant, but not the h5, so 
that the resulting equation was in fact 

Y = h0 + h1(X - X) + h2Z1 + h3Z2 + h4Z1(X - X) + e 

We could then compute separate equations for each of the four cells 
of our experimental design by substituting in the appropriate values 
for the Z1 and Z2 variables. These separate equations are presented 
in Table 4. 7. In this model, 2h3 is the estimated effect of the 
orientation factor: Predicted outcomes in the columns of Table 4.7 
differ by that amount. The effect of therapeutic setting cannot be so 
easily summarized. Predicted outcomes differ between the rows of 
Table 4.7 by both 2h2 and 2h4(X - X). In words, the effect of 
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Table 4. 7. Evaluations of the reg,!!ssion equation Y = b0 + b1 (X -

X) + b2Z1 + b3Z2 + b4Z1 (X -- X) + e in the experimental design 
of Table 4.4 

Theoretical orientation 

Therapeutic 
setting A 

Individual Y = h0 + h1 (X -X) 
+ h2( +I) 
+ h1( + l) + h4( + l) 
(X-X) 

= h0 + h2 + h3 + (h1 + h4) 
(X-X) 

Group Y = h0 + h1(X-X) + h2{-l) 
+ h3( +I) 
+h4(-l)(X-X) 

= h0 -h2 + h3 + (h1 - h4) 
(X-X) 

B 

Y = h0 + h1 (X -X) 
+ h2( +I) 
+ h1{-l) + h4{+l) 
(X--X) 

= ho + hi - hJ + (h1 + h4) 
(X-X) 

Y = ho + h1 (X - X) 
+ hi(-l) 
+ h1( -l) + h4( -l) 
(X-X) 

= h0 - h2 -hJ + (h1 - h4) 
(X-X) 

setting depends on the level of the pretest, X. If X = X, or if we are 
dealing with someone who scores at the pretest mean, then 2b2 
estimates the effect of setting. If we are discussing someone who 
scores one unit above the mean on the pretest, the predicted effect of 
setting would be 2b2 + 2b4(1). Subjects who perform differently on 
the pretest are affected differently by the treatment. 

To be more concrete, suppose that the values for the coefficients 
in the preceding equation are as follows, with X and Yassessed on 
IO-point scales: 

Y = 4.0 + .4(X - X) + I .OZ1 + .5Z2 + .2(Z1)(X - X) + e 

We could then graphically display the relationship between the 
pretest and posttest for each of the four treatment conditions, as in 
Figure 4. I. The two lines with the steeper slopes refer to the 
individual setting conditions. The flatter slopes are. found in the 
group setting conditions. Taking the difference between predicted 
posttest scores by orientation, it can be seen that regardless of the 
value of the pretest and of the setting, orientation A achieves higher 
outcomes than orientation B. The magnitude of the setting effect, 
however, depends on the value of the pretest. For poor pretest 
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Figure 4.1. Relationship between pretest (X) and posttest (Y) for each 

treatment condition, based on Y = 4.0 + .4(X - X) + l .OZ1 + .5Z2 + 

.2(Z1)(X - X) + e. 

scorers, four units below the mean, there is essentially no difference 
due to setting. For subjects way above the mean on the pretest, the 
setting effect is substantial. At the mean of the pretest, the setting 
effect is exactly 2.0 units. 

Recasting analysis of covariance as a multiple regression model 
thus permits covariate by treatment interactions, interactions that 
may be quite informative for policy purposes. In the regression 
example just examined, we would conclude that the setting for 
psychotherapy makes a difference only for those who are relatively 
stable to begin with (assuming that high scores on both X and Y 
indicate psychological stability). If the analysis had not been 
conducted under a regression model, we would not have conducted 
analysis of covariance because of assumption. violations. We would 
then have not fully understood the effect of setting. 

Some treatment by covariate interactions may include three _Qr 
more variables. In other words, the triple product (Z!)(Z2)(X - X) 
may have a significant regression coefficient. The interpretation of 
such higher-order interactions is only slightly more complicated 
than the example we have presented. The correct interpretation 
amounts to saying that the magnitude of the treatment by treat-
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ment interactions depends on the level of the pretest. In all cases, 
the researcher is advised to graph or table predicted relationships 
between pre- and posttest for each experimental treatment, as we 
have done, to aid interpretation. 

Further generalizations of the analysis of covariance can be 
specified once it is recast into multiple regression. For instance, it 
becomes possible to test for a curvilinear relationship between the 
covariate and outcome by entering the covariance squared as a 
predictor in the regression. Likewise, higher-order polynomials can 
be specified as well as their interactions with the treatment 
variables. 

The analysis of multiple outcomes 

It is frequently the case that applied researchers are interested in 
the effects of treatments on numerous outcomes or dependent 
measures. Thus, for instance, evaluators of school curricula may be 
interested in their effects on learning, motivation, and attitudes; 
evaluators of welfare programs may seek to assess effects on 
motivation to find work, family relationships, and economic well­
being; and those who evaluate a mental health facility may be 

·interested in a variety of mental health indicators. In all these cases 
. the researcher analyzes multiple dependent measures. There are 
four different ways in which such multiple outcomes might be 
analyzed. Each of these is discussed below. 

First, and most typically, the outcomes are analyzed one at a 
time. That is, separate analyses of variance or multiple regressions 
are computed on each of the outcome measures. There are two 
major problems to this procedure. First, multiple significance tests 
can result in Type I conclusion errors unless the a level is properly 
adjusted. Second, the procedure may pose interpretive problems if 
the outcomes are intercorrelated. Instead of conducting separate 
tests, we may really be doing the same analysis over and over again. 
Suppose that our mental health treatment evaluator assessed 
outcomes such as symptoms of depression, .drug use, and family 
quarrels in evaluating whether a mental health treatment made a 
difference. Further, suppose that depressives typically were the 
same people who used .drugs and quarreled, regardless of treatment 
condition. If separate analyses were conducted on all three 
outcomes, and treatment effects were found, the researcher might 
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conclude that this treatment should be instituted to alleviate depres" 
sion, drug use, and family fighting wherever these occur, either 
separately or in combination. In fact, the effect of the treatment 
may just be on one of the three directly and on the other two only 
indirectly. For instance, the treatment may have affected the degree 
of family fighting which then caused a decrease in depression, 
which then caused a decrease in drug usage. Clearly, then, we would 
not expect the treatment to affect drug usage for other subjects who 
are not taking drugs because of family fighting. 

Rather than conducting separate analyses, we might attempt to 
combine outcomes, based on their intercorrelations, and then 
analyze the combination. Such a strategy constitutes the second 
way in which multiple outcomes may be analyzed. Under this 
strategy, outcomes are grouped together because they are related to 
each other. Factor analysis can be used to identify clusters of 
outcomes that are intercorrelated and that might properly be 
thought of as a single outcome rather than several. Under one 
particular model of factor analysis, principal components, a linear 
combination of the dependent variables is defined as 

Fi = bi Y, + h2Y2 + h3Y3 

(where Fi is the factor, Yi to Y3 are the three outcome measures, 
and bi to b3 are weights), such that as much of the variance in the 
outcomes is associated with the factor as possible. This factor, or 
equivalently the linear combination of outcome measures, would 
then be used as the dependent variable. More than one factor may 
be defined from a set of outcomes. These are usually constrained to 
be uncorrelated, however, so that separate analyses on theni are 
independent. 

Other types of factor analysis can also be used instead of a 
principal components analysis. A recent major innovation makes 
the estimation of the factor and the testing· of treatment effects on 
that factor a simultaneous procedure (Joreskog & Sorbom, 1978). 
We discuss this at more length in Chapter 9. 

The third way in which multiple outcomes might be analyzed 
simultaneously is through techniques such as multivariate analysis 
of variance and canonical correlation. Multivariate analysis of 
variance is very similar to the second method we have discussed, in 
that a weighted combination of the outcomes is analyzed. The 
difference lies in the way in which the weights are derived. In the 
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second method, using principal components factor analysis, the 
weights are derived so that the weighted linear combination, or 
factor, explains as much of the variance in the original outcomes as 
possible. In multivariate analysis of variance and canonical correla­
tion, the weights are derived so that the. independent variables or 
predictors, in combination, are as highly correlated as possible with 
the weighted combination of outcomes. Just as in factor analysis, 
there are other linear combinations of the outcomes that are 
orthogonal to the first. Here too we might define a second set of 
weights, such that the s�cond linear combination of outcomes is 
uncorrelated with the first, but is as highly correlated with the 
weighted combination of treatment variables as possible. 

The fourth way of analyzing multiple outcomes is by using 
repeated measures models in analysis of variance and multiple 
regression. Earlier in this chapter, when we discussed such models, 
it was in the context of repeated exposures of the same subject to 
different treatment levels, with the same outcome measured repeat­
edly. Thus, treatment is the experimental factor with which subjects 
are crossed. It is possible, however, to define the within-subjects 
factor as type of outcomes, while nesting subjects within treatment 
conditions. If the outcome variables are measured in the same 
metric, treatment effects that are found in such a repeated 
measures ANOV A estimate the effect of treatment on the average 
of the outcome variables. In essence, this analysis weights the 
outcomes equally. A treatment by outcome interaction tests 
whether the treatment effects are larger on some outcomes than on 
others. Such tests of interaction however are biased if the homo­
geneity of covariance assumption is violated. 

The last three procedures that have been identified, factor 
analysis, multivariate analysis of variance, and repeated measures 
ANOV A, analyze a weighted linear combination of the outcome 
variables. If the researcher believes that the outcomes tap a few 
well-defined underlying constructs, then the factor analytic solution 
is to be preferred because it allows us to analyze an estimate of the 
construct. The multivariate analysis of variance approach is a more 
exploratory one, to be used when the researcher does not have a firm 
idea concerning the constructs represented by the outcome vari­
ables. Interpreting the weighted combination of outcome 
variables in multivariate analysis of variance may therefore be 
difficult. 
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Problems in the conduct of randomized experiments 

Although randomized experiments are the research design of choice 
if the goal is to maximize internal validity, they are not easily 
conducted. Many ambiguities may arise during the course of 
experiments that can have profound effects on the construct, inter­
nal, and conclusion validities of the research. In the following 
paragraphs we review some of these problems and their implica­
tions. We have organized these problems under two headings: 
problems concerning the integrity of the treatment-control distinc­
tion, and problems concerning the independence of observations. 
Most of these problems are issues in quasi-experiments as well. We 
discuss them here only because researchers are prone to think that 
the interpretation of experimental results is unambiguous. 

Integrity of the treatment variable 

Throughout much of this chapter, and indeed throughout most of 
this book, the treatment variable is conceptualized as a simple 
dichotomously coded distinction. Those who receive the treatment 
are assumed to have equivalent scores on the treatment construct. 
They are all assigned the same score on the treatment variable. 
Likewise, those in the comparison group are all assigned the same 
score on the treatment variable. Thus, there is no within-group 
variance. In fact, however, if we were to assess exactly the 
treatment received by each subject within groups rather than 
assigning them all the same score, we probably would find consider­
able within-group variation. Within the group of treated subjects, 
there is likely to be variation in how the treatment was received, the 
length of exposure to the treatment, the person or persons delivering 
the treatment, and so forth. Thus the treatment received by the 
treatment group is multifaceted rather than a single construct. 
Likewise, within the comparison group, subjects may receive other 
than the intended "nontreatment" because of administrative inat­
tention or because of a desire to compensate them informally for the 
fact that they were not given a possibly desirable treatment. Thus, 
within both the treatment and comparison groups, there is likely to 
be variation in the treatment construct that is not normally included 
in the measured treatment variable. 

The presence of unassessed variation in the treatment construct 
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gives rise to problems of construct and conclusion validities. By 
measuring the treatment variable as a simple dichotomous variable, 
we measure the true level of treatment received with error. We fail 
to assess the true treatment variable adequately and hence the 
construct validity of our treatment variable is lowered. In addition, 
it is likely that the within-group variation in the treatment construct 
would reveal a multidimensional construct if it were assessed. That 
is, within treatment groups as well as between them, subjects differ 
in the treatments they receive in many ways. We normally assume 
that the treatment is a single construct, whereas in reality it is likely 
to be much more complex. 

In addition to problems of construct validity, within-group varia­
tion in the treatment construct has implications for conclusion 
validity. In Chapter 9 we show how errors of measurement in the 
treatment variable lead us to underestimate the magnitude of the 
treatment effect. As this effect is attenuated, we are less likely to 
find that it is statistically significant. 

Related to the problem of within-group variation in the treatment 
construct is a problem we referred to in Chapter 3 as the treatment 
by mortality threat to internal validity. In essence, this threat means 
that some subjects within the treatment group may drop out 
f>ecause of the treatment they receive. For instance, if the treatment 
were an alcohol rehabilitation program, when subjects felt they 
were free of alcohol they might drop out of the treatment. Hence, 
"successful" subjects may differentially drop out. Likewise, in some 
studies, subjects may be more likely to drop out of the control group, 
particularly if the treatment is compensatory. It is frequently quite 
difficult to keep subjects in the research design, and yet it is 
imperative to do just that if we are to believe that the assignment to 
treatment conditions continues to be randomly based. 

In addition to threatening internal validity, differential mortality 
may also affect conclusion and construct validities. Suppose that 
some subjects dropped out of the treatment or the control group but 
that we were able to gather posttest measures from them even 
though the treatments they received were terminated. To maintain 
the experimental design, their posttest scores should be included in 
the analysis. However, to the extent that they dropped out of the 
treatment or comparison groups, they did not receive the treatment 
intended for them. Thus, there is likely to be unintended within­
group variation in the treatment construct, causing the problems of 
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treatment construct validity and conclusion validity discussed 
above. 

Independence of observations 

One of the most difficult problems faced in applied research is 
maintaining the independence of units or subjects in the research. 
All of the commonly employed statistical inference procedures 
make the assumption that observations are independent. Violations 
of this assumption have effects on the precision or conclusion 
validity of the research. 

Most typically, subjects within treatment conditions may interact 
in such a way that there is less variation within treatments than 
might be expected if observations were truly independent. Suppose, 
for instance, that children were randomly assigned to classrooms. In 

one classroom a new curriculum to be evaluated is used. The other 
classroom is the control condition. Within classrooms, the students 
interact and learn from each other. As they do so, their outcome 
scores are likely to be more homogeneous than if they had not 
interacted. The effect of this attenuation of within-group variation 
is to increase the chance of Type I conclusion errors. 

Although nonindependence of observations is usually thought to 
induce Type I conclusion errors, in fact there are a variety of ways 
in which the independence assumption may be violated, and these 
violations may cause either Type I or Type II conclusion errors. In 
Chapter 8, problems caused by nonindependence of observations are 
discussed further. There we show the conditions under which 
nonindependence can cause either Type I or Type II conclusion 
errors. 

Conclusion 

Randomized experiments in applied social research have much to 
recommend them. By the use of a random assignment rule, the 
researcher overcomes many threats· to internal validity, because it is 
known that the assignment variable is uncorrelated with the 
outcome on the average. Although experimental data are typically 
analyzed using analysis of variance, we have shown that this 
analysis and the analysis of covariance are subs.urned under multiple 
regression. Hence, randomized experimental data, like data from all 
of the other designs in this book, can be analyzed through the same 
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basic analysis model that was presented in Chapter 2. Because the 
assignment variable is known to be uncorrelated with the outcome, 
it is unnecessary to control for it in order to eliminate b�as in the 
estimate of treatment effects. This is the major difference between 
the analysis of randomized experiments and the analysis of the 
quasi-experiments that are discussed in later chapters. 

Although randomized experiments are the design of choice if 
internal validity is to be maximized, they can be difficult to conduct. 
Assuring randomized assignment is often an arduous task. Making 
sure that all subjects stay· in the design may be quite difficult. 
Perhaps most important, the control that is necessary for random­
ized experiments may be difficult to achieve in applied settings. It 
may be quite hard to justify a random assignment variable to a 
program staff that sees differential need for the treatment. Even if 
justified, such a rule may be difficult to carry out. In addition, 
maintaining the necessary control may have deleterious effects on 
both conclusion and construct validities, as we pointed out in the 
last chapter. Thus, although randomized experiments are to be 
preferred from the point of view of internal validity, other designs 
may be more useful in settings where efficiency or the other 
research validities are crucial. 
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The regression discontinuity 

design 

The magic of the experiment works because treatment groups that 
are formed using a random assignment rule should in principle score 
just about the same on the dependent variable in the absence of 
treatment effects. Thus, with a large number of subjects, the mean 
for the treatment and comparison subjects should be virtually the 
same. If the means are different, then a treatment effect is 
indicated. The principle of the regression discontinuity design is 
that groups which are different by a known amount should score the 
same after a rational adjustment strategy if again there is no 
treatment effect. This design stands as a bridge between the 
randomized experiment and the quasi-experimental designs 
discussed in the next three chapters. It is like the randomized 
experiment in that the assignment rule is explicitly known. It is like 
a quasi-experiment in that random assignment is not employed. The 
groups are thus not equivalent, and so some form of adjustment on 
the basis of prior information is necessary. 

The defining characteristic of the regression discontinuity design 
is that the assignment rule is known. The researcher knows exactly 

. on what basis persons are assigned to groups. The typical assign­
ment rule in this design is as follows: Those scoring above or equal 
to a certain value on some pre-treatment measure will receive the 
treatment, and those who score below the value will not receive the 
treatment. For instance, receipt of a National Merit Scholarship is 
awarded in the following way: All those scoring above a given "alue 
receive a scholarship, whereas those scoring below that value do not 
receive a scholarship. We shall ref er to the value on the pre­
treatment measure that separates the two groups as the cutting 
point. A cutting point on a test has been used to admit students to 
higher lea.rning in a number of countries. Cutting. points are being 
increasingly applied in order to determine eligibility for government 
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subsidies. For instance, federal money for Medicaid in the United 
States depends on a person's income. For Medicaid as well as other 
social programs, it is those who score below the cutting point who 
are treated. A treatment that is awarded to low scorers is usually a 
compensatory one, because variables are normally scaled in such a 
way that more of the variable means having more of some social 
good. The treatment, therefore, is given to those who have less. To 
ease presentation, we assume throughout that the assignment is not 
compensatory; that is, those· above the cutting point receive the 
treatment and those below are untreated. All of what we say, 
however, is equally applicable to a compensatory assignment plan. 

In the regression discontinuity design, the assignment rule is 
exactly known rather than approximately known. This design does 
not include cases in which the researcher has only hunches about 
what the assignment variable is. For instance, an evaluation of a 
weight-reduction program may include a measure of the desire to 
lose weight. We might think that this motivational variable is the 
assignment variable, but it would be a mistake to employ the 
procedures we describe in this chapter to estimate treatment effects. 
First, even if motivation were the assignment varia hie, then the true 
motivation of the subjects would cause assignment rather than the 
researcher's measure of motivation. Second, there would surely be 
other causes of assignment· besides motivation. To act as if motiva­
tion were the only source of assignment is to ignore the complexity 
of the matter. Other designs should be employed (see Chapters 6 
and 8). Uncontrolled assignment is not the topic of this chapter. 

The reader should be warned that a post hoc or pseudoregression 
discontinuity design is not appropriate. By a pseudoregression 
discontinuity design we mean a design where the researcher, after 
initially uncontrolled assignment to treatments, throws out all those 
untreated subjects scoring above an arbitrarily fixed cutting point 
and all those treatment subjects scoring below that value. Such a 
"design" should not be analyzed by the procedures discussed .in this 
chapter, because the assignment variable is not known. 

At a minimum, there are three variables that must be considered 
in the regression discontinuity design. First, there is the known 
assignment variable, Z. We shall denote the value that is the cutting 
point as Z0• For reasons to be discussed later, the assignment 
variable should be rn·easured on an interval scale and should have at 
least three levels. Frequently, this assignment variable is a pre­
treatment measure of the outcome variable, that is, a pretest. 
However, any variable that is measured prior to treatment adminis-
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Figure 5.1. A scatter diagram from a regression discontinuity design. 

tration may be used. For instance, income level could be used for 
assignment to a health clinic. The assignment variable is typically a 
measure of deservingness. Those who score higher on it are thought 
to be more deserving of the treatment. The second variable is a 
dichotomous treatment variable, X, which equals one for those who 
are treated and zero for those who do not receive the treatment. 
Because the assignment variable determines treatment condition, it 
is necessarily related to the treatment variable; however, the rela­
tionship is not perfect. The third variable to be considered is the 
outcome variable, Y, a variable on which we expect treatment 
effects. As will be discussed, the form of the outcome's relationship 
to the assignment variable must be specified in advance. 

The basic descriptive result of the classical regression discontinu­
ity design is the simple scatter diagram between assignment and 
outcome variables. Suppose that the assignment variable is a 
personnel test, the outcome is job performance, and the treatment is 
a raise. A vertical line is drawn through the cutting point, Z0, as in 
Figure 5.1. Next, parallel regression lines are separately fitted to 
the data for those scoring below Z0 and those above Z0• One simply 
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regresses job performance on the personnel test for each of the two 
groups and pools or averages the slope. {The assumptions of 
linearity and common slopes or parallelism will be relaxed in the 
second part of this chapter.) Finally, one extrapolates both lines to 
the point Z0• The difference in Y between the lines at this point is 
the measure of the treatment effect. 

A more direct method of extrapolating the regression lines for 
treated and untreated subjects to the cutting point is available 
through the estimation of a single regression equation: 

Y = b0 + b1 Z + biX + e ( 5 .1) 

which is fitted to all the data points, from both treated and 
untreated subjects.1 Thus, the outcome variable is regressed on the 
assignment variable and the treatment variable. This regression 
equation yields a predicted ·value of Y for persons at Z0, in both 
treated and untreated conditions. If we set X equal to zero in this 
equation, therefore looking at untreated subjects, their predicted Y 
at Z0 is 

b0 + b1Z0 

For the treated subjects, setting X equal to one, the predicted Y at 
Z0 is 

b0 + b1Z0 + b2 

The difference between these two extrapolations is b2, the coeffi­
cient for X, which is the effect of treatment. 

Given parallel slopes, the estimate of the treatment effect, b2, can 
also be viewed as the difference between the Y intercepts of the 
comparison and the treatment groups. The intercept for the 
comparison group is simply b0 and b0 + b2 for the treated group. 
The test that b2 = 0 evaluates whether one or two regression lines 
are needed. If b2 is not needed, then only a single line need be fitted. 
If b2 is needed, two lines with the same slope but different intercepts 
are fitted. The difference between these two intercepts is the 
measure of treatment effect and, therefore, the test that b2 equals 
zero evaluates whether or not there is a treatment effect. 

The idea behind the regression discontinuity design is the "tie­
breaking experiment" (see Campbell & Stanley, 1963, p. 63). 

1 To increase the interpretability of the intercept, it is advisable to use Z - Z0 and not Z. If 
Z - Z0 is used, then the intercept refers to the predicted value for the controls at the cut­
ting point. 
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Table 5.1. Nonlinear functional form: Y = 2Z + .5Z2 

Person 

Untreated 

1 

2 

3 

Treated 

4 

5 

6 

z 

.5 

1.0 

1.5 

2.0 

3.0 

4.0 

y 

1.125 

2.500 

4.125 

6.000 

10.500 

16.000 

Imagine a large number of persons scoring at the cutting point Z0• 
Suppose that half the persons are -randomly assigned to the treat­
ment group and the other half to the comparison group. We would 
have then a randomized experiment, albeit of limited generalizabil­
ity because we have only observed subjects at Z0• To broaden the 
generalization we would expect those scoring just above Z0 to have 
about the same score on Y as those scoring just below Z0, assuming 
no treatment effects. For those scoring some distance above and 
below Z0, we would not expect them to score the same on the 
outcome measure in the absence of treatment effects. Therefore, 
some adjustment procedure is necessary to detect treatment effects. 
The most natural adjustment is a linear one. 

The form of the adjustment, for example, linear, is not a matter 
of simple convenience, but depends on the assumed relationship 
between the assignment variable and the outcome variable; that is, 
it should reflect the true underlying relationship between Zand Y. 

If the true relationship is linear, then the adjustment should be 
linear. If the true relationship is more complex (e.g., quadratic), the 
adjustment strategy should be equally complex. For the six scores in 
Table 5.1, the data were generated by setting Y = 2Z + . 5Z2 • In 
other words, the outcome variable is a perfect quadratic function of 
the assignment variable. Setting the cutting point at 1. 7 5 and fitting 
a linear regression line, we obtain the result 

Y = -2.02 + 4.6Z - .95X + e 

A spurious treatment effect of -.95 is indicated because we failed 
to fit the correct functional form between Z and Y. This example 
then illustrates that to employ the regression discontinuity design 
validly, 
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the researcher must know that Z relates to Y linearly and to the 
same degree for both treated and untreated subjects. 

Our approach to the regression discontinuity, as with other 
designs, is to estimate a single regression equation. We do not 
recommend analyzing the observations separately above and below 
the cutting point. Such double extrapolation procedures are typi­
cally inefficient, unparsimonious, and awkward. 

Before we turn our attention to the complexities of this design, we 
shall briefly consider two points of historical importance. First, the 
estimation procedures that were considered by Thistlethwaite and 
Campbell ( 1960) are less efficient than the regression procedure we 
have discussed, although they arrive at similar conclusions. Second, 
if we fit separate regression lines for the two groups, one might 
think that in the absence of treatment effects the two regression 
lines would not meet at Z0• Because of regression toward the mean, 
the lines would tilt so that the "top" line would be above the 
''bottom" line. This view, stated by Campbell (1969), is in fact 
wrong, because the lines do intersect when there are no treatment 
effects. 

Complexities of design and analysis 

The regression discontinuity design is simple and elegant. However, 
if we are practical we must realize that various complexities 
preclude a simple analysis. First, there may be more than just the 
three variables we have mentioned: treatment, assignment variable, 
and outcome variable. We must then consider multiple outcome 
variables, covariates, multiple assignment variables, and multiple 
treatment variables. Second, the specification of linear, parallel 
lines for treated and control subjects may not be true. Third, more 
complicated assignment rules are possible. Fourth, various factors 
affect the power or conclusion validity of the design. 

Multiple variables 

Classically, the discussion of the regression discontinuity design 
considers only three variables: the assignment variable, the outcome 
variable, and a dichotomous treatment variable. It is difficult to 
imagine that a researcher would implement the design with only 
these three variables. In practice, there are usually many more. 
First, there are typically a set of covariates. These variables do not 
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affect assignment but may be correlated with the assignment 
variable. Examples of common covariates are ag�, sex, and ethnici­
ty. Second, the outcome variable is not usually a single variable. 
Rather, there are a whole host of outcome variables. Third, the 
treatment variable need not be a simple dichotomy. Fourth, the 
assignment variable itself may be a multivariate composite. 

Covariates. Most researchers routinely gather data on a set 
of covariates. For instance, it is standard practice in educational 
research to measure age, sex, ethnicity, parental socioeconomic 
status, grade in school, and the like. These variables are called 
covariates. In the context of the regression discontinuity design, a 
covariate (I) must not be the assignment variable, and (2) must not 
be caused by the outcome variable. Although each covariate is not 
the assignment variable, it may well be correlated with it. For 
instance, a score on a reading test may be used as the assignment 
variable. We would expect that age, a potential covariate, would be 
highly correlated with the test, although age itself is not the 
assignment variable. To ensure that the covariate is not caused by 
the outcome variable, either (I) the covariate should be measured 
before or simultaneously with the assignment variable;2 or (2) if 
measured after assignment, it should be an unchanging variable like 
sex or ethnicity. 

The purpose of including covariates is to increase the conclusion 
validity of the research. For a randomized experiment, any covar­
iate should, on the average, be uncorrelated with the treatment. For 
the regression discontinuity design, the covariate may be correlated 
with the treatment, but its partial correlation with the treatment, 
controlling for the assignment variable, should on the average be 
zero. Without covariates the design produces unbiased (internally 
valid) results; with covariates the results are more efficient (higher 
conclusion validity). 

The presence of multiple covariates creates no special problems 
for the regression discontinuity analysis. They can simply be added 
to the regression equation. For instance, Seaver and Quarton (1973) 
investigated the effect of being on the dean's list. Grade-point 
average for one semester determined who was put on the dean's list, 
and therefore it was the assignment variable. The outcome variable 

2 If a variable is assumed to cause the outcome variable but is measured after the treatment 
has been administered, in some very special circumstances, as discussed in Chapter 10, the 
variable can be used as a covariate. 
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was grade-point average the next semester. Although they did not, 
Seaver and Quarton (1973) could have controlled for sex, age, year 
in college, and the like. 

Multiple dependent variables. Ordinarily there is not one 
but a series of outcome variables. For instance, in the Thistlethwaite 
and Campbell ( 1960) investigation of the effect of being a National 
Merit finalist, a number of outcome variables were investigated. 
The typical strategy for investigating such cases is to examine each 
variable one at a time. Such a strategy may adversely affect 
conclusion validity, as explained in Chapter 4. We briefly outline 
four different and potentially more powerful alternatives. 

The first is the repeated measures analysis of variance, which was 
discussed in Chapter 4. This procedure in effect simply takes the 
mean of the outcome variables and treats it as the only outcome. 
Such a procedure is advisable only when the variables have the same 
unit of measurement. 

The second way to analyze multiple outcomes is to use a multi­
variate analysis of covariance. The covariates must include the 
assignment variable and, in addition, other covariates can be 

included to increase power. The .treatment is the independent 
variable in the multivariate analysis, and the dependent variable in 
the analysis is a weighted sum of the set of outcome variables, where 
the weights are chosen empirically to maximize the variance 
explained by the treatment. Such a strategy is advisable when tQe 
researcher is uncertain about how the treatment affects the constel­
lation .of dependent variables, which is to say, the construct validity 
of the outcomes is uncertain. 

The third strategy is to factor analyze the outcome measures. If a 
meaningful solution arises, then the regression discontinuity analy­
sis can proceed on the smaller number of derived factor scores. 
Either the factor scores can be analyzed one at a time, or a 
multivariate analysis can be employed. Factor analysis is advisable 
if the measures tap a relatively small number of constructs, and if 
the researcher has hypotheses concerning how the treatment differ­
entially affects these constructs. 

The fourth strategy is closely related to the third. It involves 
setting up a structural model in which the outcome variables are not 
single measures or even factor scores but unmeasured constructs 
themselves. Assume, for instance, that we are examining the effect 
of an enrichment program for gifted children. This program might 
cause a change in two constructs, cognitive skill and affect. Each of 
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Figure 5.2. A structural model of treatment effects. 
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these is measured by three indicators (Ch C2, C3 and Ah A2, A3). 
The childr�n are assigned to the treatment on the basis of an 
intelligence test. The effect of the treatment, controlling for the 
assignment variable, on the outcome constructs is depicted in Figure 
5.2. The structural modeling approach, introduced in Chapter 9, 
estimates these effects in the following way. First, a confirmatory 
factor analysis of the outcome variables is conducted, forcing the 
two-factor solution in Table 5.2, where zero denotes a loading that is 
forced to be zero and x denotes a loading that is free to take on any 
value. The test of this factor structure establishes the construct 
validity of the outcome variables. Then, using the correlations of 
the cognitive and affective factors with the treatment and assign­
ment variable, the treatment effect is estimated using multiple 
regression. Actually, the two steps of factor analysis and multiple 
regression are done simultaneously. This strategy is advisable only 
if the researcher has a theoretical model specifying which variable 
loads on which factor and a moderate to large sample size. 

Multiple treatment variables. When we think of experi­
ments, we usually think of two groups: a treatment group and a 
comparison group. In reality, as we saw in Chapter 4, most 
experiments contain many more groups. In the first place, the 
effects of more than one variable are usually investigated simulta­
neously. Standard practice for such experiments is to combine the 
levels of two or more independent variables factorially. In the 
second place, multiple levels of a single treatment variable may be 
used. In applied settings the researcher is usually not satisfied in 
measuring only two levels of the treatment variable, because with 
only two levels the generalization to other levels of the independent 
variable is restricted. 

For the regression discontinuity design the effects of both multi­
ple independent variables and multilevel independent variables can 
be estimated by multiple regression using the procedures described 
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Table 5.2. Two-factor model of outcomes 

Construct0 

Variable Cognitive skill 

c, x 

C2 x 

C3 x 

A, 0 
Ai 0 
A3 0 

Affect 

0 
0 
0 
x 

x 

x 

0Zero indicates a loading fixed at zero, and x denotes a free loading. 

in Chapter 4. There is one special complication that does occur for 
the regression discontinuity design. If there are three or more 
treatment groups, a single cutting point is not possible. We shall 
return to this problem in the section on assignment rules. 

Multivariate assignment rules. The assignment variable 
need not be a single variable. It may be some function of a set of 
variables,. such as a linear composite. For instance, admission to 
some law schools is determined by 200 times the grade-point 
average plus LSA T score. If such a variable is to serve as an 
assignment variable, then every person's score must be created by 
the same rule. As always, the assignment vari�ble enters the 
regression equation.3 

Functional form specification 

The analysis of the regression discontinuity design rests on the 
adequacy of the adjustment strategy. One must specify the func­
tional form of the relationship between the assignment variable and 
the dependent variable. Below we consider two sources of incorrect 
specification. 

Nonlinear function form. As was illustrated in Table 5.1, if 
the relationship between the assignment variable (Z) and the 

3 If a linear composite is used to form an assignment variable, it is advisable to use as 
covariates all but one variable (which one does not matter) of those used to form the 
composite. If all the variables are used, then perfect multicollinearity results. 
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outcome variable (Y) within levels of the treatment (X) is non­
linear, the researcher might reach an incorrect conclusion concern­
ing treatment effects if the relationship was assumed to be linear. 
However, if the researcher knew the relationship between Zand Y 
to be quadratic, he or she could specify a quadratic term and 
estimate treatment effects with the following regression equation: 

Y = b0 + b1Z + b2Z
2 

+ b3X + e 

If the functional form between Z and Y cannot be specified in 
advance, one might attempt to derive it empirically by polynomial 
regression [including terms such as Z3, z4, and so on (Cohen & 
Cohen, 1975)). That is, the researcher fits various regression 
equations to the data, using various powers of Z as independent 
variables, in order to assess the degree of polynomial relation 
between Zand Y. The problem is that the exact degree of polyno­
mial can rarely be specified in advance, and there are different risks 
between either underfitting or overfitting the polynomial. If the 
polynomial is underfitted, that is, if Z and Y are related by a 
higher-order polynomial than is estimated in the regression equa­
tion, then the estimate of treatment effects may be biased. If the 
polynomial is overfitted, that is, if higher-order powers of Z are 
included in the regression equation, there is a decrease in conclusion 
validity (greater tendency toward Type II errors) without any bias 
in the estimate of treatment effects. In other words, finding the 
correct polynomial relation between Zand Y involves a potential 
trade-off between internal and conclusion validity. If too low a 
polynomial is fitted, internal validity may be low as the treatment 
effect estimate may be biased. If too high a polynomial is fitted, 
conclusion validity is reduced. As was stated in Chapter 3, we take 
no a priori position on trade-offs between research validities, and 
hence on the relative merits of over- and underfitting in this case. In 
some contexts, internal validity is of the essence and overfitting is 
preferable. In other contexts, conclusion validity is the top priority 
and so underfitting is preferable. However, given moderate to large 
sample sizes, we see little danger in overfitting. 

If the relationship between the assignment variable and the 
outcome is nonlinear, it may be possible to transform either variable 
and in the process ''straighten out" the functional relationship 
(Mosteller & Tukey, 1977). 

Nonparallel regressions. It may be that the regression of Y 
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on Z differs in the treatment groups. This condition, called non­
parallel regressions, means that the treatment and the assignment 
variable interact. For instance, if the slope for the treated subjects 
were steeper than the slope for the untreated subjects, we would say 
that those who scored higher on the assignment variable benefited 
more from the treatment. We saw in Chapter 4 that the procedure 
for estimating interactions in multiple regression is to enter the 
product of the variables into the equation. If the assignment 
variable and treatment interacted, we would specify an equation of 
the foil owing form: 

(5.2) 

In this equation the treatment effect changes with the value of the 
assignment variable. For instance, if b2 = 1 and b3 = . 2, then the 
treatment effect would be 1 + .2Z. Hence, at the following different 
values of Z we would obtain different estimates of the treatment 
effect: 

z = 1: 

z = 5: 
z = 10: 

1 + (.2)(1) = 1.2 
1 + (.2)(5) = 2.0 
1 + (.2)( 10) = 3.0 

If the relationship between Z and Y is nonlinear, the nonlinear 
interaction terms (e.g., XZ2, XZ3) must be included. In a later 
section we discuss procedures for testing and interpreting interac­
tions in multiple regression. 

In pr�ctice, it is difficult to distinguish a nonparallel regression 
from a nonlinear relationship between the assignment variable and 
the outcome. For the regression discontinuity design, the explana­
tions of nonlinearity and interaction are virtually confounded. 
Consider the graphs in Figure· 5.3. The slope for the treated subjects 
is steeper than for the untreated subjects for both graphs. However, 
the nonlinearity of Figure 5.3a is difficult to distinguish from the 
nonparallel regression in Figure 5.3b, given the typically noisy data 
and small to moderate sample sizes we have in the social sciences.4 
The choice of which explanation to prefer depends on the plausibil­
ity of each given the nature of particular variables under study. 

In addition to treatment by assignment variable interactions, 
there may als6 be treatment by covariate interactions. These should 
4 The power to detect nonlinear trends depends on the range of the predictor variable. 

Because nonlinearity is measured within levels of X, the amount of nonlinearity is measured 
separately below and above the cutting point. Thus the range is considerably narrowed. 
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Figure 5.3. (a) Nonlinearity and (b) interaction. 
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be estimated by the appropriate product terms in the regression 
equation. 

Complex assign�ent rules 

Probabilistic assignment. We have so far considered only a 
deterministic rule. All those scoring above the cutting point receive 
the treatment and all those who score below do not. The rule could 
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be probabilistic. For instance, among those who score above Z0, 80% 
receive the treatment and 20% are untreated, whereas among those 
scoring below the cutting point, 80% are untreated and 20% are 
treated. Unlike the typical regression discontinuity design, one can 
here compare treatment effects within those above and those below 
the cutting point, and so the design is actually a randomized 
experiment or, more exactly, a variation on a randomized blocks 
design as discussed in Chapter 4. 

This probabilistic rule is actually a mixture of two different 
assignment rules. The variable Z is an assignment variable, because 
persons scoring above Z0 are more likely to receive the treatment 
than those w:po score below Z0• The assignment rule is also in part 
random. Thus the assignment rule contains both known and random 
aspects. In such cases one must control for the known assignment 
variable either by linear adjustment or by blocking (Rubin, 1977). 

Assignment can also be based on a known variable and an 
unknown variable. Consider a program to help gifted children. 
Eligibility to the program is determined by having an IQ above 150. 
For reasons that are not clear, however, some persons with IQs 
greater than 150 are not in the program whereas others with IQs 
less than 150 are in the program. An IQ of 150 is said to be a 
"fuzzy" cutting point (Cook & Campbell, 1979). Thus assignment 
to the program depends on more than just the child's IQ. Relatively 
little work has been done on this problem of a mixture of known and 
unknown assignment variables. We can, however, off er a few 
suggestions. First, in all analyses one should control for the known 
assignment-variable. Second, if the percentage of misclassifi.cations 
is small (say, less than 5%), one might exclude the misclassified 
cases and proceed as if the design were a regression discontinuity 
design. Third, one should never take a variable that is only 
presumed to be an assignment variable and use it to derive a 
posteriori the assignment rule. The presence of unknown assign­
ment rules necessitates the procedures discussed in Chapters 6 
and 8. 

Multiple cutting points. The regression discontinuity design 
is not limited to either a dichotomous treatment variable or a single 
cutting point on the assignment variable. Consider a day-care 
center that has three programs. For various reasons age must be 
used as the assignment variable. We might imagine the following 
plan: 
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Program 

A 

B 

c 

Assignment variable score 

2-year-olds 

3-year-olds 

4-year-olds 
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Another way we might have multiple cutting points is to combine 
both probabilistic and deterministic assignment rules. Given two 
treatments, A and B, we might employ the following rule: 

Treatment level 

100%A 

50%A; 50% B 

100%B 

Assignment variable score 

Below 25 

26-50 

Above 50 

For this assignment plan, a randomized experiment is conducted 
across the middle range of the assignment variable (26-50). The 
extremes on the assignment variable show the typical regression 
discontinuity pattern. This plan might be used when extremely 
needy subjects must receive the treatment, and those less needy do 
not deserve the treatment. Those in the middle, whose status is 
uncertain, would be assigned randomly. The design is useful if it is 
unethical to withhold treatments from the very needy and to give a 
scarce treatment to those with little need. 

Finally, consider the following assignment plan: 

Treatment level 

A 

B 

A 

Assignment variable score 

Below 30 

30-45 

Above 45 

The purpose of this assignment plan is to make the treatment­
assignment variable relationship curvilinear. The simple correlation 
between the two should be low. This low correlation increases the 
power of the test of treatment effects, as is discussed in a later 
section. 

Special cases. Earlier it was stated that the assignment 
variable must be measured on an interval scale. We consider here 
some limiting cases of assignment variables. First, suppose that the 
assignment variable were a dichotomy. For example, all the males 
receive the treatment and the females serve as comparison subjects. 
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In such a case there is a total confounding between the assignment 
variable (sex) and the treatment. If our regression strategy were 
employed, it would break down because of perfect multicollinearity. 
Thus, a dichotomy cannot serve as a deterministic assignment rule. 

Consider another example in which subjects above (or below) the 
cutting point all score the same on the assignment variable. For 
instance, a scholarship is given only to those who obtain a perfect 
score on a test. The analysis is still possible, because the sl_ope 
(either linear or nonlinear) can be estimated from those who score 
below the cutting point. We cannot estimate the slope for those 
above the cutting point, but given the assumption of parallel 
regressions we can still proceed. The power of such a design would 
tend to be limited, and it would be impossible to test for nonparallel 
slopes. 

The minimum number of levels of the assignment variable is 
three for the regression discontinuity design. This minimum was 
employed in a quasi-experimental evaluation of the Salk vaccine for 
polio (Meier, 1972). The vaccine was given to second graders while 
first and third graders served as controls. The design has a known 
assignment rule (i.e., grade) and a specified functional relationship 
(i.e., linear) between grade and the probability of contracting polio. 
Moreover, the strength of that linear relationship can be measured 
using the first and third graders. The prediction is that for the case 
of no effect, the second grade should fall halfway between the first 
and third graders. The problem with the design is that because there 
are only two levels of the assignment variable for the untreated 
subjects, the linearity assumption cannot be tested. When the 
results of this study were compared with a randomized experiment, 
the linearity assumption wa� only approximately true and the 
effectiveness of the vaccine was seriously underestimated in the 
regression discontinuity design. 5 

Conclusion validity 

Although the inferences drawn from a regression discontinuity 
design are almost as valid as those from a randomized experiment, 
there are costs. In particular, the conclusion validity in a regression 
discontinuity design is lower than in an experiment. If the assign­
ment variable is normally distributed ·and the cutting point is at its 

s Other, more serious problems occurred with this quasi-experimental study (see Gilbert, 
Light, & Mosteller, 1975). 
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mean, the regression discontinuity design requires many more 
subjects than a randomized experiment to achieve equal power 
(Goldberger, 1972). As the cutting point becomes extreme, power is 
further decreased. This lowered power is due to the built-in 
collinearity between the assignment variable and the treatment. 

The type of assignment rule plays an important role in deter­
mining power. As we have already said, the more uneven the sizes of 
the treatment groups, the lower the power. Although this is also the 
case for randomized experiments, it is even more so for the regres­
sion discontinuity design. The reduced power is a function of the 
correlation between the treatment and the assignment variable. 
Assignment rules that reduce this correlation increase power. For 
instance, the assignment rule that we discussed previously, in which 
the two extreme groups serve as comparison groups and the middle 
group is treated, reduces this correlation. In fact, the worst rule 
(given a linear relationship between Zand Y) in terms of conclusion 
validity is one with a single cutting point. 

If the assignment variable does not relate to the outcome 
measure, it might be dropped from the regression equation. This 
would lead to an increase in power, with the risk of introducing 
some bias. 

One advantage of the design over other quasi-experimental 
designs is that the partial correlation of the treatment with the 
covariates controlling for the assignment variable is zero. The use of 
covariates when they share no unique variance with the treatments, 
just as in randomized experiments, is optimal for increasing statisti­
cal power. 

Complex regression equations 

Given interactions and covariates, the simple regression equation 
becomes much more complex. We must consider how to set up, 
sequentially test, and interpret such equations. 

Let us consider in some· detail an example illustrating hpw the 
multiple regression equation is set up and sequentially tested when 
interactions and a covariate are present. A researcher wishes to 
evaluate the effectiveness of an intensive drug rehabilitation 
program. Persons are as.signed to the program on the basis of a 
pre-treatment measure of drug consumption. The cutting point o� 
this variable is 4.0. The outcome variable is ·drug consumption 
measured 6 months after the program has ended. The researcher 
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wishes to estimate the effect of treatment (X), a covariate, sex (S), 
pre-treatment consumption (Z), and their interactions on post­
treatment consumption (Y). 

The interactions XS, XZ, SZ, and XSZ can be computed by 
forming product terms as was described in the previous chapter. 
Testing ·proceeds in a hierarchical fashion. For the first equation one 
regresses Y on X, S, Z, XS, XZ, SZ, and XSZ. One tests only the 
highest-order interaction, in this case XSZ, and if it is significant, 
one interprets the results of that equation. (Interpretation is 
discussed later in this·section.) 

If the highest-order interaction is not significant, one drops it 
from the regression equation, and for the second step in the 
hierarchy one regresses the outcome variable on the remaining 
effects. For our example one would ·regress Yon X, S, Z, XS, XZ, 
and SZ. At this step one tests only the set of highest-order 
interactions remaining in the equation: XS, XZ, and SZ for our 
example. If they are all significant, one stops and interprets the 
equation. 

If one or more of the interactions tested in the second step is not 
significant, one drops it or them from the equation and estimates a 
third equation. So if XS and XZ are significant, but SZ is not, one 
woulcJ regress Y on X, S, Z, XS, and XZ. One then tests from the 
third equation the main effects (X, S, and Z) of those terms that are 
not included as components in any interaction in this equation. So, 
for example, if only XS is included in the third equation, one would 
test only Z; or if no interaction was included, one would test X, S, 
and Z; or if XS and XZ were included, one would test no main 
effects. If all of the tested main effects are significant, one stops and 
interprets the equation. 

If some of the tested main effects in the third equation are 
nonsignificant, one deletes them and estimates a fourth equation. At 
this point this final equation is interpreted. 

One always moves down to the next order of interaction and 
drops terms tested in the previous step that are not significant. One 
then tests terms at that order of interaction whose components are 
not included in the higher-order interactions that remain in the 
equation. If all the terms tested at that step are significant, one 
stops and interprets. If not, one moves down to th.e next order of 
interaction and repeats the procedure. This procedure can be 
accomplished only by a series of multiple regression runs, each 
based on the previous run, hence the name hierarchical regression. 
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Table 5.3. Regression equation/or Yunder alternative 
coding schemes 

Coding of 

XandS 

Dummy 

Effects 

Coding of assignment variable 

z 

4.0 + .5Z + .5X + 2.0S -

l .OXS - .25XZ + e 

5.0 + .37SZ + O.OOX + .75S -

.25XS- .12SXZ + e 

Z' 

6.0 + .5Z' - .5X + 2.0S -

l .OXS - .25XZ' + e 

6.5 + .37SZ' - .SX + .15S -

.25XS - . l 2SXZ' + e 
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It cannot be stressed strongly enough that hierarchical regression is 
not stepwise regression. 

The result of these hierarchical regressions is a trimmed regres­
sion equation. The coding of the variables affects the coefficients in 
equations. The coding does not, however, affect whether or not a 
given variable remains in the· final trimmed equation. So, for the 
example, no matter how we coded X, S, or Z, the terms that are 
dropped do not change. 

Although the terms in the trimmed equation are invariant with 
respect to coding schemes, the coefficients, including the intercept, 
are not. Table 5.3 shows under alternative coding schemes a 
.hypothetical trimmed regression equation. Two different coding 
schemes, described in the previous chapter, were used for X and S. 
The first is dummy coding. Females and treated subjects were given 
a value of one on Sand X, respectively, and males and untreated 
subjects a value of zero. The second type of coding used was effects 
coding: Females and treated subjects were given a + l, whereas 
males and untreated subjects were given a - I. The assignment 
variable is also coded in two ways, first in its raw metric or Zand 
second as deviations around the cutting point: Z' = Z - 4.0. 

As can be seen in Table 5.3, the coding scheme of the variables 
does affect the coefficients of the regression equation. They change 
sign, become larger and smaller, and go to zero. Even though these 
changes are dramatic, we should realize that the four equations in 
Table 5.3 are in fact the same equation. They all have the same R2, 
yield the same predicted values of Y, and each can be derived 
mathematically from the other. The ·predicted values of all four 
equations are given in Table 5.4. Because they are fundamentally 
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Table 5.4. Predicted values generated by the regression 
equations of Table 5.3 

Male 

Female 

Male 

Female 

Z=4.0 

Untreated 

6.0 

8.0 

Z=8.0 

Untreated 

8.0 

10.0 

Treated 

5.5 

6.5 

Treated 

6.5 

7.5 

the same equation, the choice between the various coding schemes 
rests on meaningfulness and ease of interpretation, a topic to which 
we now turn. 

We strongly urge that for continuous variables like Z, researchers 
subtract off "a typical value," especially when such variables are 
entered into product terms. When the variable is an assignment 
variable, then the logical "typical va,lue" is the cutting point. For 
other variables one might choose the sample mean, median, or 
mode. Although it is not necessary to subtract off a typical value 
(Cohen, 1978), it definitely increases the meaningfulness of various 
coefficients. Consider, for example, a program in a nursing home in 
which admission is solely a function of age, say, 70. If one were to 
evaluate the effects of the nursing home and enter the age by 
treatment product term and not subtract off a typical value, the 
coefficient -for treatment estimates the treatment effect for 
newborns! Obviously such an extrapolation to babies in a study of 
elderly people is meaningless. Using age minus 70 would give an 
estimate of the effect for those aged 70. This would seem more 
sensible. 

We do not take a position on the relative merits of dummy versus 
effects coding. Rather we urge researchers to understand how each 

« ·  . 

should be interpreted. Returning to Table 5.3, we see that the effect 
of sex using dummy coding refers to the sex difference for untreated 
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subjects (see Table 5.4), whereas using effects coding the coefficient 
for sex is one-half of the average difference between males and 
females. The coefficient for the SX interaction measures under 
dummy coding the additional impact of the treatment for females. 
Under effects coding the interaction coefficient is one-half of the 
difference between the treatment effect for males and the treatment 
effect for females. 

To aid in the interpretation of the coefficients, one can graph the 
results as was done in Chapter 4. One can also set up a table of 
predicted values as was done in Table 5.4. The values in the table 
were obtained by substituting values for the predictors in the 
equations of Table 5.3. For instance, the predicted score for male 
and treated subjects whose score on Z is 4.0 is 

5.5 = 4.0 + ._5(4.0) + .5(1.0) + 2.0(0.0) - 1.0(0.0) - .25(4.0) 

given dummy coding and Z in the raw metric. 

Conclusion 

The regression discontinuity design, a design that has a known 
assignment rule, yields internally valid results when the researcher 
can- specify the functional relationship between the assignment 
variable and the.outcome variable. Bias-free results emerge because 
we can control for the assignment variable in estimating treatment 
effects. 

The regression discontinuity design has received careful technical 
attention, but it has been underutilized in applied social research. 
Although it has been used in archival studies, the design has rarely 
been chosen to evaluate new programs. There are two reasons for 
this underutilization. First, if decision makers can be convinced of 
the necessity of a universally applied assignment rule, they can 
often be convinced of the need for random assignment. Once an 
assignment rule is defined explicitly, it can seem arbitrary and in 
some cases unfair. Hence, it often happens that in cases where 
regression discontinuity designs are feasible, so too are randomized 
experiments, and the latter are undertaken. The second reason for 
the underutilization of the design is the requirement of universal 
application of the rule. Even though legislation may impose cutoffs 
for eligibility, these may be waived for political, administrative, or 
ethical reasons. Thus the rule may not be applied universally. 
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Nevertheless, the design is a useful alternative for the applied 
social researcher. Dawes (1979) highly recommends the use of 
cutoffs for admission to schools and for hiring. He claims that such 
rules are both fairer and are more efficient than any other admis­
sion procedure. If such rules become more common, the design may 
be used much more in the future. 



6 

The nonequivalent control 

group design 

If the researcher cannot control assignment to the treatment and 
comparison groups, then subjects in the two groups can be expected 
to differ. Therefore, even in the absence of treatment effects, the 
comparison and treatment groups may not sc�re the same on 
outcome measures. In order both to assess how nonequivalent the 
groups are and to allow for possible adjustment to make the groups 
equivalent, the subjects are pretested. The nonequivalent. control 
group design is defined by a pretest and an unknown assignment 
rule. The design has been used to evaluate the first year of Sesame 
Street .(Ball & Bogatz, 1970), manpower. training programs (Har­
din & Borus, 1971 ) , and a variety of other programs. The nonequiv­
alent control group design, the archetypal quasi-experimental 
design, is often the most internally valid design that many research­
ers can implement in applied settings. Very often the only alterna­
tive to it is a post-only correlational study, discussed in Chapter 9. 

There are a variety of ways to form the two groups in the 
nonequivalent control group design. The first and most common 
procedure is to use groups that were formed naturally prior to the 
research. Campbell and Stanley (1963) originally viewed the design 
as one in which two intact groups were assigned randomly to the 
treatment and the comparison conditions. More typically, one group 
is slated to receive a treatment and a second classroom, school, 
hospital, or city is used for comparison. Usually an effort is made to 
ensure that the comparison group is roughly equivalent to the 
treated group, for example, same grade, same socioeconomic status, 
same area, and so on. Such attempts to match on relevant variables 
do not change the fact t·hat we still have a nonequivalent control 
group design. They do, however, strengthen the design. 

Another way of forming the treatment and comparison groups is 
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to have a clearly definable pool of possible program participants. 
From that pool a subset either volunteer for the program or are 
chosen by the staff. The remainder of the subjects or a subset are 
not treated. Quite clearly those who are not treated differ from the 
treated in some unknown way. 

A final way is to examine only the treated subjects, but to 
compare those subjects who received large amounts of the treat­
ment with those who received small amounts. Such an approach 
becomes necessary when the comparison group ends up receiving 
the treatment, as happened to the comparison group for the evalua­
tion of Sesame Street (Ball & Bogatz, 1970). It is also useful when 
the treated group receives differing amounts of treatment. 

An essential feature of the design is a pretest and a posttest. The 
same construct is measured on the same subjects at two points in 
time. If we give the same name to both the pretest and posttest, we 
believe them to be measures of the same construct. What do we 
mean when we say that we have measured the same construct at two 
time points? Consider evidence that would suggest we have not. 
Infant "intelligence" tests typically correlate with sensory motor 
skills, whereas childhood intelligence measures typically correlate 
with cognitive skills. This has caused some researchers to doubt that 
they measure the same construct. Construct validation (see Chapter 
3) requires two measures to show the same pattern of covariation 
with other measures. Such a pattern would imply that the constella­
tion of causes for the pretest is the same as the constellation for the 
posttest. 

_ 

The essential difficulty in the nonequivalent control group design 
is that the assignment rule is neither known nor random. To analyze 
the design the researcher must begin with this realization: The 
assignment variable is unknown and most likely unmeasured. 
Reasonable estimates of the treatment effect are obtainable only if 
assumptions can be made about the \lnknown and unmeasured 

·assignment variable. There is then a necessary element of risk 
because assumptions must be made about an unknown variable. 

For some studies that employ the nonequivalent control group 
design, it may seem as if we know the assignment variable. For 
instance, in studying the effects of a mass media campaign, 
Maccoby and Farquhar (1975) assigned one northern California 
city to be the comparison group and a second to be the treated 
group. Because the assignment rule is apparently the city, it seems 
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as if we need control only for city in our analysis to estimate 
treatment effects. However, city is totally confounded with treat­
ment. Technically, because of perfect multicollinearity, the effects 
of city and treatment cannot be estimated simultaneously. The 
assignment-variable is �pparently known and measured, but we are 
unable to control for it. We can consider, however, the variable city 
to be merely a proxy for the reasons that sort people into the 
different cities. For example, these variables would include occupa­
tional group, ethnicity, age, and the like. The reason for doing this is 
that they are not likely to be perfectly correlated with treatment. 

Some might argue that the study with two cities is really a 
randomized experiment with N = 2 if cities were randomly assigned 
or a quasi-experiment with N = 2 if they were not. The basis of this 
argument is the rule we gave in Chapter 4 that the unit of analysis 
should be the unit of assignment. However, to follow such a rule in 
this case sacrifices conclusion validity for the sake of internal 
validity. With only two cases there is no estimate of error, making 
significance tests impossible. 

We may sometimes suspect that the assignment variable has been 
measured. We have what might be called a presumed assignment 
variable. In other cases, we might suspect that assignment is 
virtually random. In both cases the pretest can be regressed on the 
treatment and any presumed assignment variables. If these vari­
ables include the actual assignment variable, or if the assignment 
were random, the treatment variable should have a zero coefficient 
in this regression. Recall that once the assignment variable's effects 
are controlled, the residual variation in the treatment is, by defini­
tion, random. Thus, in the previously described regression equation, 
the treatment should share no variance with the pretest after the 
assignment variable is controlled. In practice this strategy has some 
drawbacks. First, one might be tempted to pick a presumed assign­
ment variable from a pool of variables with the intent of identifying 
the assignment rule empirically. That is, one would select as the 
assignment rule those variables which, when included in the regres­
sion, caused the treatment effect on the pretest to be zero. Such an 
empirically based strategy leads to capitalization on chance and 
biased results. Second, it is not clear by what criterion one decides 
that the treatment has a zero coefficient. Suppose that the test of 
the effect of trea tr:nent on the pretest is a beta coefficient of .10 and 
yields a t-test of l .00. The . l 0 coefficient is hardly trivial, and yet it 
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is not statistically significant. There may _well be other variables 
causing assignment that remain unmeasured, or some that were 
measured may contain error, and there is then a reasonable chance 
that bias would result. 1 

Typically, the background variables that a researcher assesses do 
not include the assignment variable nor is the assignment rule 
random, and so he or she cannot establish the assignment rule 
empirically. We are then back to the problem that the assignment 
variable is unknown and nonrandom. We do have a pre-treatment 
measure, however, and perhaps there is some way to use this 
measure to control for the effects of the assignment variable. Even 
though we do have a measure of pre-treatment differences, it is not 
clear how we can use the pretest to project ·over time how large the 
posttest difference between groups would be, given no treatment 
effects. We can argue that the "gap" between groups would remain 
the same, widen over time, or move closer together. Let us consider 
each argument. 

An approach of one naive investigator to adjusting for pre­
treatment differences is to expect no change over time. If the 
treated children are one-half a grade equivalent behind before 
treatment, the program would be judged a success if the gap can be 
narrowed. 

"Not so," says a second investigator. Because of regression 
toward the mean, the scores of the two groups should converge over 
time even in the absence of treatment effects. Thus we should 
expect the gap to attenuate even in the absence of treatment 
effects. 

"Quite the contrary," says a third investigator. We all know that 
in school, children who start out behind fall further and further 
behind. Thus, the gap should increase over time. 

Thus, one can make strong arguments that the gap will remain 
constant, diminish, or even increase. Which argument is correct? 
The answer, we shall see, depends on how the assignment variable 
relates to the pretest and posttest. 

1 There is yet another reason why this strategy may fail: an unreliable pretest. For instance, 
consider a program that trains persons to operate a complex piece of machinery. If a pretest 
were administered and no subject had any prior experience with the machinery, pretest 
performance would probably be random and have zero reliability. For such a case, neither 
the treatment nor any other variable would correlate with the pretest. Thus a zero 
coefficient for the treatment in predicting the pretest mistakenly indicates random 
assignment. We must then make certain that our pretest measure is reliable. 
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Analysis strategies 

Two general types of analysis strategies compete for use in the 
nonequivalent control group design: regression adjustment and 
change score analysis. Let us designate the outcome variable as Y2 
and the pretest as Yi. The treatment variable, X, is dummy coded 
such that X = l for the treated subjects and X = 0 for the untreated 
subjects. The general equation is 

(6.1) 

where e represents. residual variation in Y2• The two analysis 
strategies differ in the value of the coefficient for the pretest, bi. 
The regression adjustment sets bi to be the partial regression 
coefficient of the posttest on the pretest controlling for treatment. 
Raw change score analysis simply fixes bi at one. If bi is set to one, 
then the equation becomes 

Y2 - Y1 = b0 + b2X + e 

Which procedure is correct? Many textbooks recommend the 
regression approach, but many researchers still use the change score 
approach. As we shall see, the choice should depend on how the 
assignment variable is presumed to relate to the pretest and 
posttest. 

If we solve from Equation 6.1 for the means of the treatment (E) 
and comparison ( C) groups, we have 

Y2E = b0 + biYiE + b2 

Y2c =ho+ biY1c 

The estimate of the treatment effect in terms of the pretest and 
posttest means is then 

(6.2) 

Thus the treatment effect equals the posttest.difference between the 
treatment groups subtracting out or adjusting for the corresponding 
pretest difference times·· bi. When there are covariates in the 
regression equation, the means in Equation 6.2 must be adjusted for 
the effects of the covariates. 
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Throughout the remainder of this chapter we refer to pooled 
standard deviations, pooled correlations, and pooled reliabilities. 
Because such pooled values are needed for various formulas, we 
must define them here. By pooled we mean that the standard 
deviation, correlation, or reliability is computed within each treat­
ment group (and within each covariate) and then averaged or 
pooled across treatment groups (and covariates). The general proce­
dure for computing the pooled standard deviation of, for instance, 
the pretest is to regress it on the treatment variables and the 
covariates. The variance of the residuals from such a regression (or 
the mean square error of the pretest) is the pooled within-treatment 
and covariate variance. The pooled correlation of the pretest and 
posttest can be obtained by taking the residuals of the pretest and 
posttest, controlling for treatment and covariates, and correlating 
them. When statistics are pooled in this fashion, k degrees of 
freedom are lost, where k is the number of treatment variables and 
covariates. We denote such pooled within-group standard devia-
tions, correlations, and reliabilities by the subscript w. . 

In the remainder of this chapter we discuss conditions under 
which each of the two adjustment strategies, regression and change 
score, is appropriate. It will be shown that the choice depends on the 
nature of the assignment rule. A different approach, a value-added 
approach, is discussed in Chapter 8. 

Regression adjustment 

There are two analysis strategies that are formally equivalent to 
regression adjustment, where regression adjustment is defined as 
the regression of the posttest on the treatment and the pretest. The 
estimate of treatment effects by analysis of covariance (ANCOV A) 
is identical to this multiple regression approach, as we saw in 
Chapter 4. As we saw there, however, the regression approach is 
more flexible. The second analysis strategy that is equivalent to 
multiple regression is to regress change, Y2 - Y., on the treatment 
and the pretest. Again, the coefficient for the treatment is the same 
as its coefficient in regression adjustment, and the coefficient for 
the pretest equals the coefficient for the pretest . in a regression 
adjustment minus one. 2 

2 An analysis known as residualized change score analysis can be equivalent to regression 
adjustment. A residualized change score is obtained by regressing the posttest on the 
pretest, and computing the residual from such a regression. All subsequent analyses are 
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Most textbook discussions of multiple regression and analysis of 
covariance fail to emphasize the two different purposes of regression 
adjustment. The first may be called the precision purpose. The 
precision in the estimation of treatment effects or, equivalently, the 
conclusion validity tends to be enhanced by including the pretest as 
a covariate. The second purpose is adjustment. When the pretest is 
included in the analysis, the estimate of the treatment effect 
typically differs from that obtaine<!_ when it is not included. The 
adjusted treatment effect is ( Y2E - Y2c) - h1 ( YIE - Y1c), where h1 
is the regression coefficient of Y2 on Y1 controlling for treatment 
(see Equation 6.2). In the unlikely event of no pretest difference 
between the means of the groups, there is no adjustment. The 
purpose of this adjustment is to produce more internally valid 
estimates. Whenever multiple regression is applied, it serves both 
purposes: precision and adjustment. It is informative to examine 
these purposes for the randomized experiment, the regression 
discontinuity design, and the nonequivalent control group design. 

The main purpose for including a pre-treatment measure as a 
covariate in a randomized experiment is to reduce the error term 
and thereby to produce a more precise estimate of treatment effects. 
Incidentally, the size of the treatment effect is also adjusted. The 
magnitude of the adjustment depends on the size of the difference 
between treatment groups on the pre-treatment measure. Given 
randomization, this difference should be relatively small. However, 
some difference on the pretest is likely and there is some adjust­
ment. Both the adjusted and unadjusted treatment effects are 
internally valid, because the assignment rule is random. 

For the regression discontinuity design, it is the adjustment 
purpose that necessitates controlling for the pretreatment measure; 
because the pretest is the assignment variable, it must be controlled. 
Precision may be affected in the process, but the purpose is 
adjustment. 

For the nonequivalent control group design, the effect on internal 
validity of adjusting for the pretest is not so clear. For purposes of 
conclusion validity, it is true that entering the pre-treatment 
measure into the regression equation maximally explains the post.: 

then performed on this residual.· score. This is equivalent to what we call regression 
adjustment if, first, all other variables (treatment and covariates) are similarly residualized 
(i.e., have the pretest effect subtracted out), and, second, the degrees of freedom for error 
are reduced by one. Typically, neither of these adjustments is made, resulting in both bias 
and reduced power. 
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test; that is, a regression-weighted pretest produces a larger R2 for 
the posttest than any other weighting strategy. It would seem that a 
weighting that maximally explained the posttest would be optimal. 
However, such a weighting yields an unbiased estimate of treatment 
effects only in very special circumstances. Typically, using regres­
sion adjustment leaves bias in the estimate of the treatment effect, 
and the bias may even be greater than an unadjusted analysis of the 
posttest alone (Reichardt, 1979). 

Mediational model 

The implicit model for regression adjustment is the causal model 
contained in Figure 6.1. For instance, suppose that the pretest is a 
measure of reading skill in the evaluation of a remedial reading 
program. A teacher decides whether each student receives the 
treatment or not. The teacher's decision is likely to be affected by 
the pretest, and it is also plausible that the teacher's beliefs about 
the student affects the pretest (Rosenthal & Jacobson, 1968). Thus 
the assignment variable causes and is caused by the pretest. The 
assignment variable by definition determines treatment. Both the 
treatment and the pretest affect the posttest. However, we assume 
in this causal model that the effect of the assignment variable on the 
posttest is totally mediated via the pretest and via the treatment if 
there is a treatment effect. (See Chapter 10 for a discussion of the 
concept of mediation.) Thus there is no direct effect of the assign­
ment variable on the posttest variable and hence no path between 
the two in Figure 6.1. For such an idealized model, regression is the 
appropriate adjustment strategy, because all the variance that the 
assignment variable shares with the posttest is controlled by includ­
ing the pretest and the treatment in the regression equation. 3 

For our remedial reading example, if the teacher's perception of 
the students' ability is the assignment variable, we must assume 
that this variable does not directly cause the posttest. Rather its 
effects on the posttest are totally mediated by the pretest and by the 
treatment if there are treatment effects. This seems like an implau­
sible assumption if the teacher continues to teach the child. 
However, if the child is removed from the classroom and given a 
new remedial teacher, the mediational model becomes more plausi­
ble. 

3 Technically, we need assume only that the assignment variable is uncorrelated with the 
residual to the posttest, once the pretest is controlled. 
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Pretest ----------- Posttest 

� T=tmmt � 

� -..mmt LWe 

Figure 6.1. Mediational model. 

Reliability correction. The mediational model virtually 
never holds, because what mediates the assignment variable's effect 
is the true pretest, not the measured pretest. The measured pretest 
contains the true pretest plus measurement error. It is unlikely that 
these errors in the pretest are related to the assignment variable. 
Errors of measurement represent, in part, chance phenomena that 
determine performance on a test. Even something as relia hie as 
weighing oneself may yield two different readings if one varies the 
scale, or shifts one's feet, changes one's clothes, or changes what one 
ate for dinner. Even more than the measurement of physical data, 
social science measurement is subject to the vagaries of test content 
(is the test taker asked something that he or she just happens to 
know), subject motivation (is the test taker mentally up or down for 
the test), test administrator's skill (does the test administrator give 
the test taker exactly the allotted amount of time), and pure luck 
(does the test taker guess correctly). Virtually everything in life has 
its chance aspect, whether it is winning a football game, obtaining 
an A in a course, or even living and dying. We should not be 
surprised that social science measures are chance driven. 

This is not to say that a test score is totally determined by chance. 
Someone who scores higher on a test than someone else probably 
outperformed the other person. Tests tell us about relative perfor­
mance, but only imperfectly. Failure to recognize that tests are 
fallible indicators of true performance very often leads us astray. 

If we assume that every test score is not a perfect measure of 
performance, then we can speak of variation in the test score that is 
error and variation that is true performance. The pretest, Yh is 
assumed to be a function of true performance, T, and chance 
performance, E. In practice, researchers do not measure Tor E, 
only Yh but it aids us conceptually if we can partition the variance 
of the pretest into these two theoretical and unmeasured compo­
nents. 

In many cases it is plausible that the assignment variable is 
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correlated with .the pretest true score but not with errors of 
measurement. For instance, in our example of a remedial reading 
program, the teacher does not directly observe the true score T, but 
presumably his or her perceptions of need are determined in part by 
T and not at all by E. If the assignment variable is associated with T 
and not with E, then controlling for Y1 does not adjust successfully 
for the effect of T. In our remedial reading example, if the 
assignment variable, teacher's perception of ability, is caused by or 
causes true reading skill, we need to control for that true reading 
skill. It seems most reasonable that the chance or random aspects of 
the reading test score are unrelated to the assignment variable. In 
such a case we must control for the true reading ability and not the 
measured pretest score. 

If E is associated with the assignment variable - for instance, if 
the actual pretest score is used to determine assignment - then we 
should control for the actual pretest as in the regression discontinu­
ity design. In the rest of this chapter errors in the pretest are 
assumed not to determine assignment. When the true pretest 
mediates the effect of the assignment variable, then the true pretest 
should be the basis for the adjustment. Essentially we want to treat 
the posttest as the outcome variable in a regression equation and the 
true pretest and the treatment as the independent variables. But the 
true pretest, T, is an unmeasured, hypothetical variable and cannot 
be entered into a computer program. If we regress the posttest on 
the treatment and the measured pretest, the coefficient for the 
pretest underestimates what would be the coefficient for the true 
pretest. Thus we are underweighting pretest differences. Because 
the regression coefficient for the pretest is too small, we do not 
subtract out enough from the posttest difference in means (see 
Equation 6.2). Thus if the pretest favors the treated group, we 
overestimate treatment effects because we subtract too small an 
amount. If the pretest favors the untreated group, we add too small 
an amount and hence underestimate treatment effects. This is an 
example of regression adjustment being unfair to programs in which 
the comparison groups are superior, which are sometimes called 
compensatory programs (Campbell & Erlebacher, 1970). 

The amount of underweighting in this case depends solely on the 
amount of error in the pretest, as is discussed in Chapter 9. A 

quantitative measure of the amount of error in the pretest is the 
reliability coefficient. If we knew the pooled reliability of the pretest 
within treatment conditions, we could obtain internally valid esti-
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mates of the treatment effects, given the mediational model in 
Figure 6.1. This is accomplished by weighting the pretest by its 
reliability; that is, we create an estimated pretest true score, Y1A. 
We denote Pw as the reliability of the pretest pooled within 
treatment groups. We create Y1A by subtracting out the treatment 
mean, multiplying by Pw, and adding in the treatment pretest mean. 
So, for the treated group the estimated pretest true score is 

Pw( Y1 - Y1E) + Y1E 

and for the untreated group Y1A is 

Pw(Y1 - Yid + Y1c 

We now regress Y2 onXand Y1A, and the coefficient for treatment is 
unbiased given certain assumptions. This procedure is called reli­
ability correction. 

The assumptions behind this analysis are as follows: 

1 The assignment variable's effects on the posttest are 
mediated by the true pretest. 

2 The value chosen for Pw is accurate. 
3 The errors in the pretest are uncorrelated with the posttest. 
4 The relationship between the true pretest and posttest is 

linear. 

If these conditions are met, the treatment coefficient is unbiased.4 
The- first of these conditions can be met only through theory and 

previous research findings. The second condition, knowing Pw, is a 
stumbling block . . In practice we can only estimate Pw, not know it. 
Reichardt ( 1979) has pointed out that it may not be so easy to 
estimate a value of Pw: Normally, an estimate of reliability based on 
a parallel form or a retest is not available. At best we may have an 
internal consistency estimate. Such a reliability is usually inflated 
because of time-specific errors common across items. Published 
estimates of reliability should be applied cautiously. When �hey are 
available, we should use as the measure of reliability 

s/ - (1 - ryy)Sb2 

s 2 Q 

4 There _is the additional assumption of equal reliabilities across the treatment groups 
(Campbell & Boruch, 1975). 
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wheres/ is the variance of the test for the published reliability, s/ is 
the pretest variance pooled within treatments and covariates, and 
ryy is the published reliability.5 Usually one would choose a range of 
estimates for Pw, perhaps taking the internal consistency estimate as 
the upper bound and the pretest-posttest correlation as the lower 
bound. For instance, for the remedial reading example we may have 
no internal consistency estimate for the particular sample tested. If 
the published reliability is .9 with a s/ of l 0 and the pooled 
within-treatment and covariates variance is 5, then the estimated 
reliability would be 

5 - (1.0 - .9)10 = 8 
5 . 

This would be taken as the upper bound. The lower bound would be 
the pretest-posttest correlation partialling out the treatment and 
covariates. 

The third assumption, uncorrelated errors of measurement over 
time, is probably unreasonable (Cronbach & Furby, 1970). Errors 
of measurement in the pretest are likely to be correlated with errors 
of measurement in the posttest. Although violation of this assump­
tion cannot be handled by reliability correction, at a later point in 
this chapter we discuss a structural modeling solution to this 
problem. 

The viability of regression adjustment rests on still yet another 
assumption; that is, the pretest relates to the posttest in a linear 
fashion. Violation of this assumption biases estimates of treatment 
effects (Reichardt, 1979), as we illustrated in the previous chapter. 
The researcher should consider transformations to increase the 
likelihood that the assumption is met. 

Summary 

In sum, regression adjustment without a reliability correction is 
rarely a defensible strategy. If it can be assumed that the true 
pretest mediates the effect of the assignment variable, then a 
reliability correction procedure can be employed. This is a very 
stringent assumption and may be difficult to satisfy. Three major 
problems exist with·.this procedure. First, a measure of reliability 

s This procedure equates the variance due to errors of measurement in the sample used for 
the published reliability with the variance in the sample at hand. 
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Figure 6.2. Regression adjustment with multiple indicators. 

must be obtained. Second, measurement errors must be uncorre­
lated over time� And third, the pretest-posttest relationship must be 
linear. We must assume for this procedure that the assignment 
variable does not directly affect the posttest. 

Multivariate extensions 

The treatment need not be a simple dichotomy, and there may be 
covariates such as sex, age, and ethnicity. Treatment variables that 
code the multiple treatments can be created by procedures we 
discussed in Chapter 4. They and the covariates can be simply 
added to the regression equation, as well as treatment by covariate 
interactions. 

The reliability correction procedures must be modified when we 
have either a multivariate treatment or covariates. This modifica­
tion can be accomplished by the following two-step procedure. First, 
we regress the pretest on the set of treatment variables ap.d 
covariates. Let us designate the resultant predicted pretest as Y1• 
Let Y1A equal Pw(Y1 - Y1) + Y., where Pw is the pretest reliability 
within treatments and covariates. We now regress the posttest on 
the treatment variables, covariates, and Y1 A. 

If there are multi pie measures of the pretest, one can use 
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structural modeling to estimate treatment effects. Although the 
details of this method are given in Chapter 9, we can outline the 
procedure here. As an example, let us assume that we have three 
measures of reading skill: Y1, Y2, and Y3• We need to have a second 
subscript to denote the pretest measures (Y11, Y12, Y13) and posttest 
measures (Y21' Y22, and Y23). The structural model for these six 
variables and the treatment, X, is presented in Figure 6.2. The two 
latent variables in the model are pretest reading skill (R1) and 
posttest skill (R2). When there are three indicators of each construct 
at each time point, as there are in this example, correlated measure­
ment error between eu and e2h e12 and e22, and e13 and e23 can be 
estimated. This analysis still a�sumes that the true pretest mediates 
the effect of the assignment variable on the posttest. 

There are three major advantages to this structural modeling 
approach, as discussed by Sorbom (1978). First, reliability can be 
estimated from the data instead of inferred from other sources. 
Second, correlated measurement errors over time can be included in 
this model. And third, the ·pretest-posttest slope can be tested for 
parallelism between groups. 

Change score analysis 

Regression adjustment is valid when the true pretest mediates the 
effect of the assignment variable on the posttest. What if the 
assignment variable causes the posttest independently of the 
pretest? We could take an entirely different tack. Let us assume 
that the pre- and posttest are both caused by the assignment 
variable. We also assume that the effect of the assignment variable 
is the same on both the pre- and posttest. We shall see that these 
assumptions allow us to employ some form of change score analy-

. 

SlS. 

In the following we shall first present a simple, idealized rationale 
for change score analysis. We shall then discuss the type of 
assignment rules for which the assumptions of �hange score analysis 
are relatively more plausible. Transformations of the pretest and 
posttest that enable us �etter to approximate these assumptions will 
then be discussed. Finally, we shall consider the traditional argu­
ments against the use of �hange scores. 

Before we begin� we should note that a change score analysis is 
equivalent to the"'results of a repeated measures analysis of variance. 
The treatment by time (pretest versus posttest) interaction from a 
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repeated measures analysis of variance is identical in size and 
statistical significance to the treatment main effect of the change 
score analysis. 

Regression adjustment presumes that the pretest mediates the 
assignment variable-posttest relationship. Change score analysis 
presumes that the assignment variable directly affects both the 
pretest and the posttest and that those effects are of equal magni­
tude. This assumption of equal effects is called the assumption of 

stationarity of causal effects or, more simply, stationarity. The 
model for change score analysis is presented in Figure 6.3. In this 
figure, the assignment variable causes both the pretest and posttest, 
and those causal effects are equal (i.e., a = a). The causes of the 
pre- and posttest, other than the assignment variable and the 
treatment, may be correlated over time. There are three major 
differences between the change score model and the regression 
model. First, the mediational assumption is not made in the change 
model. The assignment variable affects both the pre- and posttest. 
Second, the pretest does not cause the posttest in the change model. 6 
Third, the assignment variable causes the pretest and is not caused 
by it in the change model. 

The crucial assumption here is that the effect of the assignment 
variable on the pretest is equal to the effect of the assignment 
variable on the posttest, that is, stationarity. To see how change 
score analysis is effective, let us presume that we could measure the 
assignment variable Z. Then the equation for the posttest is 

Y2 =ho+ h1X + h2Z + e2 

and for the pretest the equation is 

Y1 = h3 + h4Z + e1 

The change score is then the difference between these two equa­
tions: 

Y2 - Y1 = (h0 - h3) + h1X + (h2 - h4)Z + (e2 - e1) 

Stationarity of the causal effects of Z on Y over time means that 
h2 = h4, which reduces the change equation to 

(6.3) 

6 Variables, which are uncaused by their prior value, are also involved in the time-series 
models discussed in the next chapter. 
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Residual Residual 

l t 
Posttest 

� Treatment 
Figure 6.3. Change model. 

Because the assignment variable is not in the equation, internally 
valid estimates of treatment effects are possible even if Z is 
unmeasured. Just as we did with regression adjustment, we have 
made some strong assumptions that require more careful examina­
tion. 

The assumption of stationarity implies something more readily 
understandable: constant growth rates. Consider persons who score 
low on the assignment variable. We can define for these persons a 
growth rate, that is, their average score on the posttest minus their 
average score on the pretest controlling for covariates and treatment 
effects. We can similarly define the growth rate for those who score 
high on the assignment variable. Stationarity implies that these two 
growth rates are equal. More exactly, the rate of growth is uncorre­
lated with the assignment variable. Campbell and Stanley (1963) 
refer to this assumption as the absence of an interaction between 
selection (the assignment variable) and maturation (growth rate). 
Thus stationarity, constant growth rates, and the absence of a 
selection by maturation interaction are essentially the same thing. 
Returning to our rem�dial reading example, it may be that the 
teacher's assessment of ability is largely a function of the child's 
age. Thus, the younger children are presumed to have less reading 
skill than the older children. In order to use change score analysis, it 
must be assumed that children's growth rates in reading skill are 
independent of age, perhaps an unlikely assu1nption. 

Stable assignment variables 

What type of assignment variables is consistent with the change 
score model? First and foremost, the assignment variable must not 
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be caused by the pretest. If it were, ceteris paribus, we would expect 
that the pretest would share more variance with the assignment 
variable than the posttest would. This would be a violation of 
stationarity. It would then seem likely that assignment variables 
such as motivation, perception, and knowledge that may be 
influenced by the pretest do not allow for a change score analysis. 

Generally, assignment variables that change over time are poor 
candidates for a change score analysis. This is for two reasons. First, 
a changing variable could be caused by the pretest, whereas an 
unchanging variable could not by definition be caused by any 
variable in the model. Recall that if the pretest causes the assign­
ment variable, stationarity is implausible. Second, covariation 
between variables is greatest when they are nleasured concurrently, 
ceteris paribus. We would then expect that a changing assignment 
variable would tend to correlate more highly with the pretest than 
with the posttest. Thus, because changing variables make poor 
candidates, by default stable variables are more plausible. Exam­
ples of stable variables are demographic and background variables 
such as ethnicity, sex, year of birth, and variables that are relatively 
stable during the course of the quasi-experiment, such as socioeco­
nomic status and marital status. For stable variables like those we 
have just mentioned, .it seems somewhat reasonable to expect that, 
in the absence of treatment effects, the pretest difference would 
remain at the posttest. 

How likely is it that the assignment variable is unchanging in the 
nonequivalent control group design? A typical plan for the design is 
to use another classroom, school, or city as the control group. It 
would seem reasonable that the source of differences between 
classrooms, schools, or cities might be stable variables. However, 
this would not always be the case. For instance, if children were 
assigned to classrooms on the basis of a test score, we would expect 
the test score to change over time, making the assignment variable a 
changing variable. In the main, however, we would expect the use of 
a second intact group to be symptomatic of an unchangi_ng assign-
ment variable. 

· 

In summary, stable assignment variables are better candidates 
for a change score analysis than changing variables. Of course, 
researchers do not know if the assignment variable is a stable one. 
With intact groups, stable assignment variables are somewhat more 
likely. Even if the assignment variable is stable, however, change 
score analysis still may not yield unbiased estimates of treatment 
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effects: The crucial assumption of constant growth rates or station­
arity must hold. 

Transformations to promote stationarity 

For the assumption of stationarity to be plausible, the pretest and 
posttest must be measured in the same metric, that is, the same 
units of measurement. If one is to measure a change in height, one 
would not use centimeters for the pretest and inches for the posttest. 
Unfortunately, it is too easy to make just this mistake. For instance, 
a pretest with a ten-item test and a posttest with twenty items make 
a "change score" that largely reflects the increase in the number of · 

items. That is, if someone got 20% correct on both tests, his or her 
''change" score would be 2, whereas if someone got 40%, the change 
score would be 4. Quite clearly, percentage correct would be a 
better measure than number correct. 

Test makers claim that they have made different forms of the 
same test in the same metric. They also claim that they have tests 
for different .age groups that ar� in the same metric. The best­
known example is the intelligence test. Tests used for 5-year-olds 
are somehow thought to be in the same units as tests for college 
students. Such claims should not be taken at face value. For 
instance, Barker and Pelavin (1975) have shown that "alternate 
forms" of the same test that are supposed to have the same mean or 
variance do not in fact. This implies different metrics. 

In sum, the pre- and the posttest must be measured in the same 
metric. For every variable, however, alternative metrics can be used. 
In one metric, growth rates of the outcome variable may be 
correlated with the assignment variable, but in another metric this 
may not be the case. Therefore, transformations that alter the 
metric of the pre- ·and posttest may increase the likelihood of 
stationarity. In other words, the constant-growth-rate assumption 
may refer not to the raw metric but to some transformed metric. 

How might such transformations be successful? Recall that the 
violation of constant growth rates implies an interaction between 
the assignment variable and time. One particular example of such 
an interaction is shown in Figure 6.4. What characterizes the 
interaction is that those who score low on the assignment variable 
grow at a slower rate than those who score high on the assignment 
variable. The rate of growth is correlated with the level of the 
assignment variable. Such a pattern has been characterized as fan 
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Pretest Posttest 

Figure 6.4. Example of the violation of the constant-growth assumption; 

the diff e:rent growth curves refer to different levels of the assignment 
variable. 

spread (Campbell, 1967) and a bilinear interaction (Anderson, 
1974). Given the pattern of interaction in Figure 6.4, it is possible in 
theory to transform the pretest and posttest to remove the diff eren­
tial growth rates. 

The researcher must consider the possibility of transforming the 
pretest and posttest to increase the plausibility of the constant­
growth assumption. In practice, we do not know the assignment 
variable, and so we do not know what transformation to employ. 
One yardstick that researchers can use to evaluate a transformation 
is equality of variances of the pretest and posttest. Transformations 
that make the within-group variance equal across time would tend 
to promote, but not guarantee, stationarity. Thus equal variance is a 
good sign, but not proof, of stationary growth rates. 

One can force equal variance by measuring the pre- and posttests 
in standard deviation units; this is known as a standard score or a Z 

score. The effect of a Z-score transformation is to equate the 
variances of the pretest and posttest. Other transformations may 
also have this effect. For instance, if the outcome variable is a count, 
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a square-root transformation often results in nearly equal variances 
in the pretest and posttest. Similarly effective would be a logarith­
mic transformation for quantities (e.g., dollars) and the reciprocal 
for latencies. Mosteller and Tu key ( 1977) provide a number of 
conceptual .and empirical guides for transformation. The simplest 
way to ensure equal variances is through standardization. Although 
this approach is the most direct, other transforn1a tional procedures 
may often be normally better grounded in theory and research and 
may therefore be preferable. 

Using a Z-score transformation of the pretest and posttest has 
been called standardized change score analysis. The use of the 
overall posttest variance for its standardization, however, is inap­
propriate, because the presence of a treatment effect alters the 
variance of the posttest. Therefore, we would like to standardize the 
pretest and posttest using the pooled-within varianc�s. This can be 
done by using the following measure of change: 

where the standard deviations are pooled with treatments and 
covariates. The pretest has been transformed so that its pooled 
within variance is the same as that of the posttest. This change score 
is now regressed on the set of treatment variables and covariates. 

Because the variances of the pretest and posttest reflect error 
variance as well as true variance, a better transformation would be 

one that equates the pre- and posttest true score variance. The 
following measure of change does this: 

where ry2y2<w> and ry1y1<w> are the reliabilities of the posttest and 
pretest, respectively, again computed within treatment variables 
and covariates. A difficulty with this approach, as with the reliabil­
ity correction procedure discussed for regression adjustment, is the 
problem of obtaining reliability measures.7 

In sum, transformations to achieve stationarity should be consid-

1 We have not discussed the Campbell-Erlebacher ( 1970) suggestion for a common-factor 

correction. Their intent is similar to the reliability correction strategy discussed in the 
regression adjustment section of this chapter. However, instead of 11sing the reliability 
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ered by the researcher, because stationarity may hold in another 
metric than the raw one. Identifying the appropriate transformation 
is difficult. However, transformations that equalize variance over 
time may accomplish this purpose. 

Criticisms of change scores 

We now turn our attention to criticisms of a change score approach. 
One criticism is that change scores are highly unreliable. Another is 
that regression toward the mean is a problem. It has also been 
argued that change score analysis a priori sets the regression weight 
for the pretest at one instead of a posteriori estimating it. Finally, 
Reichardt ( 1979) has argued that change scores can be distorted by 
floor and ceiling effects. Let us consider each criticism in detail. 

The issue of unreliability can be stated very simply. Change 
scores are notoriously unreliable. What we need, however, is an 
adjustment strategy that is most internally valid, not the most 
reliable dependent variable. Even if reliability should be a criterion 
for a selection of an adjustment strategy, change scores are more 
reliable than residualized change scores (see note 2). 

A second criticism of the change score approach is that a change 
score is subject to regression toward the mean. Assuming equal 
variance for the pre- and posttest, persons with high change scores 
would tend to be below the mean of the pretest, whereas those with 
low change scores would be above the mean of the pretest. Thus, it. 
has been argued that change scores reflect regression toward the 
mean, a statistical artifact. Change score analysis in the nonequiva­
lent control group design is criticized because change is correlated 
with the pretest. The pretest is not the assignment variable, 
however; rather, some unknown variable is. It is this variable and 
not the pretest that needs to be controlled to yield valid estimates of 
the treatment effects. Given equal effects of the assignment variable 
on Y1 and Y2, the assignment variable's coefficient in the equation 
for a change score (Equation 6.3) is zero. Therefore, regression does 
not result in bias so long as the assumption of stationarity is met. 

A criticism has also been made that change score analysis is only 
a naive attempt to perform regression-weighted adjustment, setting 
the regression coefficient arbitrarily at one. This point of view 

coefficient to adjust the pretest, they suggest using the pretest-posttest correlation, 
although their intention was to produce a change score adjustment that is very similar to the 
standardized change approach. 
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presumes that regression-weighted adjustment is the valid approach 
and change score is only an approximation. We hope we have 
dispelled this notion. 

Finally, it has been argued that change scores will be distorted by 
a floor effect in the pretest and a ceiling effect in the posttest. For 
instance, a ceiling effect in the posttest implies that change scores 
reflect mostly the pretest score. That is, low scorers at the pretest 
change more than high scorers. The presence of floor and ceiling 
effects certainly does distort change measures, but it also distorts 
the regression coefficient -for the pretest's effect on the posttest. 
Thus, floor and ceiling effects are fundamental problems with 
measures, and they create problems with any method of analysis. 
Change score analysis is not an exception. 8 

Summary 

Like regression adjustment, change score analysis makes some very 
strong assumptions about how the assignment variable operates. In 
particular, it must be assumed that the effect of the assignment 
variable is stationary over time. Such an assumption cannot be 
demonstrated conclusively, but it is more plausible wh�n there is 
evidence that the assignment variable is stable. In addition, certain 
transformations may make the assumption more tenable. 

Standardized change score analysis has done relatively well when 
compared to alternative analysis stra,tegies in various simulations. 
Director (1974) compared various ·statistical methods in their 
ability to detect no effect when it was known a priori that there was 
no effect in the data. Data were used from a situation in which it 
was known that the treatment had not been implemented. Stan­
dardized change score analysis outperformed the other techniques. 
Also, Monte Carlo simulations by Bryk ( 1977) have shown that 
although no statistical method is consistently unbiased, standard­
iz� change score analysis is no worse than the others and may be a 
bit better in some circumstances. These results do not argue for the 
universal adoption of a change analysis, but they do suggest that at 
times it is appropriate. 

8 There is even one clear advantage that change score analysis possesses that regression 
adjustment does not. Regression adjustment using a pretest is possible only when the design 
is longitudinal. It is possible to have a nonequivalent control group design in whi�h persons 
are assigned randomly to be either pretested or posttested. By examining the time (pretest 
vs. posttest) by treatment interaction, one can assess treatment effects. Such an analysis is 
very much like a change score analysis. 
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Multivariate extensions 

The presence of multiple treatment variables and covariates can be 
incorporated into the change model. The basic dependent variable is 
a measure of change, either raw or transformed. If there are 
multiple indicators of the pre- and posttest, one can employ a 
structural modeling approach. For both raw and standardized 
change, the model would be similar to that in Figure 6.2 with the 
following exceptions. Treatment should "cause" the unmeasured 
pretest, and. the unmeasured pretest should not cause the unmea­
sured posttest. Rather, their errors or disturbances are correlated. 
Second, the paths from the unmeasured pre- and posttests to their 
indicators should be equal across time. If equal variances in the 
unmeasured pre- and posttests are desired, their disturbance vari­
ances should be equal. Treatment effects are indicated by unequal 
coefficients from the· treatment to the unmeasured pre- and post­
tests. The covariance, not the correlation, matrix should be 
analyzed. 

Kenny and Cohen (1980) have developed a procedure to test the 
constant-growth-rate assumption. Because the assignment variable 
is unknown and most likely unmeasured, we cannot use it to test for 
constant growth. Kenny and Cohen suggest using demographic and 
background variables to assess the assumption. For example, one 
could look at males and females and determine if they grew at the 
same rate. Kenny and Cohen have also developed a procedure to 
measure the violation of the constant-growth assumption and a 
method to transform the pretest to reestablish constant growth. For 
instance, if those scoring high on the pretest were growing faster 
than those scoring low, the pretest would be multiplied by a number 
greater than one. Thus constant growth is established empirically. 
The viability of their procedure hinges on the assumption that the 
known demographic variables relate to the pretest and posttest in 
the same way as the unknown assignment variable does. 

Complicatfons 

Assignment after the pretest 

It often occurs that researchers use as "pretest" measurements 
taken some time before assignment. This is often the case in the 
evaluation of educational innovations. Researchers use a test taken 
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( Pre™!-�-�---- Status just before assignment--- Poor 

Assignment--------------- Treatment 

variable 

Figure 6.5. Regression-based model of assignment after the pretest. 

in the fall as a pretest even though the program is begun in January. 
Such a design plan violates the basic assumption of regression 
adjustment analysis. The model would have to be modified, as in 
Figure 6.5. The variable ''Status just before assignment" is what the 
pretest would have been had it been measured at the time of 
assignment. The fundamental rule of regression adjustment has 
been violated: The effects of the assignment variable on the posttest 
are not totally mediated by the pretest but rather flow through the 
"status" variable. 

Such a design plan also necessitates altering the model behind 
change score analysis. The model is in Figure 6.6. For the change 
model to hold, the assignment variable must relate equally to the 
pre- and posttest (a= a). This is the same assumption we have 
made all along. 

Nested designs 

It occasionally happens that there is more than one intact group in 
the treatment and comparison groups, and these groups are then 
said to be nested within treatments. Imagine a study involving four 
halfway houses. Two of them serve as the treated group and the 
other two serve as the untreated. Given the small number of houses, 
the unit of analysis cannot be the halfway house, but rather it is the 
person within the halfway hQuse. Because there are four halfway 
houses, there are three possible independent comparisons among 
them. The first comparison is to contrast the treated and untreated 
halfway houses. The other two comparisons refer to a comparison 
first within the treatment group and then within the comparison 
group. The coding using three dummy variables, Zh Z2, Z3, for four 
halfway houses A, B, C, and D, is illustrated in Table 6.1. If the first 
comparison is significant .and so is either the second or the third, 
there are two possible explanations. First, there is a treatment 
effect, but it varies among houses. For instance, if Z2 is significant 
as well as Z 1, one of the treated halfway houses changed more than 
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Figure 6.6. Change score-based model of assignment after the pretest. 

the other. Perhaps in the one that changed more, the treatment was 
better implemented. If Z3 is significant, then the houses in the 
comparison group differ. It is possible that one of the comparison 
group houses received some treatment. The second interpretation is 
that the assumptions behind the analysis, whatever it is, are incor­
rect. For instance, within the treatment condition the houses may be 
growing at different rates: This constitutes a violation of a change 
score analysis. Thus, if the researcher is fairly confident that 
variation in the treatment effect is unlikely, the tests of Z2 and Z3 
can be used to evaluate the viability of the statistical analysis. 

Conclusion validity 

Regression adjustment and change score analysis differ not only in 
how they estimate the treatment effect, but also in their conclusion 
validity. When the pretest difference between the comparison and 
treatment groups is small, regression adjustment is substantially 
more powerful than change score analysis. If the regression coeffi­
cient for the pretest is close to one, this advantage of regression 
adjustment disappears. As the pretest difference grows, regression 
adjustment loses power because the treatment-pretest correlation 
produces multicollinearity. It is even possible for change score 
analysis to have greater power. 

The inclusion of covariates besides the pretest in this design also 
results in an uncertain outcome on conclusion validity. Power is 
increased by lowering the error variance. It is decreased to the 
extent that the covariates are correlated with the treatment. We 
should realize that in this design the main reason for including 
covariates is to enhance internal validity and not conclusion validity. 

Conclusion and comparison of strategies 

Failure to know the assignment variable results in uncertainty in the 
accuracy of conclusions drawn from the nonequivalent control 



128 Estimating the effects of social interventions 

Table 6.1. Nested design 

Halfway house 

Treated 

A B c 

Z1 1 1 0 

Z2 1 -1 0 

ZJ 0 0 1 

Untreated 

D 

0 
0 

-1 

group design. However, because we have a pretest measure of the 
outcome variable, we can partially assess the degree to which 
assignment is nonrandom. Moreover, by making certain strong 
assumptions about the causal effects of the assignment variable over 
time, we can use the pretest information to adjust the posttest for 
the confounding effects of the assignment variable. Through these 
assumptions, the inclusion of the pretest in the analysis approxi­
mates the inclusion of the unknown assignment variable. 

Different statistical procedures make different assumptions 
about the effect of the assignment variable over time. Regression 
adjustment presumes that the causal· effect of the assignment 
variable is mediated through the pretest. That is, the assignment 
variable does not directly cause the posttest. If this assumption 
holds, it is most likely to be accurate for the true pretest rather than 
the measured pretest. This requires a reliability correction proce­
dure. 

Change score analysis presumes that the causal effects of the 
assignment variable are stationary oyer time. This assumption 
implies that the growth rates are constant for persons at different 
levels of the assignment variable. Such cons�ant growth rates may, 
under certain circumstances, be more plausible when the pretest 
and posttest are transformed. 

Of course, neither of these models ever holds perfectly. Both are 
always inexact approximations of reality. Thus, an exactly unbiased 
estimate of the treatment effect is more a matter of luck than 
anything else. At issue is what is the direction of the bias when the 
assumptions are not met. 

In the regression adjustment strategy, the assignment variable is 
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assumed not to affect the posttest directly. If this assumption is 
violated, the estimate of the treatment effect is biased. To aid us in 
understanding the direction of bias, we must define the direction of 
the scale of the outcome and assignment variables. We define the 
scale of the outcome va_riable in such a way that having a higher 
score on it indicates that a person has more of some social good, for 
example, more income, more intelligence, more health. The assign­
ment variable is defined to correlate positively with the pretest. 
Thus, those high on the assignment variable have more of the social 
good at the pretest. 

When the assignment variable affects the posttest directly, the 
direction of bias in regression adjustment depends on two factors. 
First, it depends on whether the mean pretest difference between 
conditions favors the treated or untreated subjects. This difference 
can be estimated by computing the mean (covariate adjusted) 
difference of the treated and untreated subjects on the pretest. The 
second factor that the direction of bias depends on is the sign of the 
effect of the assignment variable on the posttest that was mistakenly 
assumed to be zero in the regression adjustment strategy. Recall 
that both the assignment variable and the posttest have been scaled 
in such a way that more means "better off." 

If the pretest difference favors the untreated subjects, and if the 
assignment variable's direct effect on the posttest is positive, then 
the estimate of the treatment effect is too small. If the pretest 
difference favors the untreated subjects, and if the assignment 
variable's direct effect on the posttest is negative, then our estimate 
of the treatment effect is too large. 

If the pretest difference favors the treated subjects, and if the 
effect of the assignment variable on the posttest is positive, then we 
overestimate the treatment's effect. If the effect of the assignment 
variable on the posttest is negative when the pretest difference 
favors the treated subjects, the treatment effect is underestimated. 

Because we have scaled the assignment variable to correlate 
posfrively with the pretest, it seems · likely that the assignment 
variable's direct effect on the posttest will be positive. Thus, with a 
pretest difference that favors the untreated subjects, the most likely. 
direction of bias is toward underestimating the treatment effect. 
With a pretest difference that favors the treated subjects, the most 
likely direction of bias is toward overestimating the treatment 
effect. 

Even if the direct effect of the assignment variable on the posttest 
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is zero, bias results when the reliability ofthe pretest is incorrectly 
estimated in the regression adjustment strategy. If the pretest 
difference favors the untreated subjects, too high a reliability 
estimate causes underestimation of the treatment effect and too low 
an estimate causes overestimation of the treatment effect. If the 
pretest difference favors the treated subjects, too high a reliability 
estimate causes overestimation of the treatment effect and too low 
an estimate causes underestimation of the treatment effect. 

The above discussion refers to regression adjustment. Change 
score analysis typically weights the pretest information more 
heavily than regression adjustment. This is so because the partial 
regression coefficient for the pretest is usually less than one even 
after correcting for unreliability. Because the weight for the pretest 
in change score analysis is one, the pretest differences are generally 
weighted more heavily in change score analysis than in regression 
adjustment. Change score analysis usually results in larger esti­
mates of treatment effects when the pretest difference favors the 
untreated subjects and smaller estimates when the pretest differ­
ence favors the treated subjects. It can be shown that a change score 
analysis after a variance-stabilizing transformation results in a:· 

greater weighting of the pretest than raw change when the 
variances increase over time, and lighter weighting when the vari­
ances decrease. Because variances tend to increase over time, the 
variance-stabilizing transformations generally result in a greater 
weighting of the pretest than when change scores are used without 
transformations. 

The direct'ion of bias in change score analysis depends on how the 
constant-growth-rate assumption is violated. It can be violated in 
one of two ways. Either those who score high on the assignment 
variable grow at a faster rate than those who score low (divergent 
growth), or those higher grow at a slower rate than those who score 
low (convergent growth). Divergent growth might be called fan­
spread and convergent growth fan-close. For convergent growth and 
a pretest difference that favors the untreated subjects, treatment 
effects are overestimated. For convergent growth and a pretest 
difference that favors the untreated subjects, treatment effects are 
overestimated. For convergent growth and a pretest difference that 
favors the treated subjects, effects are underestimated. For diver­
gent growth the pattern is reversed. If the pretest difference favors 
the untreated subjects, program effects are underestimated; and if it 
favors the treated subjects, program effects are overestimated. 
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Thus, for both regression adjustment and change score analysis 
the researcher can at least begin to speculate about the direction of 
bias of each technique. There is, however, no guarantee that the bias 
will be in the expected direction. Moreover, there is no guarantee 
that the bias in the regression and change analysis will be in 
opposite directions and that the truth will lie somewhere in the 
middle. So even if both regression adjustment and change analysis 
yield a positive estimate of the treatment effect, the true treatment 
effect may be negative. Although consistent results of the two 
procedures is comforting, it is not the proof of a lack of bias (cf. 
Byrk & Weisberg, 1977). 

It is important to recognize that neither change analysis nor 
regression adjustment is a single method of analysis. Change 
analysis can be done on raw scores, standardized scores, or trans­
formed scores. Similarly, regression adjustment can be "simple" 
regression or regression with reliability correction using a range of 
possible reliability values. Moreover, each can be adapted into a 
structural modeling framework. 

It may seem that one can choose the analysis procedure to give 
any desired estimate of the treatment effect. Actualiy, the range of 
possible treatment effect estimates is much narrower than one 
might think. If the pre- and posttest variances are nearly equal, the 
range of treatment effect estimates is only about half the difference 
in the pretest means between the treated and untreated groups. 
Thus researchers cannot choose the analysis procedure to give 
exactly the desired estimate of the treatment effect. 

Assessing treatment effects in the nonequivalent control group 
design is an extremely difficult process. Straightforward solutions 
to the problems posed in the analysis are frequently not possible. 
However, if the reader is dismayed about the inference possibilities 
of the nonequivalent control group design, he or she should realize 
that the presence of a pretest is an immeasureable aid. Inference 
problems are really much more severe without a pretest, as we 
shall see when the post-only correlational design is discussed in 
Chapter 9. 
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The interrupted time-series 

design 

Every day thousands of new innovations begin. New laws are 
passed, new programs start, and organizations change their struc­
ture or procedures. The effect of these changes can be measured and 
tested through a time-series design. By having observations for 
many time periods befor� the innovation, we can measure trends, 
cycles, and the amount of instability in the data. We can then use 
the observations taken before the innovation as a baseline to 
measure and test for treatment effects. 

We consider one simple example throughout this chapter. Imag­
ine a governmental agency that has encouraged driving safety for 
the past decade. The government wishes to know how the campaign 
has affected automobile fatalities. Data on fatalities per 10,000 
persons are available for the past 20 years, the last 10 of which 
included the safety campaign. The artificial data for this example 
are presented in the first two columns of Table 7. I, where Y, refers 
to the number of fatalities. The subscript t refers to time point or 
year for this example. The data are also graphed in Figure 7.1. The 
data structure is called a time series because there is a single data 
point for each point in time. The design is called an interrupted time 
series because there is a clear dividing line (as is drawn in Figure 
7 .1) at the beginning of the intervention. Time is interrupted by the 
intervention. 

The design has been used to evaluate a crackdown on speeding 
(Ross & Campbell, 1968), the effect of mandatory sentencing on 
violent crime (Deutsch & Alt, 1977), as well as other interventions. 
Many time series are similar to our hypothetical example: Both the 
unit (e.g., subject) and time are highly aggregated; that is, they are 
averages or totals across many observations. The unit is a nation, a 
state, or a school system, and the time unit is a year, a month, or a 
week. Thus unit refers to many persons and time to many days. For 

132 
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Table 7 .1. Automobile safety example 

Year Y, Y,+I T, X, Y, e, er+! Y: T: x: u, 

1955 4.1 4.4 1 0 4.0 .1 .2 

1956 4.4 4.7 2 0 4.2 .2 .3 2.76 1.6 0 .180 

1957 4.7 4.3 3 0 4.4 .3 -.3 2.94 2.2 0 .242 

1958 4.3 4.6 4 0 4.6 -.3 -.2 2.42 2.8 0 -.396 

1959 4.6 4.6 5 0 4.8 -.2 -.4 2.88 3.4 0 -.054 

1960 4.6 5.2 6 0 5.0 -.4 .0 2.76 4.0 0 -.292 

1961 5.2 5.2 7 0 5.2 .0 -.2 3.36 4.6 0 .190 

1962 5.2 5.8 8 0 5.4 -.2 .2 3.12 5.2 0 -.168 

1963 5.8 6.1 9 0 5.6 .2 .3 3.72 5.8 0 .314 

1964 6.1 5.7 IO 0 5.8 .3 .6 3.78 6.4 0 .256 

1965 5.7 5.5 11 l 5.1 .6 .2 3.26 7.0 0 .407 

1966 5.5 5.1 12 1 5.3 .2 -.4 3.22 7.6 1.0 -.066 

1967 5.1 5.4 13 1 5.5 -.4 -.3 2.90 8.2 .6 -.504 

1968 5.4 5.3 14 1 5.7 -.3 -.6 3.36 8.8 .6 -.162 

1969 5.3 .6.0 15 1 5.9 -.6 -.l 3.14 9.4 .6 -.500 

1970 6.0 6.5 16 l 6.1 -.1 .2 3.88 10.0 .6 .122 

1971 6.5 6.7 17 1 6.3 .2 .2 4.10 10.6 .6 .224 

1972 6.7 6.7 18 1 6.5 .2 .0 4.10 11.2 .6 .107 

1973 6.7 7.1 19 1 6.7 .0 .2 4.02 11.8 .6 -.091 

1974 7.1 20 1 6.9 .2 4.42 12.4 .6 .191 

instance, a now-classic time series cited earlier involves the monthly 
automobile fatalities in the state of Connecticut over a period of 5 

years. A time series need not be so highly aggregated. It may be 
made at a much finer level of measurement. As an example, the 
measurements might be the intensity of the speech of a single 
individual measured second by second (Warner, 1979). 

The unit that is assigned to treatment conditions is a point in 
time, not a person or a group of people as in designs discussed in 
previous chapters. The N different time points are each assigned to 
either the treatment or the comparison group. It may seem that time 
is always the rule by which time points are assigned to conditions, 
but a moment's reflection will reveal that this is not the case. The 
rule that assigns time points to treatments, just as the rule that 
assigns persons to treatments in other designs, can be random, 
known, or unknown. Let us consider each in turn. 

A random rule requires that each time point have a known 
probability of being assigned to a given treatment condition. Such a 
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Figure 7 .1. Graph of automobile safety example. 

rule implies that the program is turned on or off randomly at 
different time points. For instance, at each time point a coin is 
flipped. If it is heads the program is delivered, and if it is tails it is 
not delivered. A random assignment rule across time is not very 
practical for the following reasons. First, programs are usually 
massive and difficult to turn on or off at a moment's notice. For 
instance, it seems inconceivable that a government would undertake 
a safety campaign and would remove and reinstate it randomly year 
after year. Second, most interventions have effects that persist over 
time even if the treatment is taken away. Thus·, comparison observa­
tions measured after the treatment is removed may exhibit persist­
ing treatment effects. Purely random .assignment rules may be 
possible for single-person experiments with short-duration effects as 
in behavior modificatio.n studies, but for large-scale interventions a 
random rule is rather impractical. 

The assignment variable may not be random, but it may be 



The interrupted time-series design 135 

known. For instance, the researcher in a token economy experiment 
might take 10 weeks of baseline measurements and .then introduce 
the treatment for the next 10 weeks. The known assignment 
variable is time. A second example illustrates a known assignment 
variable that is not time. A doctor instructs a parent to take the 
child's temperature in the morning. If it is over 102°, a medicine is 
administered. The assignment variable is the child's temperature. 
More typically, if there is a known assignment variable, it is time. If 
time is a known assignment rule, then the point at which the 
treatment begins is determined before the data are collected and 
examined. 

If time is the known assignment rule, we might wonder if there 
are any similarities between this design and the regression disconti­
nuity design that also has a known assignment rule. Comparing 
Figures 5.1 and 7 .1, we see a number of similarities. In both cases 
the variable on the X axis is the assignment variable and the one on 
the Y axis is the outcome variable. Also, both designs have a strict 
cutting point. For the regression discontinuity design, no one below 
a certain value receives the treatment, and for the time-series 
design, treatments are not delivered before a certain point in time. 
Many of the problems of analysis and interpretation for the regres­
sion discontinuity design also apply to the interrupted time-series 
design. 

The most typical pattern of assignment for the interrupted 
time-series design is an unknown assignment rule. Administrative 
and governmental agencies at some time point decide to mount a 
new program. The reasons for such a venture are often so complex 
as to defy simple analysis. Consider the decision in 197l to discon­
tinue the military draft in the United States. This decision was 
brought about by a host of conflicting trends, and once the discon­
tinuation was decided upon it was difficult to reverse. Some of the 
variables responsible for this decision might be measured, but we 
can never be certain that we have measured all of the relevant ones. 

If the assignment variable is unknown, to obtain unbiased esti­
mates we must assume that it does not cause the outcome variable. 
Alternatively and more realistically, we are forced to assume that 
the unknown assignment rule covaries with time, and that the 
assignment variable is unrelated to the outcome when time is 
controlled. Thus, we must assume that time acts as a proxy variable 
for the unknown assignment variable. To the extent that the 
assignment variable is related to the outcome even when time is 
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controlled or, equivalently, to the extent that time is a poor proxy 
for the assignment variable, then the estimate of treatment effects 
may be biased even if time is controlled. The problem here of 
controlling for an unknown assignment rule is very similar to the 
problems discussed in the preceding chapter in the analysis of the 
nonequivalent control group design. In this case, however, time is 
used as a proxy for the unknown assignment variable, whereas in 
the nonequivalent control group design, pretest scores are used. If 
time is a poor proxy for the assignment variable, treatment effects 
may be either overestimated or underestimated depending on the 
direction of the relationship between the outcome and the unknown 
assignment variable controlling for time. 

If we know that time is the assignment variable or if we can 
assume that it is a good proxy for the unknown assignment variable, 
we can borrow a model for analyzing the time-series design from the 
regression discontinuity design: 

(7.1) 

where Y is the outcome variable, T is time (e.g., year 1, 20, 3 3 ), Xis 
a dummy variable for treatment (0 = untreated, 1 = treated), e is a 
residual error, and t refers to time point. We set t and T to one for 
the first observation, at two for the second, and at N for the last 
observation. Using this convention, the intercept b0 estimates what 
the observation would be if there were a data point taken the year 
before the first measurement. If the chronological year were used 
for T, then the intercept is the predicted value for the year before 
Christ was born! Equation 7 .1 implicitly assumes that time is an 
adequate proxy for the assignment variable and that time's relation­
ship with the outcome variable is linear. Both of these assumptions 
may not hold. 

For our highway safety example in Table 7.1, we can estimate the 
parameters of Equation 7 .1 by multiple regression: 

Yi= 3.8 + . 2 T, - .9X, + e, (7.2) 

The intercept value refers to the estimated value for the year 1954. 
The positive coefficient for time indicates that the rate of fatalities 
is increasing over time; the negative coefficient for the treatment 
indicates a decline in the rate of 9 deaths per 100,000. This is a 
relative decline, because the absolute number of deaths is increasing 
over time. The t-test for time is 8.030 and -3.133 for treatment. 

There is a difficulty with the preceding analysis that creates a 
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problem for significance testing. It is called serial dependency. 
Using a multiple regression, one must assume that the errors (the 
e/s) are independent. (The errors are the differences between the 
observed Y, and the Y, predicted by the regression equation.) In 
time-series designs, this assumption is improbable because the same 
unit is repeatedly observed. An examination of Figure 7 .1 shows 
that the observations that are greater than their predicted values are 
adjacent and the observations that are less than their predicted 
value are also adjacent. This is the usual pattern for time-series 
data, and it has the following consequence: The estimates of the 
standard errors for all coefficients, including the treatment effect, 
are biased, making their t-tests also biased (Hibbs, 1974). Fortu­
nately' the coefficients themselves are unbiased. 

The problem of serial dependency is not something with which 
most applied social researchers are familiar. Before we plunge into a 
detailed discussion of it, a simple metaphor might increase our 
understanding. Serial dependency is a disease that infects time­
series data. Before we can analyze our data by multiple regression, 
we must first run some tests. Once we have identified that our data 
are infected, we must perform a series of more detailed tests to 
diagnose accurately the exact form of the disease. There are two 
strains of the disease: autoregressive serial dependency and 
moving-average serial dependency. Interpreting these diagnostic 
tests is much like reading a set of x-rays, but instead of x-rays we 
have autocorrelograms. Once we have identified the disease we can 
operate on our data to remove the serial dependency. This is done by 
transforming the variables. The type of operation or transformation 
is determined by the strain of serial dependency. After the operation 
we can analyze the data by multiple regression. We should perform 
one last follow-up test to check whether we have removed all of the 
serial dependency. 

Because some readers may be familiar with the literature on the 
analysis of interrupted time-series data, we shall briefly describe 
our perspective. There are two fairly independent traditions in the 
analysis of interrupted time-series data. The dominant tradition is 
the forecasting approach of Box and Jenkins ( 1970). This elegant 
but complicated approach is oriented primarily toward identifying a 
model of serial dependency. Glass, Willson, and Gottman (1975) 
and McCleary and Hay ( 1980) are primarily responsible for the 
diffusion of this approach to applied social researchers. The second 
approach, which is very similar to the procedures we have discussed 
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in previous chapters, is the econometric method. Various economet­
rics textbooks describe this method. Our- approach, like that of 
Gottman (1981), is to combine both the forecasting and economet­
ric approaches. 

The remainder of this chapter is divided into three sections. In the 
first we pursue the problem of serial dependency. In the second 
section we investigate the estimation of treatment effects given 
serial dependency. In the third we consider complications in the 
design. 

The problem of serial dependency 

The major stumbling block of time-series analysis is the problem of 
serial dependency. Serial dependency means that adjacent observa­
tions are more similar than observations that are not adjacent. It 
violates the assumption of independence. We shall discuss first the 
measurement of serial dependency, next models of serial dependen­
cy, then the issue of stationarity, and finally the direction of bias 
when serial dependency is ignored. 

Measurement of serial dependency 

Num�rous measures of serial dependency have been proposed. 
Economists usually employ the Durbin-Watson measure. 1 This 
measure, while useful, is not as general as another measure of serial 
dependency called autocorrelation. The measure of the lag one 
autocorrelation or r1 is defined as 

N-1 
L (Y, - Y)(Yi+i - Y) 
t-1 

r1 = N 
L (Y, - Y)2 
t-1 

where Y is the mean of the Y observations. It is called the lag one 
autocorrelation because observations that are being correlated are 
separated by a lag of one unit of time. To compute the lag one 
correlation, one simply staggers the observations as in the third 
column of Table 7.1 and correlates these values with the unstag­
gered observations. The lag one autocorrelation is based on N - l 

1 The Durbin-Watson statistic approximately equals 2(1 - r1), where r1 is the lag one 
autocorrelation, which is defined later in this chapter .. 
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observations, as can be seen in Table 7. I. One observation is lost 
through staggering. We should note that the autocorrelation is not, 
strictly speaking, a Pearson product-moment correlation, and so it 
requires specialized computer programs to compute it.2 For the data 
in Table 7.1, the lag one autocorrelation is. 750. 

The autocorrelation can be estimated for different lags. The 
general formula of the lag k autocorrelation or r k is 

N-k 
L (Y, - Y)(Y,+k - Y) 

N 
L (Y, - Y)2 
t-1 

Again the observations are staggered by k steps, and k observations 
are lost. Generally autocorrelations are computed up to N / 4 lags. 

For the models that we consider in this chapter, the autocorrela­
tion is computed on the residuals and not the raw observations. 
Thus, for Equation 7.1, one computes for each time point 

e, = Y, - h0 - h1 T, - h2X, 

and then computes the autocorrelations on these residuals. (The 
values of e, are in column 7 of Table 7.1.) The formula for the 
autocorrelations of residuals is quite simple, because the mean of 
residuals is zero: 

N-k 

L e,e,+k 
t-1 . 

N 

L.e/ 
t-1 

The autocorrelations of the residuals for the first five lags are as 
follows: 

r1 = .431 

r2 = .057 

r1 = -.477 

r4 = -.546 

r5 = -.483 

2 An autocorrelation is not a true correlation, because' the denominator is based on N cases 
whereas the numerator is based on N - l, creating an attenuation bias. 
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Figure 7 .2. Autocorrelogram of residuals in Table 7 .1. 

Recall that the subscript of r k refers to lag length. In Figure 7 .2 
these autocorrelations are graphed in what is called an autocorrelo­
gram. 

It is possible to define the partial autocorrelations. The lag one 
partial autocorrelation (r11) is identical to the lag one autocorrela­
tion, because there is no intervening Jag. The lag two partial 
autocorrelation or r22 is the correlation between e, and et+2, partial­
ling out ei+i· Its formula is 

2 
T2 - Ti 

1 - r12 (7.3) 

In similar fashion, higher-order partials can be defined (cf. Glass et 
al., 1975). For instance, the partial autocorrelation .between e, and 
et+3 controlling for et+1 and et+2 is denoted as r33• To compute these 
partial autocorrelations one can input the simple autocorrelations 
into a computer package that computes partial correlations. 

Autocorrelations are said to dampen off if, as the lag increases, 
the �bsolute value of the autocorrelation approaches zero at a 
deaccelerating rate. For instance, the series .6' (t = 0, 1, 2, 3, 4, . . . ) 
dampens off as follows: 

1.0, .6, .36, .216, .1296, .0777 6 
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Figure 7 .3. An autoregressive model of serial dependency. 

because the rate of change is .4, .24, .144, .0864, and .05184. The 
series asymptotes at zero. 

Models of serial dependency 

If there is serial dependence in the data, the researcher must adjust 
out that dependency. If he or she fails to do so, the tests of 
significance of the treatment effect are biased. To be successful in 
such adjustment, the type or model of serial dependency must be 
known. We shall consider the two classical models: autoregressive 
and moving-average. These are the two different "strains" of the 
"disease" of s'erial dependency. Moreover, we shall consider what 
are called second-order models of each type and a model that is a 
mixture of each. 

Both autoregressive and moving-average models require that the 
data be stationary. The assumption of stationarity requires that the 
mean and variance of the time series be constant over time. The 
constant-mean assumption implies no cycles or trends in the data, 
and the constant-variance assumption is similar to the homogeneity­
of-variance assumption of multiple regression. These assumptions 
can be tested in part by splitting the pre-treatment time series in 
half and checking for stability of the mean and variance. We return 
to the issue of stationarity in a later section of the chapter. 

· 

Models of serial dependency have built into them a random or 
so-called white noise process. We shall denote the random variable 
or white noise process as u, all of whose autocorrelations are 
assumed to be zero. The models differ in the way that autocorrela­
tion is introduced. We first consider the first-order autoregressive 
model and then consider the first-order moving-·average model. 

For the first-order autoregressive model, each error or residual, 
e,, is assumed to be a function of only the previous error or residual. 
The equation is 

e' = ae, _ t + u' 

where a is the autoregressive coefficient. The model is depicted in 
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Figure 7.4. A moving-average model of serial dependency. 

Figure 7 .3. It is called autoregressive because each error is 
regressed on a previous value of itself. A little bit of algebraic 
manipulation demonstrates that a equals the autocorrelation of e, 
with e,_1' that is, the lag one autocorrelation. A first-order autore­
gressive process also predicts the lag two correlation to be a2 and, in 
general, the lag k autocorrelation to be ak. Thus, under the 
first-order autoregressive model, the autocorrelations should 
dampen off at a deaccelerating rate. For instance, if a is .8, the 
autocorrelations are .800, .640, .512, .410, .328, .262, .168. Note 
that if a is negative, which happens occasionally, then the autocor­
relations alternate between positive and negative values, but they 
still dampen off over time. 

Besides the dampening off of the autocorrelations for a first-order 
autoregressive process, there is a second and even more useful fact. 
All partial correlations of lag two or greater are zero. To see this for 
r�2, we substitute into Equation 7 .3 the values for r1 = a and r2 = 

a1 
' 

a1 - a1 

1 - a2 

which equals zero. In a similar fashion, r33, r 44, and so forth can be 
shown to equal zero. The fact that the partial autocorrelations are 
zero makes intuitive sense. An autoregressive model implies that 
tomorrow's performance is due to today's. The link between yester­
day and tomorrow is only through today. Once today is controlled, 
there is no relationship between tomorrow and yesterday. 

The moving-average model looks superficially like an autoregres­
sive model, but it has quite different implications for the autocorre­
lations. In equation form,

3 
the model is 

e, = bu,_1 + u, 

where bis the. moving-average coefficient. The model is depicted in 

3 More commonly. the equation for the moving-average process is written as e, = u, - bu,_1• 
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Table 7 .2. Five models of serial dependency 

First-order autoregressive 

Second-order autoregressive 

First-order moving-average 

Second-order moving-average 

First-order autoregressive 

and moving-average 

e, = ae,_1 + u, 

e, = a1e,_1 + a2e,_2 + u, 

e, = bu,_1 + u, 

e, = b1 u,_1 + b2u,_2 + u, 

e, = ae,_1 + bu,_1 + u, 

143 

Figure 7.4. The lag one autocorrelation can be shown to be bf (I + 

b2), whereas all other autocorrelations are zero. The estimate of bis 

I - �I - 4r12 

2r1 

The name ''moving average" comes from the following fact.4 If b = 

1.0, then 

e, = u,_1 + u, 

Thus the value e, is an average (technically a sum) of u,_1 and u,. 
If the autocorrelations are small, it may be virtually impossible to 

distinguish an autoregressive model from a moving-average model. 
Consider the case in which a = .3 and b = yJ. The resulting 
autocorrelations for both models are 

Autoregressive 

Moving-average 

Lag 

1 

.3 

.3 

2 

.09 

.00 

3 

.03 

.00 

4 

.01 

.00 

5 

.00 

.00 

Given sampling error, these two patterns usually cannot be distin­
guished. We recommend treating such ambiguous patterns of 
autocorrelations as autoregressive, because such a process is gener-

4 A moving average transformation is used to smooth a time series. Smoothing is an attempt 
to display trends in a time series more clearly. For instance, a stock's daily price might 
exhibit an increasing trend over time that is obscured by daily fluctuations. The time series 
is smoothed by computing a moving average of the average of each day and the previous 
day or each day and the previous 6 days. Any trend will now be more discernible. When 
smoothing the investigator computes a moving average to find trends, whereas our concern 
is trying to find.the moving-average process that generates the serial dependency. 
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ally (though not always) more plausible as well as easier to adjust 
for. 

Both the moving-average and autoregressive models can be 
extended. The autoregressive model that we have presented is called 
a first-order model, because the current residual is caused only by 
the previous value. A second-order model would have the current 
value caused by the two previous values as in Table 7 .2. A kth-order 
model would have the previous k values causing the present value. 

Recall that for the first-order autoregressive process, the value of 
r22 (the partial correlation of e� with er+2 controlling for e,+d and all 
higher-order partials should be zero. Similarly, for a second-order 
autoregressive process, r33 and all higher-order partial autocorrela­
tions are zero. Partial autocorrelations are especially diagnostic of 
the order of the autoregressive process, because all partial autocor­
relations greater than the order of the autoregressive process should 
be zero. The simple autocorrelations should dampen off after k lags, 
where k is the order of the process. 

· 

For a second-order moving-average model, an error e, is assumed 
to be caused by u, and the previous two values of u, as shown in 
Table 7 .2. The autocorrelations of the second-order moving average 
are 

b10+b2) 
r ------

1 - 1 + b/ + b/ 

b2 
r2 --

1 + b/ + b/ 

(7.4) 

(7.5) 

All other autocorrelations are zero. There is no simple solution for 
the values of b1 and b2 as a function of r1 and r2• One must then use 
trial values of b1 and b2 to determine the values that satisfy 
Equations 7.4 and 7.5. 

A mixed autoregressive and moving-average model is also possi­
ble. Table 7 .2 gives the equation for a first-order autoregressive; 
first-order moving-average model. For such a mixed model, none of 
the autocorrelations nor the partial autocorrelations is zero. Both 
functions dampen off. Fortunately, this complicated mixture of 
processes is rare. In fact, Gottman and Glass ( 1978) report finding 
none in their survey of 116 time series. 

Table 7 .3 summarizes the manner in which the autocorrelations 
and partial autocorrelations behave for the five different models we 
have presented. When we compare the autoregressive and moving-
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Table 7 .3. Autocorrelograms and partial autocorrelograms for 
five models of serial dependency 

Partial 

Model Autocorrelogram autocorrelogram 

First-order autoregressive Dampens off after Zero after lag one 

lag one 

Second-order autoregressive Dampens off after Zero after lag two 

lag two 

First-order moving-average Zero after lag one Dampens off after 

lag one 

Second-order moving-average Zero after lag two Dampens off after 

lag two 

First-order autoregressive Dampens off after Dampens off after 

and moving-average lag one lag one 

average models, we note that they are, in a sense, the inverse of each 
other. For models of the same order, the autocorrelations of an 
autoregressive process behave like the partial autocorrelations of 
the ·corresponding moving-average process. Similai"ly, the partial 
autocorrelations of the -autoregressive process behave like the auto­
correlations of the corresponding moving-average process. A reason 
for this mirroring is that a first-order moving-average ,process can 
be shown to be an infinite-order autoregressive .. process, and a 
first-order autoregressive process· is an infinite�otder nioving­
a verage process. 

We must realize that Table 7.3 contains the idealized pattern of 
the correlations for the five models. In practice the picture is much 
more confused. Sampling error distorts the correlations. Values that 
are supposed to equal zero never exactly equal zero. We mentioned 
this problem earlier when we showed how first-order autoregressive 
and moving-average models can be virtually indistinguishable. The 
sampling-error problem is exacerbated if the time series contains no 
more than, say, thirty time points. Thirty is. ordinarily a small 
sample, but in diagnosing serial dependency it is an extraordinarily 
small sample. Such diagnosing is often called an art instead of a 
science. With small sample sizes the art becomes largely guess­
work. 

There are significance tests that can aid us in our evaluation of 
serial dependency. The approximate standard error for a partial 
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autocorrelation is 1 /..JN. For the partial autocorrelation of residu­
als, we recommend substituting N - m for N, where m is the 
number of terms included in the regression equation from which the 
residuals are computed. 

When all autocorrelations greater than lag q are assumed to be 
zero, then the standard error for the lag p autocorrelation (p > q) 
. 
IS 

(7.6) 

One normally tests whether an autocorrelation of lag k equals zero 
by setting q at k - 1. To evaluate whether all correlations of lags q 
through p (p > q) are zero, the following is approximately distrib­
uted as x2: 

(7.7) 

with p '.""'""" q + 1 degrees of freedom. Again, for both Equations 7 .6 
and 7. 7, .when autocorrelations of residuals are computed, we 
recommend substituting N - .11'l (where m is the number of 
predictor variables in the regression equation), as was done for test 
of the partial autocorrelations. 

To evaluate autoregressive models, one should examine the 
partial autocorrelations. If only ru is significant, then the model is 
first-order. If r22 is significant but the higher-order partials are not, 
then the model is second-order. For moving-average models, one 
tests autocorrelations rather than the partial autocorrelations. If the 
model is first-order, the autocorrelations can be tested individually 
using Formula 7 .6 and setting q equal to one. The autocorrelations 
can be tested as a group by using Formula 7.7 and setting q equal to 
one and p equal to N/4. If the process is second-order, q in 
Formulas 7 .6 and 7. 7 is set to two. 

Issues in stationarity 

If the time series is stationary, then the autocorrelations should 
dampen off over time. And so, the autocorrelations for long lags 
should be near zero, within the limits of sampling error. Suppose 
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that there is a linear trend in the data as there is for the data in 
Figure 7 .1. A time series with a linear trend is nonsta tionary, 
because the mean is increasing or decreasing over time. In the 
absence of any serial dependency, a linear trend produces a straight, 
descending autocorrelation function with no dampening. The strong 
linear trend in Figure 7 .1 makes r 1 for the example . 7 50 as opposed 
to .420 for the residuals from which the linear trend of time has 
been removed. Therefore, we want to examine the autocorrelations 
of data from which trends have been removed. 

The presence of cycles also distorts the autocorrelational func­
tion. If there is a yearly cycle, as there would be for automobile 
accidents, given monthly data, there are typically high autocorrela­
tions for lag 12k, where k is a positive integer. This is because 
certain months of the year will tend to have the highest rate of 
fatalities and other months will have the lowest. 

Trends and cycles thus create spurious autocorrelations and their 
presence masks the true autocorrelational structure. The data must 
be adjusted to remove the nonstat�<mary effects of trends and cycles. 
There are two alternative strategies to achieve this purpose: differ­
encing and adding terms to the regressfon equation. 

Differencing. This strategy has become the preferred 
approach of the Box-Jenkins method. A difference is just what the 
name suggests: A new variable is created by subtracting the most 
recent value from the present value. We take the difference between 
the present value and the previous value of data. To see how 
differencing can work, consider a linear trend model in which 

Y, = aT, + e, 

where Tis time. The difference can be written as 

Y, - Y,_1 = aT, + e, - aT,_1 - e, 1 

= a(T,_1 + 1) + e, - aT,_1 - e,_1 

=a+ e, - e,_1 

This result illustrates both the advantage and the disadvantage of 
differencing. The advantage is that the trend has vanished, because 
Tis removed from the equation for the difference; the disadvantage 
is that autocorrelation has been introduced, because bo�h e, and e,_1 
are in the equation. The differenced time series is now a moving 
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average. So, although differencing can remove a trend, it can also 
introduce serial dependency. 

The difference between two observations is called the first differ­
ence. It is possible to perform a second difference, that is, a 
difference of differences: 

(Y, - Y,_1) - (Y,_1 - Y,_2) 

It can be illustrated that a second difference corrects for a quadratic 
trend. Consider the series i2, where i is the set of positive integers: 

1, 4, 9, 25, 36, 49, ... 

The first differences are 

3, 5, 7, 9, 11, 13, . . . 

and the second differences are 

2, 2, 2, 2, 2, . . . 

In general, a kth difference removes a kth-order trend. For instance, 
if the trend is cubic, the third difference removes it. 

The logic for cycles is similar. If the data are monthly mean 
temperatures, we would certainly expect them to exhibit a cycle of 
12 .months. This should be evident in the autocorrelogram. If it 
peaks at lags that are multiples of 12, a yearly cycle would be 
indicated. To control for a yearly cycle by differencing, we take the 
difference between Y, and- Y,_12. Thus for the February 1983 data 
point we subtract the February 1982 data point. For certain data 
there may be two cycles. For instance, for hourly data there may be 
both a daily and a weekly cycle. We then subtract ·the measure for 
one day earlier and one week earlier to remove both cycles.5 

The Box-Jenkins approach to time series denotes each model as a 
particular autoregressive (AR), integrated (I), moving-average 
(MA) or ARIMA model. Each ARIMA model has three character­
istics: the order of the autoregressive process (p ), the order 
of the differencing (d), and the order of the moving average (q). 
Each model can then be characterized by the following convention: 
ARIMA (p, d, q). For instance, an ARIMA (I, 0, 0) model is a 
first-order autoregressive model. An ARIMA (0, 2, I) model is a 
second-order difference, first-order moving-average model. An 

s More complicated models of cycles are discussed in McCain and McCleary (1979). 
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ARIMA (I, 0, l) model is the mixed first-order autoregressive, 
moving-average model. 

Adding terms. A simpler, though perhaps less elegant, 
procedure for removing trends and cycles is to add to the regression 
equation (Equation 7. I) terms that adjust for them. If a linear trend 
is suspected, one simply includes time or T as a predictor in the 
regression equation. If it is suspected that nonlinear trends are 
present, powers of T can be added. For cycles, a set of dummy 
variables must be created. For instance, for a yearly cycle a set of 
eleven variables representing months would be created. By entering 
them into the regression equation, the yearly cycle would be 
removed. 

We prefer adding terms to the regression equation over differenc­
ing because we believe that differencing often introduces autocorre­
lation instead of removing it. Besides, if terms are added to the 
regression equation, their effects can be measured, interpreted, and 
tested. Others have taken a. different point of view (McCleary & 

Hay, 1980). 

Direction of bias 

As should be clear by now, serial dependency is a very complex 
problem. We might wonder if this problem is worth all the bother. It 
might be that the bias in the standard error introduced by serial 
dependency is positive. This would deflate the t-tests and make 
them conservative. We may be willing to live with a conservative 
test and ignore the bias. 

The direction of bias depends largely on two factors. The first is 
the sign (positive or negative) of the autocorrelation of the errors. 
The second depends on the pattern of the treatment over time. The 
treatment is of.course a variable, and one can compute an autocor­
relation for it also. This treatment autocorrelation can be either 
positive or negative. The interrupted (i.e., using the first set of 
observations as untreated and the remaining as treated) design has 
a positive autocorrelation. A plan in which the treatment and 
comparison conditions alternate has a negative lag-one autocorrela­
tion. The direction of the bias resulting from serial dependency 
depends on the product of the signs of the autocorrelation of the 
residuals and the autocorrelation of the treatment variable. If both 
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Table 7.4. Estimates of autocorrelational parameters 

Model 

First-order 

autoregressive 

Second-order 

autoregressive 

First-order 

moving-average 

Second-order 

moving-average 

First-order 

autoregressive 

and moving-average 

Coefficient estimate 

2 r2 - r1 r1 - r1r2 
a,= ---

1 - r12 
a2= --­

l - r12 

l - .JI - 4r.2 
h= ____ _ 

2r1 

Solve for b1 and b2 

b, + b,b2 
T1= ----

l + h.2 + b/ 

k1 - ,/k/ - 4k,2 
b= _____ _ 

2k, 

where 

Range 

a1 + a2 <I 
a2 - a1 < I 

la2I <I 

-b, - b2 < 
I 

h1 - h2 < 1 
lb2I < 1 

! a l < I 
lbl < 1 

are positive or negative, the t-test is usually too liberal. If one is 
negative and the other positive, the t-test is usually too conservative 
(Hibbs, 1974). 

In the typical interrupted time-series design, both autocorrela­
tions are positive, resulting in too liberal tests. In fact, the classic 
interrupted time-series intervention pattern yields a very substantial 

· autocorrelation of the treatment variable. When the lag-one auto­
correlation of the errors is .5, which is a common value, then the 
standard error is deflated by a factor of about .6 (Hibbs, 1974), and 
the t-test values are on the average 75% larger than what they 
should be. 

We should note that if a random assignment rule is employed, 
there is no bias in the estimate of the standard error. Because the 
treatment is administered randomly over time, the autocorrelation 
for the treatment variable is zero, in principle, and the standard 
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error is unbiased. However, as we stated earlier, a random assign­
ment rule is rarely employed. 

Estimation 

Once the researcher has established the model of serial dependency, 
the important task of estimating treatment effects can begin. To 

. review, one "cannot use ordinary multiple regression to estimate 
treatment effects because of the problem of serial dependency. Once 
a model of serial dependency is identified, however, the data can be 
transformed and the problem of serial dependency can be removed 
surgically. In order to perform the transformations, one must know 
the autoregressive or moving-average coefficients, that is, the a's 
and h's of Table 7 .2. Table 7.4 summarizes how they can be 
estimated. This table also contains the permissible range of possible 
values. If the solution for a coefficient falls outside the range, the 
model is almost certainly wrong. 

Gattman and Glass (1978) state that fifty observations are 
necessary to identify a model of serial dependency. If there are 
fewer than fifty observations, the coefficients as given in Table 7 .4 
are highly unstable and unreliable. One is in the same position as in 
Chapter 6, where the pretest reliability has to be estimated. One 
ought to choose a range of possible values. 

To measure treatment effects, we need to ''operate" on the data. 
The estimation of treatment effects in the interrupted time-series 
design has the fallowing four steps: 

· 

1 The autocorrelation structure and its parameters are identi­
fied. 

2 The outcome and predictor variables are transformed to 
make the error structure uncorrelated. 

3 Using the transformed variables, the effects of treatment, 
trends, cycles, and covariates are estimated by multiple 
regression. 

4 After computing the residuals of the transformed outcome 
variable, one checks to see if they are uncorrelated to ensure 
that the serial dependency has been removed. 

Let us consider each step in detail. Step. 1: One first fits the 
desired model with treatment effects, trends, cycles, and covariates. 
Using the residuals, one computes the autocorrelations and partial 
autocorrelations. We diagnose the autocorrelational structure by 
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Table 7 .5. Transformations to remove serial dependency: Z, stands 
for a predictor or outcome variable and Z, * is the trans/ or med 
value 

First-order autoregressive 
Second-order autoregr-essive 
First-order moving-average0 
Second-order moving-average"·b 
First-order autoregressive 

and moving-average0 

"Set z.* at z •. 

"set Z2* = Z2 - b1Z1• 

Z,* = Z, - aZ,_1 
Z,* = Z, - a1z,_1 - a2Z,_2 

Z,* = Z, - bZ,_1* 

Z,* = Z, - b1Z,_1* - b2Z,_2* 

Z,* = Z, - aZ,_1 - bZ,_1* 

the procedure we previously described under the section on models 
of serial dependency. If the autocorrelogram indicates the presence 
of trends or cycles, then the regression equation has to be reesti­
ma ted to remove their effects. One would then recompute the 
residuals and rediagnose the.model of serial dependence. 

Step 2: If the autocorrelational structure is not random and serial 
dependency is indicated, then the data must be transformed. Given 
a particular model of serial dependency, a particular transformation 
of the data produces an uncorrelated error structure. The details of 
these transformations are given in Table 7 .5. In Table 7 .5 we have 
denoted the variable to be transformed as Z,. We chose Z, to stand 
for each of the predictor variables including treatments and covar­
iates as well as for the outcome variable. Because previous values 
are required, a problem arises for transfor:r;ning the first observation 
of the series for first-order models and the first two observations for 
second-order models. Our recommendation is to drop these values 
from the analysis. Other complicated procedures have also been 
suggested (e.g., Glass et al., 1975). 

Assume, for instance, that it is determined that the structure is a 
first-order autoregressive process: 

Y, = b0 + b1 T, + b2X, +·e, 

where 

e, = ae,_1 + u, 

and e has a mean of zero. If the value of a is known, we could 
compute 
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Yi - aYi-1 = b0 + b,T, + h2X, + e, 

- a(b0 + b,T,_1 + b2X,_1 + e,_1) 

= hoO - a) + h1(T, - aT,_1) 

+ b2(X, - aX1_1) + u, 
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Because thee variable has been removed from the equation and the 
only residual is u, there is no remaining serial dependency. If we 
regressed Y/ ( = Y, - ·aYi_1) on T,* ( = T, - aT,_1) and Xi*(= X, 
- aX,_1), we obtain a coefficient of b1* for T *  and b2* for Xi* and 
an intercept of b0 *. The value of b1 * is an effect of time, b2 * is an 
estimate of treatment effect, and b0 * is an estimate of the intercept6 
multiplied by 1 - a. 

A problem is that the transformation removes serial dependency 
only when the value of a is known. In practice, a must be estimated. 
As shown in Table 7.4, in the first-order autoregressive model, a can 
be estimated by the lag one autocorrelation. Alternatively, one can 
use a series of values for a. For instance, we could try out all values 
from -.95 to .95 in steps of .05. We would settle on the value that 
produced the smallest value of� u2, where u is the residual from the 
transformed regression equation. This procedure, called a grid 
search. is employed by various specialized computer programs 
(Glass et al., 1975). If one employs this grid-search method, one 
must take care to determine that the range of possible values of the 
coefficients is within the ranges given in Table 7.4. [Besides a 
grid-search procedure one can also employ a more direct but more 
complicated algorithm (McCleary & Hay, 1980).] In Table 7.1 we 
have the transformed values of Y*, X*, and T* in columns 9, 10, 
and 11, assuming that a = .4. Note that the first observation is lost, 
because there is no Y0, X0, or T0 to use for the transformation. 

The transformation for the second-order autoregressive process is 
only slightly more complicated. As is shown in Table 7 .5, one takes 
each variable (treatment, time, outcome variables, and covariates) 
and from each observation one subtracts off the previous two values 
weighted by the appropriate autoregressive coefficients: 

6 As expl:;tined later, the intercept "variable" of this transformed analysis should not be a set 
of ones, but rather it too should be transformed. The appropriate value for the transformed 
intercept is J - a. 
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One can use the estimates of a1 and a2 in. Table 7.4 or employ the 
grid-search method. 

The transformation for the first-order moving-average model is 
slightly different. Each transformed observation equals the untrans­
formed observation minus the previous transformed observation 
times the moving-average parameter as in Table 7.5. One important 
complication does arise for the intercept. Although not commonly 
recognized, the intercept can be considered a variable, all of whose 
values are ones. The intercept variable should, therefore, also be 
transformed. After transformation its values may not be constant. 
So, for example, in a first-order moving-average model, if b equals 
.8, then the value of the intercept would be 

l - (.8)(1.0) = .2 t = 2 
1 - (.8)( .2) = .84 t = 3 
1 - (.8)( .84) = .328 t = 4 
1 - (.8)( .328) = .7376 t = 5 

Note that the value oscillates back and forth. This new transformed 
intercept must be used in the regression equation, not the usual 
intercept. This requires a multiple regression program that allows 
the user not to fit the intercept or, alternatively, to set it to zero. So 
if T and X are predictor variables in the equation, T, X, Y, and a 
"variable" all of whose values are one must be transformed. These 
four transformed variables and no intercept are used in the trans­
formed regression equation. This problem does not occur for first­
order autoregressive models, because the intercept "variable" 
remains a constant of 1 - a. 

Step 3: Once the variables and the intercept have been trans­
formed, the researcher can input them into a multiple regression 
program. If serial dependency has been eliminated, then the t-tests 
are unbiased. For our example, using the values in Table 7 .1, we 
regress Y* on T* and X* and we obtain the following equation: 

Y* 
= 2.27 + .20 T* - . 19X* + u 

We should first note that the coefficients for T* and X* are 
different from the coefficients for T and X when Y was regressed on 
them (Equation 7.2). The t-test for the treatment variable of the 
transformed equation is 2.405, which is 30% smaller than the t-test 
value obtained from the regression equation that ignored serial 
dependency. 

Step 4: The autocorrelations between the transformed residuals 
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can now be computed. (The transformed residuals, u" are in column 
12. of Table 7.1.) One can test if the autocorrelations of these 
residuals are zero. If the x2 test of Equation 7. 7 is employed, the 
degrees of freedom of that test must be lessened by the number of 
autoregressive and moving-average coefficients estimated. If the 
transformed residuals exhibit no serial dependency, then the trans­
formation has been successful. If they do, then the model of serial 
dependency needs to be rediagnosed. 

For our example the autocorrelations of the transformed residu­
als are 

r1 = .116 

r2 = .099 

r3= -.488 

r4 = -.300 

r5 = -.345 

Using Equation 7. 7 to evaluate if these five correlations are zero, we 
obtain x2 (4) = 7.99. 

Complexities 

As has been our custom, we have first discussed the basic, minimal 
design. We now consider the complications introduced by multiple 
variables, multiple units, and factors that influence power. 

Multiple variables 

We have assun1ed that the treatment variable is dichotomous and 
that its effect is immediate and constant. Also assumed is that there 
is a single outcome. Moreover, no covariates have been included. All 
of these limitations need not exist. 

Covariates. As with all the designs we have considered in 
this book, it is useful to include covariates in the analysis.7 In 
time-series designs there is the built-in covariate of time. We urge 

1 One should not use Y,_1 as a covariate . The use of lagged values of the outcome variable 
(econometricians refer to them as lagged endogenous variables) creates the following 
problem. The effect of Y,_1 on Y, is misestimated because the error for Y,_1 (e,_1) is 
correlated with e ,. Such a correlation is present because of serial dependency. Measures can 
be taken to remedy this problem, but they are beyond the scope of this book. 
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the inclusion of time as a covariate to control for linear trends in the 
outcome variable. The inclusion of time as a covariate both removes 
trends, promoting stationarity, and controls for the linear effects of 
the assignment variable. We also recommend fitting powers of time 
to handle nonlinear trends. Many times these nonlinear trends can 
be removed by transformation of the.dependent variable (Mosteller 
& Tukey, 1977). 

All covariates should be included in the Step 1 regression. They 
should then be transformed in Step 2 and these transformed values 
should be included in the Step 3 regression. If nonsignificant 
covariates are dropped from the Step 1 regression, the step should 
be repeated with the dropped variables not included in the regres­
sion equation. 

Dependent variables. Very often there will be multiple 
outcome measures. For instance, the effect of an anticrime 
campaign could be measured on crimes, arrests, convictions, and 
public attitudes. These dependent variables could be analyzed 
separately if different effects are expected, or they can be combined 
in some fashion if their effects are presumed to be in the same 
direction. Glass et al. (1975) present a strategy that is analogous to 
canonical correlation for time-series data.8 

It is sometimes advisable to consider disaggregating a time series 
by breaking it up into multiple time series. In essence this takes a 
single outcome measure and creates mµltiple measures. Such disag­
gregation may provide a more clear-cut test of treatment effects. 
For instance, Ross, Campbell, and Glass ( 1970) found that the 
breathanalyzer test for drunkenness reduced accidents in the late 
night hours but not during weekday commuting hours. 

Treatment. We have assumed throughout that the treat­
ment variable is a dichotomy. Actually any type of treatment 
variable is possible: multilevel variable, factorial combinations of 
two treatment variables, or an intervally measured treatment vari­
able. 

The effect of an intervention need not be immediate and constant 
(McCleary & Hay, 1980). Table 7.6 illustrates a number of 
possible coding schemes of the treatment variable. The first might 
be called a step change, because there is an immediate, constant, 

" 

8 A latent-variable and multiple-indicator approach to time-series analysis is also possible in 

theory. Analytic work on this topic deserves exploration. 
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Table 7 .6. Patterns of interventions effects 

Effect Pre-treatment Post-treatment 

Step 0 0 0 0 0 1 1 1 1 1 
Delay 0 0 0 0 0 0 0 1 1 1 

One shot 0 0 0 0 0 1 0 0 0 0 
Exponential decay 0 0 0 0 0 1 1/2 1/4 1/8 1/16 
Geometric decay 0 0 0 0 0 1 1/2 1/3 1/4 1/5 
Cummulating 0 0 0 0 0 1 2 3 4 5 
Asymptoting 0 0 0 0 0 1/16 1/8 1/4 1/2 

and persistent effect. The next pattern, the delay, is just like the step 
pattern but there is a delay of two units of time between implemen­
tation of the treatment and its effects. In the one-shot pattern, the 
intervention has an effect that immediately disappears. The next 
four patterns show decay or increasing effects over time. 

Multiple units. Very often there is more than one unit for 
which time-series data are available. The presence of such multiple 
units greatly enhances the internal validity of the design by enabling 
us to see if controlling for time adequately controls for an unknown 
assignment variable. For instance, Ross and Campbell (1968) used 
neighboring states to evaluate the effectiveness of the Connecticut 
crackdown on speeding. With these comparison states, one can 
estimate the effect on the nonexistent crackdown in those states. If a 
pseudotreatment effect also occurred in those states, then the 
"effect" would not be due to the crackdown but to some other 
factor, such as the weather. 

A multiple-unit design may include units for which the occasion 
of the onset of the treatment is different. For instance, Parker, 
Campbell, Cook, Katzman, and Butler-Paisley (1971) investigated 
the effect of the introduction of television into various communities. 
Because the year in which television was introduced varied across 
communities, they could rule out the hypothesis that historical 
changes were confounded with the introduction of television. 

Power 

There are two aspects of the time-series design that have interesting 
implications for power. First, because the time series usually 
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contains data that are highly aggregated across persons and time 
itself, the relationships between variables tend to be greater than 
they would be if the variables were not aggregated. In Chapter 4 we 
discussed the fact that variables at the aggregate level typically 
correlate more highly than individual level variables. Such large 
correlations act as a two edge sword in terms of power. They can 
increase power because more variation in the outcome variable is 
explained. But power is decreased because the predictor variables 
are collinear. So the net effect of aggregation on power is uncer­
tain. 

The second point is that for certain models of serial dependency, 
power does not behave as we would expect it to. Ordinarily, as 
sample size gets very large, power approaches one. However, for a 
first-difference, first-order, moving-average model, as sample sizes 
increase, power approaches some value less than one. How much 
less than one depends on the size of the moving-average coefficient 
(Glass et al., 1975). 

Conclusion 

The analysis of time-series data is seriously complicated by the· 
problem of serial dependency. Detecting the pattern of dependency 
is complicated by the fact that there are a multitude of models of 
serial dependency, and cycles and trends can create spurious auto­
correlation. A further complication arises because social science 
time series are often too short to allow for a precise identification of 
the model. Even once the pattern of autocorrelation is diagnosed, 
the estimation stage is not simple, because a transformation is 
required. 

In order to accumulate a reasonable number of postintervention 
observations, the researcher is often forced literally to sit around 
and wait years. It would seem that the primary applications of the 
design in social research are retrospective, archival studies. Oddly 
enough, even though the design was developed primarily for applied 
research, most of the current interest in it is for basic research. For 
instance, a recent book edited by Kratochwill (1978) extensively 
discusses its use in behavior modification. 

Many of the statistics and procedures of time-series analysis are 
unique to this design. Researchers will have to find specialized 
computer programs to analyze their data (McCleary & Hay, 1980). 
They should realize that these programs may use alternative statis­
tics and procedures instead of the ones we have described. Those 



The interrupted time-series design 159 

methods may be more complex than those we have discussed. We 
have presented only an introduction to the topic. 

We should not lose sight of the fact that although most of this 
chapter was devoted to the problem of, and the solution for, serial 
dependency, a more serious issue remains. Typically the reason why 
the intervention is turned on and off is solely a matter of specula­
tion. The assignment variable is both unknown and unmeasured. 
We can hope that its effects on the outcome measure are mediated 
through time, but this is only a hope. It does not seem likely to us 
that forces that bring about a social change increase in a simply 
linear fashion over time. Bias in the estimates of treatment effects is 
a neglected topic in time-series designs. From our point of view, it is 
at least as large a problem as bias in the standard errors arising 
from serial dependency. 
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Miscellaneous designs and issues 

Not every research project fits neatly into a prepackaged design. 
The choice of design should be guided by the scope of the problem 
and limitations of resources rather than by convention or habit. The 
first half of this chapter explores four designs not covered in the 
previous chapters. There are also a number of issues that crosscut 
the design of the research. The second half of the chapter considers 
these miscellaneous issues. 

Miscellaneous designs 

The first two designs that we discuss are variants of the nonequival­
ent control group design. The first, the changing treatment design, 
allows for changes in subjects' status on the treatment variable. The 
second, the age cohort design, matches subjects on their age. The 
next two designs involve only a treatment group that is pretested 
and posttested. The patched-up design involves different cohorts of 
subjects all of whom receive the same treatment. The ·value-added 
approach attempts to rribdel a growth curve over time. 

Changing treatment design 

For many real-world treatments a person's status on the treatment 
changes over time. Being unemployed, undergoing psychotherapy, 
receiving welfare, and being married are all treatments that we 
enter and leave over time. Consider the study by Cohn ( 1978) that 
examined the effects of unemployment on self-esteem. In 1968-9 
persons' employment status and various social variables were 
measured. The subjects were remeasured a year later and most 
subjects' employment status remained the same. However, some 

160 
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Timel Time2 

Outcome variable Ou.tcome variable 

Treatment variable >< Treatment variable 

Figure 8.1. Regression model for the changing treatment design. 

became unemployed and others gained employment during the 
year. There are then four groups of subjects: 

1 Persons employed at both times (EE) 
2 Persons unemployed at both times (UU) 
3 Persons who became unemployed (EU) 
4 Persons who gained employment (UE) 

The letters E and U refer to employed and unemployed, respec­
tively, while the first letter refers to status at time 1 and the second 
to status at time 2. Such a design is very similar to the nonequiva­
lent control group design, but here the treatment variable changes 
over time. We shall discuss two different analysis strategies for this 
design that parallel the two analysis strategies for the nonequivalent 
control group design in Chapter 6. 

Regression adjustment. Perhaps the most natural· model for 
this design is shown in Figure 8.1. The treatment variable at time 1 

is presumed to cause the ·outcome variable at time 2 and the 
o·utcome variable at time l is presumed to be an assignment variable 
for the treatment at time 2. The estimate of the treatment effect is 
obtained by the regression of the outcome variable at time 2 on the 
treatment and outcome variables at time 1. Such a strategy is 
virtually identical-to the regression adjustment procedure described 
in Chapter 6 for the nonequivalent control group design. The only 
differenc·e is that here the treatment variable changes over time. 

The various considerations that we raised in Chapter 6 about this 
analysis are relevant here. In particular, it is necessary to adjust for 
measurement error in the time 1 outcome variable. This adjustment 
is necessary because the true outcome at time 1, rather than the 
measured outcome, needs to be controlled. As we saw earlier, this 
can be accomplished by adjusting the time l measure for unreliabil­
ity via a reliability correction. The more complicated but more 
general solution of structural modeling is possible when there are 
multiple measures of the time l outcome construct. 



I 62 Estimating the effects of social interventions 

Time 1 Time2 

Figure 8.2. Idealized pattern of means for the changing treatment design 
(E =employed; U =unemployed; order refers to time). 

If there are three occasions of measurement, there are two 
estimates of the treatment effect: the effect of the time 1 treatment 
variable on the time 2 outcome variable and the effect of the time 2 

treatment variable on the time 3 outcome variable. These two 
estimates can be pooled through generalized least squares, as 
described by Hannan and Young ( 1977). 

Change analysis. The change score analysis described in 
Chapter 6 cannot be ·simply extended to the "changing treatment 
variable" design. We stated there that for the nonequivalent control 
group design, change score analysis is plausible only when the 
assignment variable is unchanging. However, for the changing 
treatment design we know that subjects are entering and leaving the 
treatment. One must then presume that the assignment variable 
itself has changed and that changes in it have brought about 
changes in the treatment variable. 

In Figure 8.2 we have graphed hypothetical means from a 
changing treatment design. To simplify the discussion, the graph 
has no discernible treatment effect over time. The top and bottom 
lines are for those persons whose treatment status does not change, 
that is, those who remain employed or unemployed. As we did in 
discussing the change score analysis in Chapter 6, we have assumed 
that in the absence of any treatment effect, the difference between 
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Table 8.1. Means for various cells of an age cohort design 

Age at pretesting 

5 6 7 

Treated Untreated Treated Untreated Treated Untreated 

Pretest 99 .0 

Posttest 113.4 
100.9 

105.8 

104.2 

115.6 

103.9 

109.3 

108.1 

121.0 

107.7 

113.0 

the two groups (EE and UV) is constant over time. Thus, the 
persons who do not change on the treatment variable can be 
analyzed as if they were part of the nonequivalent control group 
design, if stationarity can be assumed. 

The remaining subjects are those whose treatment status 
changes. These groups are designated as EU and UE (E = 

employed, U =unemployed), where the first term designates time 1 
and the second time 2. For these subjects the assignment variable 
has presumably changed, because persons have changed treatments. 
In. Figure 8.2 we have connected the two employed means and the 
two unemployed means from the EU and UE groups by two dashed 
lines. We assume that these two dashed lines are parallel, that is, 
the "growth" rates for the two groups are equal. This analysis 
assumes that the effects of the assignment variable at time 1 on both 
the treatment and outcome variables at time I are the same as those 
respective effects at time 2. Such a stationarity assumption is 
similar but more complex than the stationarity assumption that was 
made in Chapter 6 for change score analysis.1 Analytically, given 
this assumption, the change score analogue of data from those 
whose treatment status varies over time is as follows: One averages 
across time the scores of the EU group and likewise one averages the 
scores across time of the UE group. The null hypothesis of no 
treatment effect is tested by testing if the two means of the average 
scores from the two groups are equal. 

We are then proposing a two-part analysis. The first is a change 
analysis as was described in Chapter 6 . on the persons whose 
treatment status does not change. The second looks at the ''chang­
ers." As was discussed in Chapter 6, one should consider possible 

1 It can be shown that in the case of an intervally measured treatment variable, one 
generalization of this strategy is cross-lagged panel correlation analysis (Kenny, 1975, 
1981). 
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transformations of the outcome variable in order to meet the 
assumptions for both of these analyses. As explained in that 
chapter, variance-stabilizing transformations increase the probabil­
ity of obtaining an interpretable result. 

Age cohort design 

As we saw in Chapter 6, a major threat to the internal validity in the 
nonequivalent control group design is the interaction of selection 
and maturation. One way to control for this interaction is to employ 
an age cphort design. In most studies subjects are heterogeneous in 
age.2 This is what is exploittJd by an age cohort design. . 

Table 8.1 presents an example of the design. Subjects 5, 6, and 7 
years of age are pretested and l year later are posttested. Thus, the 
subjects who were pretested at age 5 are 6-year-olds when post­
tested; those who were pretested at age 6 are age 7 w'1en posttested; 
and those who were pretested at age 7 are age 8 when posttested. 
Table 8.2 is a rearrangement of some of the data in Table 8.1. Data 
from those who are 6 years old when tested (those pretested at age 6 
and those posttested at age 6) are grouped together as well as those 
who are 7 years old (those pretested at age 7 and those posttested at 
age 7). Not included in Table 8.2 are the pretest data of the 
5-year-olds and the posttest data of the 8-year-:olds, because no 
5-year-olds were posttested and no 8-year-olds were pretested. The· 
treatment-versus-control column heading pf Table 8.2 refers to 
whether the child entered the tre�tment program or not. The 
pretest�versus-posttest row heading refers to the point in time at 
which the data were taken. 

The logic of the age cohort design is as follows: Considering the 
6-year-olds, if there were no treatment effects, then the row effect in 
Table 8.2 would measure the effect of testing and history, because 
pretest data are compared to posttest data. If again there were no 
treatment effects, the column effect would measure the effect of 
selection, because treated data are compared to untreated data. 
However, if there were a treatment effect, then the mean for the 
posttest-treated subjects would be too high to be explained simply 
by the row and column main effects. Treatment effects are then 
indicated by a row (pretest vs. posttest) by column (treatment vs. 

2 Although years from birth is the usual way in which age is measured in this design, it can be 
measured in other ways. For instance, in a study of pregnant women, the appropriate age 
measure might be month of pregnancy. 
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Table 8.2. Specific comparisons of the age cohort design 

Treated Untreated 

6-year-olds 

Pretest 104.2 103.9 

Posttest 113.4 105.8 

7-year-olds 

Pretest 108.1 107.7 

Posttest 1 15.6 109.3 

control) interaction. Such an analysis can be performed separately 
on the 6- and 7-year-olds. 

There are three important features of the age cohort design tha_t 
deserve special mention. First, the pretest data of the youngest 
children and the posttest data of the oldest children cannot be 
analyzed by' the design. Thus, some data are lost. Second, the 
analyses of the 6- and 7-year-olds are not independent. The pretest 
scores of the 6-year-olds and the posttest scores of the 7-year-olds 
come from the same children and so the two analyses are not 
independent. This particular type of nonindependence (see the 
discussion later �n this chapter) does not increase the chances of 
finding consistent treatment effects across age groups; rather, it 
decreases them. Third, although the design is longitudinal, it does 
not exploit this fact. All comparisons are between different subjects 
rather than within the same subjects as in a longitudinal design. 
Thus the usual increases in power afforded by having longitudinal 
data are lost in this analysis. Although one can and should control 
for other covariates, one cannot control for pretest status. 

Although the design makes good intuitive sense, it still makes 
assumptions about the assignment variable. There are two ways in 
which the age cohort design can yield internally valid results. First, 
if age is the assignment variable, then its effects are controlled by 
the design because the effect of the assignment variable (age) is 
controlled. Second, the conditions that permit change score analysis 
that were discussed in Chapter 6 also result in unbiased estimates 
for the age cohort design. The age cohort design has one strength 
over the nonequivalent control group design, which is that the 
selection by maturation hypothesis is ruled out. Because the age 
cohort design separately analyzes pre- and posttests from subjects 
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who are the same age, differential maturation is not a problem. 
However, the age cohort design does presume that the effects of the 
unknown assignment variable are the same on the pretest and the 
posttest for subjects of the same age. This is virtually the same 
assumption that was made in Chapter 6 for change score analysis. 
Except for the fact that age and its interaction with selection are 
controlled, the assumptions of the age cohort design are no more 
plausible than they are for a change score analysis of the nonequiv­
alent control group design. 3 

Patched-up design 

Schools, hospitals, prisons, as well as other institutions are repeat­
edly admitting and treating groups of persons, and we frequently 
want to know how these institutions affect the lives of their clients 
or victims, as the case may be. One common way to answer this 
question is to measure groups of persons or cohorts as they enter the 
institution and as they leave.·Campbell and Stanley (1963) refer to 
this design as the recurrent institutional cycle design or the patched­
up design. We shall use the latter term. In Table 8.3 hypothetical 
results from the design are presented. Four cohorts enter a manage­
ment training program from 198 1 through 1984. Only post­
treatment data are available for the first cohort and pre-treatment 
data for the last cohort. The middle two cohorts provide complete 
data. Typically for the patched-up design, the occasion of the 
post-treatment and pre-treatment measures of adjacent cohorts is 
not simultaneous. 

Table 8.3 presents an.idealized pattern of results for the patched­
up design. For the two cohorts with complete data, the post­
treatment means are about two units higher than the pre-treatment 
means: 10.2 versus 8.1 for the 1982 cohort, and 10.4 versus 8.3 for 
the 1983 cohort. The results of these longitudinal comparisons are 
suggestive of a treatment effect. Comparing within years, there is 
again evidence of a treatment effect of approximately two units for 
1982 (10.3 vs. 8.1), for 1983 (10.2 vs. 8.3), and for 1984 (10.4 vs. 
8.2). 

There are four problems with the patched-up design. The first is 

3 Essentially this analysis matches subjects on age. In order to execute such a matching, age, 
which is a continuous variable, must be broken up into discrete categories (in our example, 
years). The choice of the category width will affect the success of the matching strategy 
(Rubin, 1973). 
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Table 8.3. Hypothetical means from a patched-up design 

Year of measurement 

Cohort 1982 1983 1984 

1981 10.3 

1982 8.1 10.2 

1983 8.3 10.4 

1984 8.2 

testing. The change in trainees' performance might not be due to the 
treatment but only to the effect of testing. Campbell and Stanley 
(1963) recommend randomly splitting in half the 1982 and 1983 
cohorts and pretesting half and not pretesting the other half. Any 
post-treatment difference between these two groups would indicate 
testing effects. 

Regression toward the mean is also a problem in this design. If 
subjects are selected into the program because they are extreme 
(either overprivileged or underprivileged), then we would expect 
their post-treatment mean to be different from their pre-treatment 
because of regression toward the mean. One solution to this problem 
is to avoid using selection schemes that pick extreme scorers. 

Maturation is probably the most serious threat to the internal 
validity of the patched-up design. The trainees are a year older at 
the time of the posttest than they were at the time of the pretest. In 
some very special cases maturation may not be plausible. For 
instance, if for the variables under study we have good reasons to 
believe that the trainees would not change or the interval between 
pre- and posttest measures is short, maturation may not be plausi­
ble. Alternatively, it may be possible to control for maturation by 
employing a .modified version of the age cohort design or by using 
the value-added analysis that we discuss in the next section. 

Some have claimed that history is not a serious problem for the 
patched-up design. Because pre- and post-treatment measurements 
are made at approximately the same point in time, the within-time 
comparisons control for the effect of history. However, the within­
time comparisons are confounded with cohort differences. It is 
possible (if not plausible) to concoct an explanation of the means of 
Table 8.3 in terms of the combined effects of history and cohort. 
Imagine that one of the goals of the management trainee program is 
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to increase racial tolerance. The means in Table 8.3 could be 
explained in _terms of the combined effects of cohort and history. 
The cohort effect would be that over time the company recruited 
mcreasingly less tolerant trainees, explaining the within-year differ­
ences. As a society, people are becoming more tolerant, which would 
explain the over-time differences.4 

We believe that the two most serious threats to the design are 
maturation and regression toward the mean. There is no general 
solution to these two problems beyond finding an untreated compar­
ison group. This would turn the patched-up design into a nonequiv­
alent control group design. 

Value-added approach 

To some observers the elaborate methods we have presented to 
measure treatment effects might seem far too complicated and 
unnecessary. Why could we not simply project an individual's 
growth and then see whether the treatment stunts or accelerates the 
growth curve? For instance, for a nutrition program, a model of 
change in physical height could be used to ·predict change. In a 
similar way, why could we not more carefully understand the 
growth pattern of the phenomena of interest and use that as a' model 
of growth? In other words, why could we not model the process of 
maturation? 

Such a strategy has been pursued most vigorously by Bryk and 
Weisberg (Bryk & Weisberg, 1976, 1977; Strenio, Bryk," & Weis­
berg, 1977) in their value-added approach. For each treated subject 
they attempt to measure how much the treatment adds onto his or 
her outcome score. The actual mechanics of the procedure are 
beyond the scope of this book, but the crux of the approach is that 
they view growth to be a function of two systematic components. 
These are the rate of growth (or how fast people grow) and the onset 
of growth (or when people start growing). To these systematic 
components they add a random component. They have allowed the· 
growth rate to be either a linear function or a negative exponential 
function. 

For instance, Bryk and Weisberg (1976) applied their analysis to 

4 Adam (1978) has shown that the combined effects of cohort and history are confounded 
with the effect of maturation. Because maturation is confounded with treatment, the 
combined effects of cohort and history are confounded with treatment effects. 
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an evaluation of Planned Variation in Head Start. They assumed a 
relatively simple model of growth. From the pretest data they 
measured the effect of age on the pretest controlling for a series of 
covariates. Such a procedure assumes that all subjects begin grow­
ing at the same time, grow at the same rate, and grow in a linear 
fashion. 

Although we see much merit and promise in the long-run possi­
bilities of the value-added approach, we are somewhat less opti­
mistic about its present usefulness for the following two reasons. 
First, to plot a growth curve we need to have the same units of 
measurement across time. For instance, for height, inches or centi­
meters would be used. In social research, however, the choice of the 
units of measurement is not so clear. For variables on which subjects 
are growing, different tests are needed for different ages or else 
serious ceiling or floor effects would result. Calibrating the units of 
measurement of different tests is not a simple problem. Even if 
exactly the same test were used at two or more times, spurious 
"growth" would result due to a testing effect. The units of measure­
ment problem is a difficult but not impossible challenge. More work 
is clearly needed. 

Second, the bulk of the Bryk-Weisberg growth models are 
deterministic. That is, time brings about patterned changes that 
may vary across individuals but nonetheless are driven by time. 
·Although such models may be valid for the growth of height or 
weight for which there are both a large genetic component and 
stable environmental causes, we believe that the development of 
social and intellectual skills must leave room for a changing 
environment. We would hope that future developments of growth · 

models for social variables would be less deterministic. 

Miscellaneous issues 

We have saved a number of issues for discussion until now. These 
issues are relevant for all the designs we have discussed. W-e discuss 
four different issues. The first two· concern threats to internal 
validity. The confusing topic of regression toward the mean is 
explained. Next we consider the difficult question of the effect of 
mortality on the internal validity of conclusions. We then discuss 
two issues that affect conclusion validity. These topics are indepen­
dence· and the unit of analysis. 
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Regression toward the mean 

Because the topic of regression toward the meail can be very 
confusing, it is useful to consider it in some detail. Much of the 
discussion that follows is based on the excellent article by Furby 
(1973). 

The definition of regression toward the mean is that, on the 
average, persons· with extreme scores- on a given variable (i.e., 
extreme in terms of standard deviation units) are not as extreme 
when measured on some other variable. All parts of the definition 
are essential, and the failure to consider each necessarily leads to 
confusion. To simplify presentation, the two variables to be consid­
ered are a pretest and a posttest of some measure, but this in no way 
limits the applicability of our discussion. 

First, regression to the mean refers not to each and every 
individual but to an average. Not all individuals regress to the 
mean; only the typical individual does. Quite a few individuals may 
regress away from the mean, but this regression away is canceled 
out by the regression toward the mean of the remaining individuals. 

Second, regression toward the mean refers to standard deviation 
units. The untransformed or raw unit of measurement might not 
exhibit regression. The old adage that ''the rich get richer and the 
poor get poorer" seems to fly in the face of the regression toward the 
mean concept, because extreme scores are becoming even more 
extreme over time. But if the rich get richer and the poor get poorer, 
then the variability of income must be increasing over time. Once 
the measures are put into standard deviation units (or the variances 
are made equal over time),"we shall find that the rich are getting 
relatively poorer and the poor are getting relatively richer. Regres­
sion to the mean still holds, even though absolutely the rich may 
have more money and the poor less. Extreme scores on a variable do 
not regress over time toward the mean of that variable; rather, a 
person whose score is extreme in terms of standard deviation units 
regresses toward zero when measured on another variable in stan-
dard deviation units. 

· 

An important aspect of regression toward the mean is that 
change (when each variable is measured in standard deviation 
units) is negatively correlated with initial.status. In other words, the 
posttest minus the pretest (both variables standardized) cannot 
correlate positively with the pretest. 

The amount of regression toward the mean is solely a function of 
the pretest-posttest correlation. If the correlation is one, there is no 
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regression toward the mean, because there is no relative change. If 
it is zero, there is complete regression toward the mean, because the 
predicted score for each subject is the mean. (If it is negative, there 
is regression past the mean.) Errors of measurement exacerbate 
regression toward the mean. As will be shown in Chapter 9, the 
effect of random measurement error is to lower correfations. 
Because the correlation between the pretest and the posttest deter­
mines the amount of regression, and be(;ause greater amounts of 
measurement error (unreliability) lower correlations, measurement 
error magnifies regression toward the mean. However, because 
test-retest correlations are less than one for other reasons besides 
unreliability (e.g., real relative change), unreliability is not the only 
reason for regression toward the mean. 

When there are multiple populations, the pattern of regression 
toward the mean can be complicated. As defined, regression toward 
the mean refers to the average score. Not each and every individual 
moves toward the mean, only the average. For instance, consider the 
example of intelligence test scores from a school for the retarded. If 
somehow the scores of the staff and the students were mixed 
tog.ether, we would not expect the average IQ of the staff to regress 
down toward the overall mean or the average IQ of the students to 
regress up toward the overall mean. Rather, we would expect the 
staff scores to regress toward their mean and the student scores to 
regress toward their mean. Although there is still regression toward 
the mean, it is more accurate to state that regression toward the 
mean occurs within the population of staff scores and within the 
population of student scores. 

In sum, regression toward the mean refers to the average individ­
ual (not each individual) and to standard scores (not raw scores). 
The magnitude of regression toward the mean depends on the 
test-retest correlation. Given multiple populations, the pattern of 
regression toward the mean can be complex. 

Mortality 

An applied research program takes place over a period of months or 
years. During the interim the subjects relocate, drop out of the 
program, graduate, are promoted, refuse to be tested, or, in the most 
extreme case of mortality, die.5 Mortality is a problem that 

� There are two different types of subject mortality. First, there is mortality from the study 
altogether; e.g .• subjects move. Second. there is mortality from the treatment; e.g. subjects 
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researchers should count on. Unfortunately, we can offer no simple 
solutions to this problem. 

Mortality is often an important outcome of an intervention. For 
instance, Murphy and Appel ( 1977) extensively analyzed the effect 
of computer-aided instruction on dropping out of courses in Chicago 
community colleges. Because the dropout rate is normally relatively 
high (approximately 35%), an intervention that increased the prob­
ability of remaining in a class would be a major success even if it did 
not improve performance. 

For most applied studies the dropout rate is not the central 
outcome. The presence of mortality creates problems of internal 
validity. For instance, in a drug program all the individuals who are 
treated unsuccessfully could be urged to leave the program. If only 
the outcomes of the successfully treated are analyzed, treatment 
effects will be overestimated. One approach to the problem of 
mortality is to assume that the biasing effects of mortality in the 
treatment and comparison groups are the same. The researcher 
compares the dropout rate in both groups and tests to see if they are 
the same. However, even if no difference in dropout rate between 
conditions is found, mortality could still be a problem. It might well 
be that persons drop out of the treated and untreated groups at the 
same rate but for different reasons. For instance, for an adolescent 
counseling program, it could happen that equal proportions of 
treatment and comparison subjects drop out. However, it may be 
that among treated subjects, those who drop out do so because they 
have been successfully treated (i.e., they no longer need counseling), 
whereas in the comparison group the subjects who drop out are 
incorrigible. So, although equal dropout rates for the groups may be 
heartening, mortality may still pose a problem. 

Besides comparing dropout rates, we might also compare those 
who drop out with those who do not on the covariates that were 
measured prior to dropout. An analysis is set up in which the 
covariates are each regressed upon the treatment variable and upon 
a variable that indicates whether or not a subject dropped out. 
Mortality is a threat to internal validity whenever the dropping-out 
variable interacts with the treatment variable. So finding out that 
subjects from low socioeconomic backgrounds were more likely to 
drop out of all treatment conditions would not necessarily be 
alarming, at least in terms of internal validity. But if this effect were 

drop out of the program, but they may still remain accessible for measurement. It is 
important that resear�hers try to follow up this latter group. 
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stronger in the treatment condition than in the comparison condi­
tion, we should worry. Socioeconomic status is then acting as an 
assignment variable and should be controlled in the outcome analy­
sis. 

Independence 

In Chapter 4 we pointed out that the failure to have independent 
units can bias the estimate of the standard error of the treatment 
effect. Independence refers to uncorrelated residuals in the regres­
sion equation. The usual presumption is that a violation of the 
independence assumption makes the estimate of error variance too 
small, resulting in too large an F- or t-test. Too small an estimate of 
error results in too liberal a test and too many Type I errors. As we 
shall see, bias in the estimate of. error variance can occasionally 
create too many Type II errors. 

Violation of the independence assumption can come about in 
many different ways. First, there is the case of serial dependency 
(reviewed extensively in Chapter 7). For time-series data, adjacent 
observations tend to be more highly correlated than observations 
separated far in time. Another form of nonindependence is spatial 
dependency. Observations adjacent in space are more similar than 
those far apart. For example in a study of a city's day-care ce.nters, 
we would expect that centers that are geographically close would be 
more similar than those far a.part. 

Besides serial and spatial dependency; nonindependence can arise 
because of social reasons. In natural settings persons are not kept 
physically separated and isolated. Rather, they communicate with 
each other, provide mutual assistance, imitate each other's behav­
ior, and occasionally compete with one another. Given these social 
processes, it is not valid to treat the data as a set of independent 
replications. A related problem is that interventions are typically 
embedded in a social setting. The norms and atmosphere of that 
setting make the scores of subjects more alike than would be the 
scores of subjects from different settings. 

The design of the research can also create problems of noninde- · 

pendence. In social research a subject may have a "partner." The 
linkage with the partner can be a natural one, as in the case of 
husbands and wives or roommates, or it can be created by the 
researcher, as in the case of matched pairs of persons brought 
together to interact. If ignored in the analysis, the presence of 
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partners (or triples or even larger groups) violates the independence 
assumption. As discussed in the next section, this violation can also 
be viewed as a unit of analysis problem. 

To illustrate the different effects of nonindependence on the 
standard error, we shall consider a hypothetical study of the effects 
of marriage counseling on two outcome variables. The treatment is 
marriage counseling versus no marriage counseling; the two depen­
dent measures are the individual's satisfaction with the marriage 
and the amount of housework done by each individual. There are 
two possible ways of delivering the treatment. We could assign both 
members of the couple to a treatment condition (the couple as the 
unit of assignment), or we could assign one member of the couple to 
the treatment and let the other serve as comparison (the individual 
as the unit of assignment). To simplify matters we assume in each 
case that assignment is done randomly. 

Almost certainly a husband's score is correlated with his wife's 
score. The correlation would be positive for the satisfaction measure 
(if one member is satisfied, so is the other) and negative for the 
housework measure (if one person does most of the work, the other 
does less). Because the scores of the couple are correlated and 
therefore not independent, we cannot treat each person as an 
independent replication in the statistical analysis. Although we can 
and should include couple in the statistical analysis, it is instructive 
to consider the effect of ignoring couple on the standard error. 

When couples are the unit of assignment, the estimate of the 
treatment effect involves a comparison of treated and untreated 
couples. However, looking within a treatment group, observations 
are not independent, because the husband and wife are both in the 
same group. We have then a biased estimate of the variation within 
treatment groups because of nonindependence. The variation is 
underestimated when the correlation between spouses is positive, as 
in the case of the satisfaction measure. To understand this better, 
consider the case in which husbands and wives totally agree on how 
satisfied they are in their marriages. In such a case the variation of 
subjects within treatment groups is deflated because married part­
ners have identical scores. In a sense there are twice as many 
degrees of freedom as there ought to be. When the correlation is 
negative, the error term is inflated, because the scores within groups 
are dissimilar. 

If individuals are the unit of assignment, for the satisfaction 
measure the estimate of error is too large. Persons within each 
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Table 8.4. The effect of nonindependence on whether the test of 
the treatment is too liberal (too many Type I errors) or too 
conservative (too few Type I errors) 

Nonindependence 

Within treatment groups ( cou­

ples assigned to treatment) 

Between treatment groups 

(persons assigned to 

treatments) 

Residuals correlated 

Positively 

(satisfaction) 

Liberal 

Conservative 

Negatively 

(housework) 

Conservative 

Liberal 

treatment group are not married to each other, whereas the compar­
ison of treatment groups involves persons who are married to each 
other. Given the positive correlation for satisfaction, we would 
expect the treated and untreated means to be relatively similar, but 
this fact is not taken into account in the error term. If we examined 
the housework.-dependent variable, the estimate of the error is too 
small. The treatment means would be negatively correlated, 
whereas the error term ignores this. 

Table 8.4 summarizes the effects of type of nonindependence and 
the direction of the correlation of the outcome variable. The row 
heading refers to the type of nonindependence, which can either be 
within treatment groups or between treatment groups. Within­
treatment-group nonindependence refers to contamination or link­
ages between persons who are in the same treatment. Thus the 
correlated observations are in the same treatment group. Between­
treatment-group nonindependence refers to contamination or link­
ages between subjects who are in different treatment groups. Thus 
the correlated observations are in different treatment groups. 
Within a single experiment, both types of nonindependence are 
possible depending on what treatment variable we look at. For 
instance, for the marriage counseling example, couples might be 
assigned to either receive the treatment or not. For this treatment 
variable there is nonindependence within the treatment group, 
because the correlated observations are in the same treatment 
group. However, if sex of subject was looked at as a "treatment," 
then observations would be nonindependent between treatment 
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groups, because the correlation is between persons of different 
sexes. Tb us, within the same experiment, the standard error for one 
effect can be inflated whereas for another effect it can be deflated. 

For the interrupted time-series design that we discussed in 
Chapter 7, nonindependence is a major problem. Table 8.4 can 
clarify the direction of bias for that design. It is reasonable to 
assume that the largest autocorrelations are those with the shortest 
lags. If such is the case and if the first set of observations are 
untreated and the next set of observations are treated, then the bulk 
of the nonindependence is within treatment groups, because adja­
cent observations are likely to be in the same treatment group. 
However, if the treatment is given to even-numbered time points 
and withheld from odd ones, the bulk of the nonindependence is 
between treatment groups. The sign of the autocorrelation coupled 
with the type of nonindependence determines the direction of bias in 
the standard error. 

, 

A violation of the independence assumption results in biased 
estimates of error variance. To solve this problem one needs to 
understand the process that generated correlated observations and 
take that process into account in the statistical analysis. This may 
mean transforming the data as in time-series analysis, or it may 
mean including new factors in the analysis, such as couple. 

Before we leave the topic of nonindependence, we should note 
that it should not be viewed solely as a nuisance problem that 
invalidates standard tests of significance. For certain problems the 
pattern of nonindependence is the very topic of study. For instance, 
if we are interested in social networks, the diffusion of innovation, or 
classroom effects, the structure of nonindependence in the data 
specifies the social process. 

Unit of analysis 

In Chapter 4 we discussed the issue of the unit of analysis, that is, 
the unit of the statistical analysis. We pointed out that the appro­
priate unit of analysis is usually-the unit of assignment. 

The unit-of-analysis question in social research is actually three 
very different but related questions that unfortunately get tangled 
together. To determine the unit of analysis we need to answer three 
different questions: generalization, compositional effects, and inde­
pendence. Let us consider a hypothetical study to help us differen­
tiate t�e three questions. Imagine a national survey of 100 day-care 
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centers from which ten children in each day-care center are 
measured. The researcher wishes to measure the effect of govern­
ment subsidy versus no government subsidy and the effect of the 
child's sex on social development. The question is what should be 
the unit of analysis: the child or the day-care center. 

Generalization refers to the effect of subsidy on what, the child or 
day-care center. Although the child may seem to be the natural unit 
of generalization, there may be good reasons for preferring general­
ization at the level of the center. Subsidies are given to centers, not 
to children. Moreover, the subsidy is spent by the center, and its 
effect is presumably on all the children and not just some. For the 
effect of sex, it may seem that the only level of generalization is the 
child. However, it may be that sex has its effect through the sex 
ratio of the day-care center. In centers with high proportions of 
boys, the staffs have a certain orientation; whereas in those centers 
with high proportions of girls, the staffs act differently. Generaliza­
tion at the center level is a more reasonable option to consider than 
might at first be thought. 

Compositional effects refer to the fact that individuals have been 
placed into the different day-care centers in a nonrandom fashion. 
The children in the different centers may differ in terms of age, 
parental background, and the like. The different day-care centers 
are composed of different types of persons. Because the subsidies 
are given to the center and the centers differ in terms of their 
composition, the individual level of analysis is not appropriate. If 
the child were the unit of analysis, then compositional differences 
would be. confounded with the treatment variable. The presence of 
compositional effects then raises questions concerning the unit of 
analysis. 

Independence is the most neglected aspect of the unit of analysis­
related questions. In day-care centers, children, hopefully, are not 
isolated in cells. Rather, they interact and mutually influence one 
another. When children's scores are correlated, the basic analysis 
model we have presented is not valid. Given nonindependent obser­
vations, the appropriate unit of analysis is the center. 

If one wishes to generalize at the level of the day-care center, or 
is worried about either the presence of compositional effects or 
nonindependence, one should treat the day-care center as the unit 
of analysis. However, the costs in terms of conclusion validity may 
be prohibitive. For our example, if the individual is the unit of 
analysis, there are about 1,000 degrees of freedom, whereas if the 
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Table 8.5. Analysis-of-variance table for a hierarchically 
nested design 

Source of variance 

Treatments ( T) 
Centers within 

treatments ( C) 
Subjects within 

centers within 

treatments (S) 

Mean 

Square 

MSc 

MSs 

Degrees of 

freedom 

l 

98 

900 

center is the unit, the degrees of.freedom are about I 00. It would be 
well worth the time and effort to determine if the individual could 
be used as the unit of analysis, even if one assumes that there are 
nonindependence or compositional effects. One can evalua_te empiri­
cally whether compositional effects and nonindependence prohibit 
an analysis at the individual level in the following way. 

Table 8.5 is an analysis-of-variance table for the hypothetical 
day-care center design. The design is said to be hierarchically 
nested (Winer, 1971 ). Centers are nested within treatments and 
subjects are nested within centers. If the center is the appropriate 
unit of analysis, then the correct F-ratio for examining treatment 
effects is MSr/ MSc. If the individual is to be used as the unit of 
analysis, then the appropriate error term is the pooled error term of 
subjects and centers, which is 

dfsMSs + dfcMSc 
dfs + dfc 

We shall refer to this as the pooled error term. In order to use this 
pooled error term, we need to test for compositional effects and lack 
of independence. This can be done by computing the F-ratio of 
MSc/ MSs. If nonsignificant it indicates that, regardless of the unit 
of generalization, we can use the pooled error term (Anderson & 
Ager, 1978). 

This strategy is useful when we have a hierarchically nested 
design with assignment at the level of the center. The reader is 
urged to consult statistical textbooks in choosing error terms for 
other designs. 

In practice, one often cannot use the group· or center as the unit of 
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analysis even if that is the desired level of generalization and even if 
compositional effects and nonindependence are likely. There may 
just be too few degrees of freedom to employ such a strategy. 

Conclusion 

In this chapter we considered four different designs. Two of the 
designs are in some sense variants of the nonequivalent control 
group design: the age cohort design and the changing treatment 
design. The age cohort design is useful if age is the assignment 
variable or if a large selection by maturation interaction is a likely 
threat to internal validity. The changing treatment variable design 
can be analyzed by procedures described in Chapter 6 with some 
slight modifications. We also considered the patched-up design and 
found it to be lacking in internal validity. We then considered the 
value-added analysis, where treatment estimates are derived by 
projecting growth curves. 

We explored two factors that affect internal validity, regression 
toward the mean and subject mortality, and two factors that affect 
conclusion validity, independence and unit of analysis. An under­
standing of these factors should aid the researcher in designing and 
analyzing applied social research. 



9 

The post-only correlational 

design 

Applied social researchers are frequently asked to evaluate a social 
intervention or program after it has taken place. Usually, in such 
cases, the researcher gathers data only after the treatment has been 
administered, collecting information simultaneously on outcomes, 
background characteristics of the subjects, and treatment. From 
such cross-sectional data· the researcher is faced with the difficult 
task of making causal inferences about the impact of the social 
intervention. Research conducted in this manner employs what we 
call a post-only correlational design. 

In a more formal sense, this research design is very much like the 
nonequivalent control group design discussed in Chapter 6, except 
that longitudinal data or pre-treatment measures are not available. 
In both this design and the nonequivalent control group design, 
various groups of subjects receive different treatments. In neither 
design are subjects assigned randomly to treatment conditions, and 
the assignment rule is unknown. Hence we expect them to differ 
even in the absence of treatment effects. Unlike the nonequivalent 
control group design, however, post-only correlational designs do 
not include pre-treatment measures through which we might 
attempt to control for the unknown assignment variable. In post­
only correlational designs, inferences about the unknown assign­
ment rule must be made on the basis of data collected after subjects 
have been exposed to the treatment. We have seen in Chapter 6 that 
it is very difficult to control adequately for an unknown assignment 
rule when we are able to gather pre-treatment data. Not surprising­
ly, when we only have post-treatment data, adequate control is all 
the more difficult. In the absence of pre-treatment measures, any 
given post-treatment variable can be seen as potentially reflecting 
both the assignment rule as well as treatment effects. In correla­
tional designs, a variable that is one researcher's outcome variable 
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Covariates 

a b 
Outcomes 

Treatment 

Figure 9.1. Causal effects in the post-only correlation design. 

of interest may be another researcher's covariate. The distinction 
between outcome variables and covariates is not provided by time of 
measurement, but rather must be derived theoretically. 

As if the problem of adequately. controlling for the unknown 
assignment rule were not enough, designs of the post-only correla­
tional sort may also be handicapped by the researcher's inability to 
assess the. exact treatment level or combination received by a 
subject. If the researcher appears on the scene well after the 
conclusion of the treatment, he or she may be forced to gather 
information about treatment conditions from the recollections of the 
subjects. Thus there may be error in the measurement of treatment 
variables, a situation that we have not met in the designs discussed 
thus far. Further, if treatment information is gathered from the 
subjects' own recollections, it may be that the errors in those 
recollections are systematic; that is, they may be affected both by 
the assignment variable and by the treatment. Causal inference in 
the presence of such systematic errors becomes much more diffi­
cult. 

The design is thus characterized by an unknown assignment rule 
and by cross-sectional post-only data. As a result, the underlying 
model of causal effects between the treatment, the outcome, and 
covariates may be as complex as that depicted in Figure 9.1. What 
we wish to estimate in this model is the causal arrow f representing 
the effect of the treatment on the outcome. The covariates represent 
the researcher's attempt to control for the unknown assignment rule 
(causal arrow a). These need to be controlled because they are 
related to the outcome in the absence of treatment effects (causal 
arrows c and d). We measure all three types of variables concur­
rently, and hence the covariates may be influenced by both the 
treatment (arrow b) and the outcome (arrow d). In addition, the 
outcome may influence the measurement of treatment when treat-
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ment information is gathered from subjects' recollections (arrow e). 
The estimation of all of these effects simultaneously is simply not 
possible from cross-sectional data. Hence a number of simplifying 
assumptions must be made. Because the conclusions of such an 
analysis are heavily dependent on the simplifying assumptions, 
post-only correlational designs are most useful as exploratory, 
hypothesis-generating research designs. The causal inferences from 
such designs remain plausible hypotheses until tested more rigor­
ously, if such is possible. 

Although the post-only correlational design presents substantial 
threats to internal validity, such a design may have high construct 
validity. This benefit derives from the fact that data are cross­
sectional rather than longitudinal, thus permitting the researcher to 
examine more easily many diverse populations and treatment 
combinations. Longitudinal designs are almost always plagued by 
dropout rates: Those who are successfully reinterviewed differ from 
those who are not. Gathering data at only one time avoids this 
problem. 

· 

At this point, it may be helpful to illustrate the problems and 
advantages of post-only correlational designs by presenting a well­
known example. Following this example we turn our attention to the 
.analysis of post-only correlational data. 

The Equality of Educational Opportunity report 

Perhaps the best-known and most massive example of a post-only 
correlational research design is the Equality of Educational Oppor­
tunity (EEO) report prepared by James S. Coleman and colleagues 
( 1966). Mandated by an act of Congress to be completed within a 
year, this study sought to assess, among other things, the factors 
that influence primary and secondary educational achievement 
throughout the United States. A massive test battery and question­
naire were administered to more than six hundred thousand school 
children, and the characteristics of their schools, teachers, and peers 
were recorded. In essence, the treatments to be evaluated were the 
many, many different combinations of teacher, school, and peer 
characteristics. The researchers sought to assess the extent to which 
each of these affected achievement. Clearly, students in these 
different learning settings might be expected to differ in a variety of 
ways, hence we might expect outcome differences in the absence of 
treatment effects. However, all data were gathered post-treatment. 
The study thus exhibits the two characteristics of a post-only 
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correlational study: an unknown assignment rule and cross-sectional 
rather than longitudinal data. 

The richness and detail of the data that were collected by 
Coleman and his colleagues demonstrate the advantages of employ­
ing a post-only correlational design. For purposes of describing and 
documenting the schooling process in America, these data are 
unmatched. No quasi-experimental design would have yielded 
information as rich and as informative, given the time restrictions 
under which the study was conducted. 

At the same time, when it comes to making causal inferences 
about the effects of schooling, the disadvantages of a post-only 
correlational design become apparent. Suppose that we wanted to 
estimate the causal effects of some school characteristic (e.g., size of 
library) on verbal achievement, controlling for differences in 
students' background (e.g., socioeconomic status of family). 
Threats to the validity of such causal inferences arise from the 
following sources: 

1 As in the nonequivalent control group design, controlling for 
socioeconomic status of family rriay be inadequate to the 
extent that the true assignment variable is not reflected in it 
or is reflected with error. The estimated effect of library size 
may then be biased. 

2 Because socioeconomic status is measured after the treat­
ment rather than before, it is conceivable that measures of it 
may be affected by the treatment. For instance, socioeco­
nomic status was measured in part by the presence of 
reading materials in the home (e.g., newspapers, magazines, 
books, encyclopedia). It is conceivable that the presence of a 
large school library may induce families to have more 
reading materials around the house. To the extent that the 
treatment affects the "background" variable, controlling for 
it will cause us to underestimate treatment effects. 

3 Just as the treatment may exert a causal effect on the 
supposed background variable, so too the outcome can have 
such an. effect. To use the preceding example, it is conceiv­
able that school library size may induce higher student 
verbal achievement, which would encourage parents to 
purchase books or an encyclopedia for home use. If such is 
the case, then the "background" variable is not causally 
prior to the outcome and hence should not be controlled in 
estimating treatment effects. 
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Because of these problems and others, the causal conclusions of 
Coleman and his colleagues concerning schooling effects have been 
criticized (e.g., Bowles & Levin, 1968; Bridge, Judd, & Moock, 
1979; Cain & Watts, 1970). Nevertheless, if the data are looked at 
descriptively and predictively, they are unmatched. No other sort of 
research design could have so completely and so quickly described 
schooling in America. 

Classic analysis of the post-only correlational design 

Multiple regression is traditionally used to analyze post-only corre.;. 
lational data. The usual regression equation is some variant of the 
following: 

Y = h0 + L huZ; + L h2iXi + e 
; j 

where Y is some outcome variable, covariates are represented by Z;, 
and the treatment variables by Xi. Residual variation in Y is labeled 
e. The h's are regression coefficients to be estimated. If multiple 
outcomes are assessed, typically a separate regression equation is 
computed for each. Various multiplicative interactions may be 
included in the regression equation. Such interactions would typi­
cally be between pairs of the treatment variables, ·or between a 
treatment variable and a covariate. An interaction between two 
treatment variables assesses whether the effect of one treatment 
variable depends on the level �f another. A treatment variable by 
covariate interaction tests whether a treatment effect varies with 
the background characteristics of the subjects. 

The various partial regression coefficients for the treatment 
variables (h2) are estimates of the treatment effects and are the 
basis of interpretation. With interactive effects, the hierarchical 
analysis procedure that was presented in Chapter 5 is recom­
mended. Specifically, a regression equation is computed .with all of 
the highest-order interactions that are theoretically justified. The 
equation is then recalculated dropping out any of the highest-order 
terms that are nonsignificant. If all of them are -nonsignificant, then 
the equation is recomputed, dropping out nonsignificant predictors 
at the next highest level. This hierarchical procedure continues until 
all of the highest-order interactions or effects that remain in the 
equation are significant. The resulting equati�n can then be 
graphed or tabled for ease of interpretation. 
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In the past, estimates of the treatment effect other than the 
partial regression coefficients have occasionally been used. For 
instance, a number of researchers have calculated the '4additional 
variance explained" when a treatment variable is added to a 
regression equation in which the outcome has been regressed on the 
covariates (e.g., Coleman et al., 1966; Wolf, 1978). This increment 
in R2 or explained variance results from a hierarchical regression 
procedure in which terms are sequentially added to the equation, 
rather than sequentially deleted, as we have advocated. Interpreta­
tion of the increment to variance explained is more cumbersome 
and, we think, less desirable than interpreting the partial regression 
coefficient for the treatment. As we have repeatedly seen, the 
regression coefficient for a dummy-coded treatment variable is the 
difference between the treatment and comparison group means on 
the outcome, adjusting for whatever covariates are included. 

Sources of bias in the classic analysis 

There are a number of potential sources of bias in the estimate of 
treatment effects under the classic regression analysis: bias arising 
from measurement error; bias resulting from variables that cause 
the outcome and are correlated with the treatment but that are 
omitted from the analysis; and bias resulting from nonrecursive or 
feedback causal processes. Each of these is discussed below. 

Bias resulting from measurement error 

It is sometimes not realized that measurement error in variables 
frequently biases regression coefficients. Although measurement 
error has been briefly discussed previously in this volume, especially 
errors in the pretest in Chapter 6, a more complete analysis has been 
postponed until now. 

The usual psychometric model for measuring any construct is 
that the measured variable contains both the htrue" score and 
error: 

where Xis the measured variable, Tis the true score, and E is error. 
It is normally assumed that E is uncorrelated with T and with all 
other variables. From this assumption, it follows that the variance of 
X equals. the sum of the variances of Tand E, or 

2 2 2 
<Tx = <Tr + <TE 
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The ratio of the true score variance to the total variance {u//ux2) is 
known as the reliability of X (rxx). In classic psychometric theory, 
then, the reliability of a variable is the percentage of variance that is 
explained by the true score construct. The correlation between the 
true score and the variable is the square root of the reliability: 

When X, containing measurement error, is correlated with some 
other variable Y, which we assume to be error-free, the resulting 
correlation, rxy, can be shown to equal the correlation between the 
true score of X and Y times the square root of the reliability of X. In 
equation form, 

where X is the observed variable, T is its true score, and Y is an 
error-free variable. To the extent that the correlation between X and 
Tis less than one, the observed correlation, rxy, will underestimate 
what the correlation would be if X were measured without error. 

With measurement error in both X and Y, the observed correla­
tion between the two is smaller than what would be the correlation 
between true scores. Frequently, correlations are corrected for 
measurement error in both variables by using the standard correc­
tion for attenuation: 

·where 'xx and ryy are the respective reliabilities. 
The regression coefficient that results when Y is regressed on X 

may also be affected by measurement error. If X is measured with 
error but Y is not, the regression coefficient, byx ( Y the criterion, X 

the predictor) is closer to zero than it would be if X were measured 
without error. If there is measurement error in Y but not in X, the 
observed regression coefficient is not attenuated. If both variables 
are standardized and the standardized regression coefficient, {jyx, is 
calculated, error in either the predictor, X, or the criterion, Y, 

attenuates the coefficient. Again the extent of attenuation is deter­
mined by the square root of the reliabilities of the observed 
variables. 

When the regression equation incorporates more than two 
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predictor variables, the biasing effects of measurement error 
become more complex. Suppose that we had a three-variable model 
with one outcome, Y, one treatment variable, X, and one covariate, 
Z. We wish to evaluate the effects of error in X, Y, and Z on the 
regression coefficient for the treatment, byx_z. If we have error in Y, 
but in neither X nor Z, the regression coefficient for treatment is 
unbiased. In the standardized case, the standardized regression 
coefficient, f3yx.z is attenuated to the extent that Y is unreliable. If 
there is measurement error in X, the treatment variable, but in 
neither Y nor Z, both the unstandardized regression coefficient, 
byx_z, and its standardized counterpart are attenuated. Perhaps the 
most surprising case is when there is measurement error in Z, the 
covariate, but in neither X nor Y. Measurement error in Z can cause 
us to overestimate the treatment effect (whether standardized or 
not), to underestimate it, or, very infrequently, to estimate it 
without bias. The presence and direction of bias can be shown to 
depend on a relationship between the bivariate correlations. We 
tend to overestimate treatment effects with error in Z when 

Tyz 
Tyx< ­

Txz 

When the direetion of this inequality is reversed, we tend to 
underestimate the treatment effect.1 If ryx equals Tyz/ rxz, no bias 
results from errors in Z. 

It is likely to be the case that many, if not all, of the variables that 
we measure contain error. When using unstandardized regression 
coefficients, errors in the criterion do not lead to bias. Researchers 
should still strive, of course, for reliable outcome variables, because 
criterion measurement error decreases power. Measurement error 
in the predictor variables has an uncertain effect on the regression 
coefficients, because there are multiple sources of bias. Error in a 
given predictor leads to the relative attenuation of its effect. That 
effect, however, is also biased by errors in all other predictors, and 
the direction of that bias is not systematic. The total bias from all 
sources is therefore a complex function of the unknown reliabilities 
of the variables and the correlations among them. This depressing 
conclusion becomes even more depressing when we realize that the 
classic psychometric assumption of random measurement error is 
unlikely to hold. Measurement error in one variable is likely to be 
correlated with error in others. 

1 A proof of this is given by Judd ( 1980). 
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Figure 9.2. An omitted variable (Z) that is correlated with the treatment 

(X) but does not cause the outcome (Y). 

Bias resulting from omitted variables 

An infinite number of variables are omitted from every regression 
equation. The absence of these variables from a regression equation 
can both affect the power of tests of treatment effects and can also 
result in bias in the estimate of these effects. In order to clarify the 
effect of omitted variables, they should be divided into four types. 

Type 1: omitted variables that are uncorrelated with both 
the treatment and the outcome. Such a variable is superfluous, 
because it shares no variance with the other variables in the system. 
Including it results in a loss of power. If, for instance, sex of subject 
is uncorrelated with either treatment or outcome, we shall lose 
statistical power by including it in the analysis because there will 
then be fewer degrees of freedom that remain for error. 

Type 2: omitted variables that are correlated with the· 
treatment but that exert no causal effect on the outcome. Such a 
variable, Z, is depicted in Figure 9 .2. Entering Z into the regression 
equation of Yon X results in a substantial loss of power. An 
example of such a situation is found in a regression-discontinuity 
design in which the pretest measure, used to determine assignment, 
is uncorrelated with the outcome variable. Controlling for such a 
pretest results in a loss of power, because it is collinear with the 
treatment. It does not increase internal validity, because it is 
uncorrelated with the outcome. 

Type 3: omitted variables that are correlated with the 
outcome but not with the treatment. Including such omitted vari­
ables in the regression equation will increase the power of the test of 
treatment effects. In essence this is the rationale for analysis of 
covariance in randomized experiments. There, because of random 
assignment, the covariate is uncorrelated on the average with the 
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Figure 9.3. Models of an omitted variable (Z) that is correlated with both 

the treatment and the outcome. 

treatment. Omitted variables that are correlated with the outcome 
but not with the treatment can also be used quite profitably in 
correlational designs to increase power. 

Type 4: omitted variables that are correlated with the 
treatment and also with the outcome when treatment is controlled. 
There are two models for potential omitted variables that fall under 
this fourth category. These two models are depicted in Figure 9.3. 
In these models, Z is the omitted variable that is correlated with 
residual vanation in Y ( U) when X is controlled. In model A of 
Figure 9.3, the omitted variable Z is affected by t�e treatment. In 
model B of Figure 9.3, the omitted variable affects the treatment. 

If Z is omitted from the regression equation in which treatment 
effects are estimated, omitted variables that are caused by the 
treatment (as in Figure 9.3A) do not lead to bias in the estimate of 
the effect of treatment on outcpme. However, if the omitted variable 
is one that causes the treatment (as in Figure 9.3B), serious bias will 
result when that omitted variable is correlated with residual varia­
tion in Y.2 

An example will illustrate the difference in the status of the two 
models of Figure 9.3. Suppose that a researcher was interested in 
the effect of different teacher-student ratios in day-care centers on 
the development of reading aptitude in the children enrolled. It is 
reasonable to expect that relatively well-to-do families are more 
likely to send their children to day-care centers with high teacher­
student ratios. We would also expect that c�ildren from well-to-do 
families would do better on the outcome measure of reading 
readiness than children from poorer backgrounds, in the absence of 
treatment effects. In our usual language, wealth or status of family 
constitutes, at least in part, the assignment variable. It causes 

2 In Figure 9.38, the omitted variable, Z, affects U. In fact, whenever the omitted Z is 
correlated with U and causes X, bias results. 
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assignment to treatment (as in Figure 9.3B) and is also related to 
the outcome. Bias in the estimate of the treatment effect results if 
this omitted variable is not controlled. 

Suppose that there was a causal effect of teacher-student ratio 
even when the assignment variable was controlled. It is undoubtedly 
the case that the teacher-student ratio affects the process of 
interaction in the day care. For instance, it affects the amount of 
individual attention given to children, which in turn is likely to 
affect reading readiness. In this case, the researcher would not be in 
error in concluding that student-teacher ratio affects reading readi­
ness, even if the variable, individual attention, was omitted from the 
analysis. 

In conclusion, there is a single type of omitted variable that 
threatens internal validity: a variable that causes the treatment and 
is correlated with the outcome when treatment is controlled. 
Although conclusion validity is affected by other types of omitted 
variables, internal validity is not. 

Construct validity of the omitted variable. We can differen­
tiate within the single type of omitted variable that results in bias by 
examining the similarity between the constructs represented by the 
omitted variable and the treatment. At one extreme, the omitted 
variable represents a completely distinct construct from that which 
is measured by the treatment variable. At the other extreme, the 
constructs of both the treatment and the omitted variable are 
identical. In between these extremes, the constructs represented by 
the omitted and treatment variables are similar or related conceptu­
ally, but are not identical. These relatively abstract distinctions are 
explained in the following paragraphs. 

At one extreme, the omitted variable and the treatment represent 
completely different constructs. For instance, parents' wealth deter­
mines if children can attend a day-care center with a high teacher­
student ratio. Here, wealth and teacher-student ratio are clearly 
different constructs. This extreme illustrates what is usually the 
case with an omitted assignment variable. If that assignment 
variable is correlated with the outcome in the absence of treatment 
effects, it needs to be controlled in the analysis. 

Between the two extremes the omitted variable may represent in 
part the treatment construct, but in other ways it does not. For 
example, it may be that we are unable to measure the treatment 
variable that we would like to. Instead, we find another variable 
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that is similar to it and that appears as a proxy for it. The effect of 
the proxy variable will only approximate the effect of the true 
treatment, and thus bias results. For instance, the size of a school 
library has often been included in studies of factors that affect 
educational achievement. The true treatment construct in such 
cases is usually not the size of the library itself but rather the school 
administration's commitment toward spending money on educa­
tional materials. That commitment, which is the omitted variable, is 
assumed to be unmeasurable, and so a proxy variable takes its place 
in the regression analysis. A good proxy variable is one that 
represents as closely as possible the omitted true treatment 
construct. We then make inferences, on the basis of the analysis of 
the proxy variable, about the hypothetical effect of the omitted 
treatment for which we have only a proxy. In a formal sense, the 
estimated effect of the proxy variable, number of books in library, is 
biased when the construct for which it is a proxy is omitted from the 
analysis. In other words, if we manipulated the number of books in 
some school library, we would probably not expect to find changes 
in achievement unless we also manipulated the omitted theoretical 
construct for which it is a proxy. If we realize, however, that the 
included treatment variable is merely a proxy for an omitted true 
treatment, then cautious interpretations of results _can be made. 

Proxy variables are variables that are included in an analysis 
because they represent at least in part the omitted theoretical 
construct that is of major interest. Thus we assume that proxy 
variables measure the omitted construct with error. In the case of 
proxy variables, this error is assumed to be both random as well as 
systematic. That is, the proxy variable reflects not only the theoreti­
cal construct of interest, but also other constructs as well. I ts 
departures from the theoretical construct of interest are not simply 
random. 

If the included treatment variable measures only the theoretical 
construct of interest but contains in addition random error, then it is 
not a proxy variable; rather, it is an indicator of the construct with 
less than perfect reliability. Such a situation defines the other 
extreme for biasing omitted variables. The variable that is included 
in the regression analysis is an imperfect measure of the omitted 
true construct� but imperfect only through random, rather than 
systematic, departures. We have already discussed the fact that 
measurement error in variables that are included in regression 
analysis results in bias. It should now be apparent that, in fact, bias 
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Figure 9.4. Model with disturbance (U) of outcome correlated with the 

treatment. 

from measurement error is just one example of bias in regression 
analysis caused by omitted variables. In the case of measurement 
error, the omitted variable is the construct. 

There is really only one source of bias in multiple regression 
estimation. Prior to this point, we talked about bias due to the 
omission of the assignment variable, and bias from measurement 
error. In fact, in both cases, the bias results because a variable that 
causes the measured treatment.and is correlated with the outcome 
has been omitted from the analysis. One convenient way of thinking 
about the biasing effects of omitted variables is to refer to all of the 
unmeasured sources of variation in the outcome as if they were a 
single variable. This single variable is called the disturbance or 
residual of the outcome. In models where bias is present, the 
treatment is correlated with this disturbance. Such a situation is 
portrayed in Figure 9.4, where U, the disturbance of Y, refers to all 
of the unmeasured causes of the outcome Y. In this model some part 
of this disturbance is related to the treatment variable X. As we 
have explained, this part of U may range from the omitted assign­
ment variable to the true score treatment construct. Regression 
analysis always yields biased estimates of the effect of X on Y when 
the true causal model is such that the disturbance of Y is correlated 
withX. 

Bias resu/tingfrom reciprocal causation 

In the introductory section of this chapter, we argued that because 
treatments and outcomes are measured concurrently in the post­
only correlational design, it may be that the measured treatment is 
both a cause and an effect of the outcome. In other words, the true 
causal model for this design is as in Figure 9.5. In this model, we 
have two disturbances, Ux and Uy, because both variables are effects 
as well as causes. In other words, in the case of each variable we 
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Ux------X ------- Y ----- Uy 

Figure 9.5. Model with reciprocal causation between treatment and 

outcome. 

can refer to the other variable as one of its causes and we can also 
specify a disturbance that represents all the rest of its causes. 

If we used multiple regression to estimate the causal effects of the 
system depicted in Figure 9.5, our estimates would be biased for the 
fundamental reason we have already identified: Each cause is in 
turn and in part correlated with the disturbance to the other 
variable. For instance, the causal effect of X on Y is biased when 
estimated by multiple regression. Because Uy is a cause of Y, which 
in turn causes X, Uy and X are correlated. Hence, we cannot 
estimate the effect of X on Ywithout bias, because the unmeasured 
disturbance of Y is also a cause of X. Similarly, multiple regression 
would yield a biased estimate of the effect of Yon X, because Y is 
also affected by the disturbance to X, Ux. 

Summary of problems in classic analysis 

In this section we have dealt with three sources of bias in the use of 
multiple regression to estimate causal effects in the post-only 
correlational design. The first source is the inevitable presence of 
measurement error. The second source of bias is due to omitted 
variables that cause the treatment and are correlated with the 
outcome when treatment is controlled. Finally, we discussed how 
the presence of reciprocal causation in the post-only design leads to 
biased estimates of causal effects. Although we have presented each 
of these three sources of bias separately, we have argued that in fact 
they all derive from one underlying problem: Multiple regression 
yields biased causal estimates when the unmeasured causes of an 
outcome, that is, its disturbance, are correlated with the treatment. 
In the case of measurement error, the unmeasured cause of the 
outcome that also causes the measured treatment is the "true" 
treatment. In the case of reciprocal causation, the disturbance to the 
outcome exerts a mediated causal effect on the treatment, mediated 
by the outcome itself. 

To go beyond the classic analysis of the post-only correlational 
design, and to eliminate. its inevitable biases, we need to use an 
analytic procedure that eliminates the fundamental problem that is 
the stumbling block of multiple regression. In other words, we need 
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a procedure that estimates causal effects even when we allow the 
disturbance of the outcome to be correlated with the causes of that 
outcome. Such a procedure would alleviate the sources of bias that 
we have discussed, because they all result from this same funda­
mental problem. 

Analysis of complexities of the post-only 
correlational design 

In the following pages two procedures are described that can 
generate unbiased estimates of treatment effects in the presence of 
measurement error in the treatment, omitted variables, and recipro­
cal causation. These procedures allow us to estimate the effects even 
when the treatment variable is correlated with the unmeasured 
disturbance of the outcome. Although these procedures overcome 
the fundamental problem in the use of multiple regression, they in 
turn make other assumptions that may make their use problematic. 
We discuss these in the course of our exposition of the techniques. 

Two-stage least squares 

Because the problem in the use of multiple regression is that the 
treatment is correlated with the outcome's disturbance, one strategy 
to overcome this problem might be to assess effects of just that part 
of the treatment variable that is uncorrelated with the disturbance. 
Exactly this rationale lies behind the procedure known as two-stage 
least squares (2SLS). As the name implies, there are two steps 
involved in two-stage least-squares analysis. In the first step, we 
attempt to identify variation in the treatment that is uncorrelated 
with the disturbance. In the second stage, multiple regression is 
used to regress the outcome on just that portion of the treatment 
that the first stage has identified as uncorrelated with the distur­
bance. 

In Figure 9 .6 a causal model is depicted in which X, the 
treatment, is a cause of Y; U is the disturbance of Y and is 
correlated with X. The reason for the correlation could be that the 
assignment variable is omitted or that the treatment is measured 
with error. The variables Z1 and Z2 are called instrumental 
variables, or instruments, and have the following properties: 

1 They do not have any direct effect on Y. 
2 They are uncorrelated with the disturbance U. 
3 They are correlated with the treatment variable, X. 
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Figure 9.6. An instrumental variable model in which Xis correlated with 

Y's disturbance. 

To use two-stage least squares to estimate the effect of X on Yin 
this model, the first step is to regress X on Z1 and Z2 in order to 
derive predicted values for X: 

where X is the predicted value of X given the ordinary least-squares 
coefficients b0, b17 and b2• Because this X is a linear combination 
of Z1 and Z2, and because these instruments are in turn uncorre­
lated with U, X is therefore itself uncorrelated with the disturbance 
U. In other words, through the regression of X on Z1 and Z2 we have 
generated a new variable,3 X, which is by definition uncorr�lated 
with U. In the second step of two-stage least squares, Yis regressed 
on X. Because this new variable X is uncorrelated with the distur­
bance U, its regression coefficient is an unbiased estimate of its 
effect on Y. 

Although two-.stage least squares can yield unbiased effects 
estimates in cases such as Figure 9.6, it should be apparent that the 
quality of the estimates depends heavily on meeting the assumptions 
behind the instruments. In other words, it is strictly necessary that 
the instruments are neither a direct cause of Y nor correlated with 
its disturbance U. If these assumptions are violated, then the causal 
model is misspecified, and the resulting effects estimates will be 
substantially biased. Unfortunately there is no sure empirical proce­
dure for defining variables that meet the assumptions of good 
instruments. The assumptions ultimately rest on strong theory. 

We have only provided an introduction to the use of two-stage 
least-squares estimation. Before using this technique, we strongly 

1 When Z1 and Z2 are uncorrelated with X, the "variable" X will have zero variance. In such 
a case, if Y were regressed on X. the coefficient for X would be undefined. This is why it is 
essential that the instrumental variables be correlated with X. 
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encourage the reader to consult more detailed treatments (James & 

Singh, 1978; Wonnacott & Wonnacott, 1970). 
In an analogous procedure to that used for estimating effects in 

the case of Figure 9.6, two-stage least squares can be used to 
estimate effects in models involving reciprocal causation. The 
procedure is slightly more complicated because each of the variables 
involved in the reciprocal causation is correlated with the other 
dependent variable 's disturbance. Therefore at least one instrumen­
tal variable is needed for each variable involved in the causal 
feedback loop. In addition, the first stage in the two-stage least­
squares procedure needs to be conducted on each of the variables in 
the feedback loop. 

Figure 9.7 will be used to illustrate the application of two-stage 
least squares to reciprocal <;ausation models. In this model we wish 
to estimate the effects of X., X2, and Y2 on Y1 and of X2, X3, and Y1 
on Y2• In other words, we wish to estimate the coefficients of the 
following structural equations: 

Y1 = ho1 + h11X1 + h21X2 + b31Y2 + U1 

Y2 = ho2 + h12X2 + h2iX3 + b32Y1 + U2 

(These structural equations are not multiple regression equations. 
In these equations the coefficients represent true causal effects, 
which we have seen are estimated with bias when multiple regres­
sion is used.) 

Just as in the analysis of models with omitted variables, the first 
s�age in the two-stage analysis of reciprocal causation models is to 
regress Y1 and Y2 on the variables that are uncorrelated with the 
two disturbances, that is, on X17 X2, and X3. In the model of Figure 
9.7, these first-stage regressions would take the form 

Yi = ho3 + b13X1 + h23X2 + b33X3 

Y2 = b04 + h14X1 + h24X2 + b34X3 

These first-stage equations that are calculated using ordinary 
multiple regression are frequently referred to as reduced-form 
equations. They indicate the anticipated change in each of the Y's 
expected from a unit change in each of the X's, whether that change 
is a direct causal effect or mediated through the other Yvariable. In 
other words, they essentially ignore the reciprocal causation 
between the Y's and estimate total effects of X's on Y's. These 
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Figure 9. 7. A reciprocal causation model with instrumental variables. 

-reduced-form coefficients are unbiased using multiple regression 
because all X's are uncorrelated with the disturbances, Ui and U2, 
by definition. 

· 

In the second stage of analysis,. the structural equations are 
estimated using multiple regression, substituting the predicted rs, 
Yi and Y2, as predictors in the regression eq!lation. Thus Y1 in 
Figure 9. 7 would be regressed on Xi, X2, and Y2 and Y2 would be 
regressed on ·x2, X3, and Yi. The resulting coefficients are unbiased 
estimates of the causal coefficients because each of the predictors in 
a given equatio!l are uncorrelated with the distur�ance of the 
criterion. Thus, Y2 is uncorrelated with Ui. Likewise, Yi is uncorre­
lated with U2• 

The choice of instrumental variables in reciprocal causation 
models is crucial to the succes� of two-stage estimation. In Figure 
9.7, Xi is an instrument for Yi in estimating its effect on Y2• X3 is an 
instrument for Y2• These instruments must be chosen on strong 
theoretical grounds to meet the foil owing criteria: 

1 The variable must not appear in the structural equation that 
contains as a predictor the variable for which it is an 
instrument; 

2 The variable must be uncorrelated with the disturbances to 
all variables involved in the feedback loop; and 

3 It must exert a fairly substantial direct effect on the 
variable for which it is an instrument. 

If assumptions 1 and 2 concerning the instruments do not hold, the 
model has been misspecified and serious bias in the estimates 
r"esults. If assumption 3. does not hold, the analysis is imprecise. 
Again the reader is urged to consult the more detailed treatments 
cited earlier. 
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General approach to estimating linear structural 
equation models 

In recent years there has been considerable effort devoted by a 
group of statisticians toward developing a general, unified tech­
nique for estimating causal models. Karl Joreskog and Dag Sorbom 
(l 978) in particular have developed an analytic procedure to 
estimate causal effects in structural equation models. This proce­
dure can be used instead of the estimation techniques discussed in 
the chapter to this point. In addition, it substantially extends these 
techniques by integrating reliability assessment into the estimation 
of the causal model. We have referred to this procedure in earlier 
chapters without going into detail. At this point, more extended 
discussion is appropriate. 

When we were discussing measurement error earlier in this 
chapter, we stated that researchers sometimes correct correlations 
for attenuation before estimating causal effects. The problem with 
such a strategy is that it separates the measurement model or the 
reliability estimation procedure from the causal model or the 
estimation of causal coefficients. In fact, it is possible to integrate 
the two, ·to estimate both the measurement and the causal or 
structural models simultaneously. 

·The approach of Joreskog and Sorbom integrates the estimation 
of the measurement and structural models by making use of 
multiple indicators of unmeasured or latent constructs. The method 
assumes that all measured variables are indicators of unmeasured 
constructs. For instance, suppose that we measured the treatments 
received by a subject population in various ways. We might be 
interested in the effect of teachers' experience on achievement. We 
might measure the treatment construct both by asking teachers how 
long they have taught and by checking school records. In essence we 
would then have two indicators of the latent treatment construct, 
both of which probably contain some error of measurement. Like­
wise, we might have multiple indicators or measures of the outcome 
construct: a verbal achievement test, a grade-point average, and a 
mathematics achievement test. Finally, we might believe that treat­
ment assignment was produced by a socioeconomic status construct 
for which we have only very imperfect measures such as reported 
parents' education, type of neighborhood, and so forth. The causal 
model among constructs (the effect of experience on achievement 
controlling for socioeconomic status of student) and the measure­
ment models for the latent constructs are illustrated in Figure 9.8. 
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Figure 9.8. A multiple-indicator structural model. 

In this figure, X is the unmeasured treatment construct for which 
we have two indicators, X1 and X2• Each of these indicators is 
caused both by the construct and by error or residual variation, U1 
and U2• This describes the measurement or reliability model for the 
latent treatment construct X. The standardized coefficients of the 
effects of X on X1 and on X2 are the square root of the reliabilities of 
those variables. Likewise, there are similar measurement models for 
the latent outcome measure Y (three indicators: Y., Y2, and Y3, each 
of which has residual variation, U3 through U5) and for the socioeco­
nomic status construct Z (two indicators: Z1 and Z2, each having 
residual or error variation, U6 and U7). In addition to these measure­
ment models, Figure 9.8 depicts a causal model among the latent 
constructs X, Y, and Z. In this causal model X and Z cause the 
latent outcome Y. In addition, there is a disturbance ( V) to this 
latent outcome. 

The information used to estimate the coefficients of the model, 
both the measurement or reliability coefficients and the causal 
coefficients among latent constructs, consists of the twenty-one 
bivariate correlations among the seven indicators, and each of their 
variances. If this is sufficient information to estimate the coeffi­
cients of the model,4 an iterative procedure is used to estimate the 
coefficients. Greatly oversimplified; this procedure starts with 
approximations of values for the coefficients and determines what 
the correlation matrix between indicators should ·be given those 
starting coefficients. It then modifies the coefficient estimates to 
yield closer approximations to the observed correlation matrix. The 

4 This condition of sufficient information is traditionally called the identification issue in 
econometrics and structural modeling. By itself. determining if causal models are identified 
is a complex endeav_or. independent of the complexity of estimation . The reader is 
encouraged to consult Blalock (1969), Duncan (1975). and Kenny (1979) for discussions of 
identification. 
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Table 9.1. Variances and correlations of indicators for 
model of Figure 9.9 

Variances Xi X2 Zi Z2 Yi Y2 

Xi 11.90 

X2 13.54 .846 

Zi 24.50 .290 .297 

Z2 1.46 .313 .320 .623 

Yi 10.43 .158 .162 .205 .221 

Y2 3.10 .150 .153 .194 .209 .800 

Y3 15.13 .126 .128 .163 .176 .672 .635 

result of the iterations is a set of coefficient estimates that minimize 
a weighted discrepancy between the observed correlation matrix 
and that predicted by the model. Commonly, the discrepancy is 
minimized in such a way to provide what are called maximum­
likelihood parameter estimates. In Table 9.1, a hypothetical corre­
lation matrix for the example we presented in Figure 9 .8 is given, 
together with the variances of the variables. In Figure· 9.9, the 
maximum-likelihood parameter estimates are given. 

The causal parameters that are given in Figure 9.9 can be 
interpreted much like regression coefficients are interpreted, with 
the added complexity that they refer to the effects of latent or 
unmeasured variables. Thus the treatment effect in Figure 9.9 is 
.08, the effect of X on Y. We interpret this effect just as we would 
interpret an unstandardized regression coefficient: A one-unit 
change in X produces a .08 unit change in Y. The added\complexity 
in interpretation with latent constructs is that the metrics or scales 
for the latent variables depend on the measurement models. The 
usual approach is to set the metric of each construct equal to the 
metric of one of its indicators, by fixing the effect of the construct 
on that indicator at unity. For instance, the effect of X on Xh has 
been set to one. 

It may happen that the correlation matrix contains more infor­
mation than is required to derive the estimated coefficients. In this 
case, the additional information in the matrix provides a set of 
consistency tests that enable us to determine if the model that has 
been constructed is consistent with the observed correlation matrix. 
For instance, it might be in our Figure 9.8 that Y1 and Y3 (verbal 
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Figure 9.9. Maximum-likelihood structural coefficients resulting from 

data on Table 9.1 (disturbance variances omitted). 

and mathematics achievement tests) measure something different 
than Y2 (grade-point average). In other words, all three may not be 
indicators of the same underlying construct, and a more correctly 
specified model might include two latent outcome constructs, the 
first having indicators Y1 and Y3, the second having the unique 
indicator Y2• These two latent outcome constructs might show quite 
different treatment effects. 

The ability to test for possible misspecification of the model is a 
great advantage of this multiple-indicator estimation procedure 
over those that do not make use of multiple indicators. In addition, 
the procedure essentially subsumes all of the analytic procedures we 
have described in this chapter and elsewhere in this book. If we have 
single error-free indicators of constructs in a recursive model with 
the disturbance uncorrelated with predictor variables, maximum­
likelihood coefficients are identical to those that multiple regression 
yields. Likewise, models such as that depicted in Figure 9.6 involv­
ing omitted variables can be estimated by the procedure. Like 
two-stage least squares, at least one instrumental variable is neces­
sary for each independent variable that is correlated- with the 
disturbance. If such instruments are lacking, the observed correla­
tion matrix will not contain sufficient information to derive the 
coefficients. Thus, although this procedure can be used to estimate 
the coefficients of models with omitted variables, it solves the· 
omitted-variable problem in an identical manner to two-stage least 
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squares: by the inclusion of instrumental variables. Given instru­
mental variables, we can estimate structural coefficients either 
through a two-stage least-squares procedure ·or through this general 
procedure. The general procedure can also be used to estimate the 
coefficients of models involving reciprocal causation, such as that 
depicted in Figure 9. 7, again assuming the presence of instrumental 
variables. 

Because the procedure integrates the measurement and the 
causal or structural models, it becomes possible to include latent 
constructs in causal models that are not of theoretical interest in 
and of themselves, but rather that represent systematic sources of 
error in our measures. Earlier we discussed the distressing possibil­
ity that errors of measurement in two or more variables may be 
correlated. For instance, if we measured the same three variables at 
two time points, it is likely that factors that result in errors in the 
measures at time 1 also result in errors at time 2. By specifying such 
common sources of errors in our measures as latent constructs, we 
can estimate structural coefficients even allowing correlated errors 
of measurement, if sufficient information is contained in the 
correlation matrix. 

Given the advantages of a multiple-indicator approach to 
measurement error, an overall test of model misspecification, and 
the generality of the procedure, some might wonder why all other, 
more traditional data analytic procedures continue to be used. In 
fact, however, there are some disadvantages in this general 
approach for estimating structural coefficients. 

The first disadvantage is its complexity. In the preceding para­
graphs we have only hinted at the complexity of the procedure. For 
relatively simple analysis tasks, where, for instance, measurement 
error is expected to be small and random, the procedure may well be 
inefficient. 

The second major disadvantage is that the maximum-likelihood 
estimation procedure assumes that all variables share a multivariate 
normal distribution. It is unfortunate that the robustness of this 
assumption is at present unknown. Thus deviations from this 
assumption may possibly result in substantial estimation biases. 

Despite these disadvantages, it is clear to us that this procedure is 
a major analytic advance and will be used with increasing frequency 
in social research. The inevitable presence of measurement error in 
social research makes its advantages substantial. A multiple-indica­
tor approach to error and the simultaneous assessment of /both 
measurement and causal models render this procedure clearly 
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superior to others currently in use. The interested reader is referred 
to more advanced texts for details on how these procedures can be 
used (e.g., Bentler, 1980; Joreskog & Sorbom, 1979; Kenny, 1979). 

Summary and conclusion 

The post-only correlational design is one that is relatively easy to 
implement. The researcher needs only to gather data at one point in 
time from a variety of different subjects, some of whom received the 
treatment of interest and some of whom did not. In a formal sense, 
the design is defined by an unknown assignment rule and cross­
sectional data. 

Because of the ease with which correlational data can be gath­
ered, the detail of descriptive information can be impressive. The 
Equality of Educational Opportunity report (Coleman et al., 1966) 
bears witness to this fact. At the same time, the absence of 
longitudinal or pre-treatment data renders causal inference about 
the effects of treatments quite tenuous. To estimate unbiased 
treatment effects, one must attempt to control for the variable(s) 
that determined treatment assignment using post-treatment data. 
In Chapter 6 we discussed the difficulties in attempting to control 
for an unknown assignment rule with pre-treatment measures. 
When we have only post-treatment data, the problem is all the more 
difficult. It is quite unlikely that bias-free estimates of treatment 
effects will result when this design is used. On the other hand, for 
other purposes, the design is unexcelled. 

The classic analysis for correlational designs employs multiple 
regression to estimate treatment effects. To reduce bias, a number 
of covariates are generally included in the regression equation to 
approximate control for the unknown assignment rule. As we have 
argued earlier, a hierarchical regression procedure is advocated, in 
which nonsignificant higher-order interactions are systematically 
deleted and the regression equation recomputed. 

Three different sources of bias in this classic regression analysis 
were identified: measurement error, omitted variables, and nonre­
cursive causal processes. In fact, all three are variants on a single 
type of misspecification. Regression analysis estimates causal 
effects with bias whenever the disturbance of the outcome is 
correlated with the included predictor variables. 

Two related estimation procedures were discussed that can be 
used to overcome this fundamental misspecification problem. First, 
two-stage least squares can be used to estimate the effects of that 
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part of the various predictors that is uncorrelated with the distur­
bance to the dependent variable. Such a procedure necessitates 
instrumental variables. Meeting the assumptions that are the basis 
of such variables may be quite difficult. The second estimation 
procedure that was discussed was a general structural model 
estimation procedure generating maximum:-likelihood parameter 
estimates. This general technique has a number of distinct advan­
tages over others that have been discussed previously. First, given 
sufficient information, an overall goodness-of-fit test is conducted 
that can indicate possible misspecifications in the model. Second, 
reliability estimation is integrated into the estimation of causal 
effects, given multiple indicators of latent constructs, so that bias 
from measurement error ceases to be a problem. Finally, the 
estimation procedure is amazingly flexible, providing the researcher 
with a single procedure for estimating all of the models discussed 
earlier in the chapter. 
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Further probing of applied 

research data 

Our primary emphasis in the previous nine chapters has been on the 
estimation of treatment effects. In this chapter we move beyond the 
measurement of a program's effectiveness and examine various 
ways to probe the analyses. We first consider what some have called 
process analysis. Instead of testing only if the treatment causes the 
outcome variable, we set forth an explicit causal chain. For 
instance, day care may cause reduced parent-child interaction, 
which may in turn cause reduced dependence, which may in turn 
cause greater intellectual creativity. A process analysis moves 
beyond a simple input-output analysis to a careful analysis of how 
the treatment affects the outcome variable. Another side of process 
analysis focuses on who is especially helped by the intervention. For 
instance, day care may have a stronger effect on children whose 
social development is poor to begin with. 

Process probes are usually done by the original or primary 
investigator. Secondary analysis refers to the work of a second 
researcher who reanalyzes the data set. The role of a second 
researcher is to evaluate the claims of the primary researcher. 
Secondary analysis plays a crucial role in the evaluation of applied 
social research. 

Finally, after a series of studies have been done to examine the 
effect of a treatment, the results need to be combined in some 
manner. This task has been called meta-analysis by Glass (1976). 
Recent development of quantitative methods to summarize results 
across studies can greatly aid growth of scientific knowledge. 

Process analysis 

Suppose that an investigator is studying the effect of day care on 
aggressive behavior. Her hypothesis is that type A day care, in 
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which the staff intervenes rarely and lets children work out their 
own problems produces less aggression than a different type of day 
care, type B. Her rationale is that type A allows the children to 
manage their aggression in an interpersonal context, whereas type B 
prevents the children from undergoing such a learning process. 
Using a randomized experimental design, the investigator has 
determined that type A day-care centers do produce less aggressive 
children than type B. Althoµgh her major hypothesis is supported 
by the data, a number of interesting questions about the process still 
remain. First, how does a type A day-care center produce less 
aggression than a type B day-care center? Second, for whom is a 
type A day-care center better than a type B day-care center? The 
"how" question we shall call the issue of mediation, and the "for 
whom" question we shall call interaction. 

Mediation 

In Figure 10.1 we have an example of a possible mediational 
scheme. The different types of day-care center philosophies deter­
mine the number of opportunities for interpersonal problem solving, 
which in turn affects the amount of aggression. Although this chain 
is a very simple one, we shall see that testing it is not so simple. 

The model in Figure 10.1 is much more highly elaborated than 
the simple question of whether the treatment affects the outcome 
variable. Verification of the process model would give the 
researcher a story to tell about how the treatment produces change. 
The effect of the treatment on the outcome variable by itself gives 
rise to different explanations of that effect. By specifying and 
testing a mediational structure, we can choose among these expla­
nations. 

It may be the case that some untreated subjects receive the 
treatment or that some treated subjects receive varying degrees of 
the treatment. This may happen because of the inevitable difficul­
ties encountered in conducting applied research. When this is the 
case, simple treatment comparisons ignore the varying amounts of 
treatment actually received. One can then use the actual amount of 
treatment received as a mediator of the treatment--0utcome variable 
relationship. Including this variable enhances the construct validity 
of the treatment. 

In order to claim mediation, the researcher must present evidence 
for the following three conclusions: 
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Conclusion I. The treatment causes the outcome variable. With­
out this conclusion there can be no mediation. Too often media­
tional models are viewed as a fallback analysis strategy to employ 
when gross treatment effects are not found. This is clearly a very 
foolish approach, because one cannot locate a mediating process if 
nothing needs mediation. 1 The search for interacting variables, 
discussed in the next section, is reasonable even if there is no gross 
treatment effect. 

Conclusion II. The treatment causes the potential mediator. If a 
variable is to be a mediator, it must be determined in part by the 
treatment variable. 

Conclusion III. The mediator must cause the outcome variable 
controlling for the treatment. A variable is not a mediator unless it 
directly affects the outcome variable. 

If there is evidence for these three conclusions, there is evidence 
for mediation. To claim that the hypothesized mediating variable 
explains the treatment effect, it must also be demonstrated that the 
effect of the treatment on the outcome variable is zero once the 
mediator has been controlled. 

In practice, it may be very difficult to reach all three conclusions 
simultaneously, given noisy social science data. For instance, if the 
mediating chain is a long one, the treatment may have a low 
correlation with· the outcome. Consider an intervention that is 
supposed to have an effect on a variable but the effect is distal, for 
example, the effect of antismoking advertisements on lung cancer 
death rate. If there are many links between a given treatment and 
its outcome variable, the resulting correlation between the two 
variables is quite low. This is so because in a causal chain the effects 
are multiplied through to determine the correlation. Thus if X 

causes Y, Y causes Z, and Z causes U, and all these paths_ 
(standardized regression coefficients) are .4, then the correlation 
between X, the first element in the chain, and U, the last element in 

1 When we do not find treatment effects, looking at "mediating" variables may be 
informative in understanding why the treatment has no effect. First, it may be that the 
treatment simply never affects a critical variable known to affect the outcome. Second, it is 
possible, although unlikely, that the effect of the treatment variable, controlling for the 
mediating variable, is offset by the mediating process. 
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the chain, is only .064. Thus the presence of a mediational process 
implies that the correlation between the treatment and the outcome 
may not be high, resulting in low conclusion validity. Additionally, 
to reach the third conclusion, concerning the effect of the mediator 
on the outcome variable, one should treat the outcome as the 
criterion and the mediator and the treatment variables as predictor 
variables in a regression equation. However, if conclusion II holds, 
these two predictor variables should be highly correlated. This 
correlation between predictor variables, that is, multicollinearity, 
results in poor conclusion validity for conclusion III. 

Besides conclusion validity, there are also serious problems of 
internal validity in testing mediation. A mediational model can be 
both correlational and experimental. The treatment variable may be 
a manipulated variable, whereas the mediating variable is always an 
unmanipulated variable. Although we can be reasonably confident 
about the causal impact of the treatment on the outcome variable 
ignoring the mediator� we enter uncertain grounds when we include 
an unmanipulated mediating variable. Measurement error in the 
mediator, reciprocal causation between the mediator and the 
outcome, and omitted variables can seriously distort the estimate of 
the proposed mediator's effect on the outcome variable. (See Chap­
ter 9 for a review of these problems.) We should recognize a 
mediational analysis for what it really is: a correlational analysis. 

The serious problems of conclusion and internal validities in 
mediational analysis should not deter us from such a strategy. The 
identification of a mediator aids us in establishing the construct 
validity of the treatment. Because a mediational model tells how the 
treatment works, we can much better understand what the treat� 
ment is and how to improve its effectiveness. 

The actual mechanics of a mediational analysis vary somewhat 
depending on the design of the research. However, because we have 
presented a general regression model for the analysis of social 
research designs, we can make a number of points that apply to all 
mediational analyses. 

To test conclusion I, one should igno1:e the mediator and estimate 
the treatment effect. Conclusion II can be tested by performing an 
analysis similar to that proposed for conclusion I. This time the 
mediator is the dependent variable in the regression equation. For 
conclusion III, the analysis for conclusion I is repeated, but the 
mediating variable is also included as a predictor in the equation. 

It is interesting to note that one could employ the analysis of 
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covariance (ANCOVA) to test a mediational hypothesis in the 
following way. For conclusion III, one sets up an ANCOV A with 
the mediator being the covariate. Conclusion III implies that the 
covariate has a significant effect on the outcome variable. This use 
of ANCOVA is very different from our previous discussion of its 
use in randomized experiments (Chapter 4). For a mediational 
analysis, the treatment causes the covariate, which was not per­
mitted when we discussed it in Chapter 4. 

The most advanced way of testing a mediational model is through 
the use of structural equation modeling, discussed in the previous 
chapter. Such an approach can evaluate the three conclusions 
simultaneously. Moreover, if there are multiple indicators of the 
mediating variable, the biasing effects of measurement error can be 
eliminated, as we discussed in Chapter 9. In some very special 
circumstances, feedback between the mediator and outcome vari­
able can be allowed. Further discussion of a structural modeling 
approach to mediation is contained in Judd and Kenny (1981). 

Interaction 

Let us return to our day-care example. The investigator determined 
that type A day care creates lower aggression than type B day care 
and that opportunities for interpersonal problem solving seem to 
mediate this effect. Suppose that you are an administrator who is 
considering changing your emphasis from type B to type A. You 
would probably want to know if this effect would hold for the 
children in your program as well. You would then be very curious 
about whether the results of the original study held for the entire 
sample or whether the effect was true only for a subsample, say, 
boys. In other words, you wish to know for whom does the treatment 
work. Statistically this question is one of interaction.2 

The search for such interactions is often not conducted as 
carefully as the major analysis. Consider two less than optimal 
strategies for finding interactions. First, after all analyses have been 
completed, the sample is broken into discrete subgroups and-. the 
treatment effect is measured for each group. These effects are then 
compared and differences among · them are thought to indicate 
interactions. There are various problems with this approach. First, 

2 In certain literatures, variables that interact with a treatment are called moderator 
variables. We prefer the term interacting variables, because "moderating" implies that the 
treatment effect is reduced. 
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because treatment effects are tested separately for each subgroup, 
the error estimates are not pooled. Because the degrees of freedom 
for error are then less than an overall test of interaction, conclusion 
validity is relatively low. Second, there is not a direct test of whether 
the treatment effect varies across groups. This second point is 
important. Suppose the researcher finds that the treatment works 
for males but there is not a significant difference for females. He or 
she cannot conclude that the program worked better for males. 
Such a hypothesis should be tested directly as a treatment by sex 
interaction. To illustrate the folly of not testing the interaction 
directly, consider a treatment effect of 4.0 for males and 5.0 for 
females. It is conceivable that the. treatment effect for males is 
significant whereas that for females is not, even though the treat­
ment effect for males is smaller! This could happen if either there 
are few females in the study or the error variance for females is 
high. 

A second inefficient analysis strategy for investigating interac­
tion is to analyze only the treated subjects. The researcher conducts 
an analysis to determine which subjects changed the most. For 
instance, using a design with a pretest, the researcher would 
measure change (either raw or covariate adjusted) and then see 
which variables predict it. If, for example, age were a significant 
positive predictor of change, then it might be argued that older 
children benefited more from the program than younger children. 
This strategy suffers from the same flaw as that of the previous 
strategy. It fails to explicitly compare change in the treated subjects 
with change in the control subjects. 

Consider the study by Bosse, Garvey, and Costa (1980) of the 
effect of quitting smoking on weight gain. They were interested in 
determining what types of ex-smokers gain weight. One strategy 
would be to investigate persons who have recently quit smoking and 
determine what factors predict weight gain. In addition, however, 
Bosse et al. looked at weight gain of smokers who did not quit. They 
found that ex-smokers of high-tar cigarettes gained more weight 
after quitting than ex-smokers of low-tar cigarettes. However, 
smokers of high-tar cigarettes who did not quit gained no more 
weight than low-tar smokers. If weight gain had been associated to 
the same extent with tar content among continuing smokers, the 
researchers could not have concluded that cigarette tar caused 
differential weight gain after quitting cigarettes. A comparison 
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Table 10.1. Flu shot example 

Age 

Under70 

Over70 

01 /(number of days). 

A 

4.72 

(.212)0 

9.83 
(.102) 

Treatment 

211 

B 

6.19 
(.162) 

18.31 
(.055) 

group is needed to measure not only treatment effects but also 
differential treatment effects. 

We thus urge the researcher to check for interacting variables by 
explicitly testing interaction terms. The product terms that we and 
others have recommended may seem awkward at first. However, 
they are essential and readily interpretable given the following 
recommendations (see also Chapter 5). First, the product term 
should be created after first subtracting from each component its 
mean or median. This substantially reduces collinearity between 
each of the components and the interaction term as well as makes 
the regression coefficients for the components more interpretable. 
Second, one should test interactions . hierarchically and omit from 
the model those that are not significant. Third, to aid interpretation, 
the results of the interaction should be graphed or tabled. 

Occasionally an analysis will reveal too many interactions. 
Because interactions are generally less parsimonious accounts of the 
data than main effects, one might consider approaches that reduce 
variance due to interactions. Consider a hypothetical study in which 
the subjects were sent a notice that they could receive a free flu shot. 
The treatment variable is two different ways of informing persons of 
the shot, and the outcome variable is the number of days between 
receiving the notice and coming in for the flu shot. Suppose that the 
researcher obtained the results as depicted in Table 10.1. The 
treatment effect seems larger for older respondents; in other words, 
treatment and age seem to interact. However, this may be decep­
tive. Let us create a new outcome variable, the speed with which a 
person came in for the flu shot after receiving the notice (speed = 
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one divided by the number of days). The means for this transformed 
outcome measure are presented in parentheses in Table 10.1. The 
treatment effects on this transformed variable are about the same 
for the two age groups. There is then no interaction. Thus we can 
sometimes remove "interactions" by transforming the outcome 
variable. When are transformations recommended? The principle 
of parsimony by itself implies that we should prefer the analysis that 
has the fewest interaction terms. In some cases, however, one might 
transform away one's most interesting results. In addition, transfor­
mation may result in an uninterpretable metric for the outcome 
variable. Practical guides to transformation are provided by 
Mosteller and Tukey ( 1977). 

Secondary analysis 

It is becoming increasingly common that, for large-scale evalua­
tions, a second set of researchers reanalyze the data collected by the 
original researcher. This is called secondary analysis or secondary 
evaluation (Cook, 1974), with the first researcher being called the 
primary analyst and the reanalyzer the secondary analyst. Exam­
ples of secondary analysis are the Elashoff and Snow ( 1971) 
reanalysis of the Rosenthal and Jacobson (1968) "Pygmalion" 
study, the Cook, Appleton, Conner, Schaffer, Tamkin, and Weber 
(1975) reanalysis of the Ball and B6gatz (1970) evaluation of 
Sesame Street, and the Smith (1972) partial ·reanalysis of the 
Coleman report (Coleman et al., 1966). 

Secondary analysis may seem like an unusual enterprise to the 
basic researcher. Basic researchers often feel a proprietary relation­
ship toward their

.
data. The usual mechanisms for criticism of basic 

research, such as editorial review and replication, may not, however, 
be efficient mechanisms for the criticism of applied social research. 
The results of applied research are often not published in journals, 
and the cost of replication may be prohibitive. Because the potential 
applications from applied social research are so consequential, 
careful scrutiny of conclusions is essential. The process of secondary 
analysis is one way of providing such scrutiny. 

The task of the secondary analyst is much easier than that of the 
primary analyst .. First, his or her analysis questions can be answered 
at a leisurely pace, whereas the primary analyst must meet deadline 
after deadline. Second, the primary analyst has already had to make 
tough decisions, whereas the secondary analyst need only reevaluate 
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the answers. Third, the primary analyst usually must not only 
analyze the data but also maintain a small (or large) organization of 
coders, interyiewers, computer programmers, and the like. Most 
secondary analysts can proceed without such an organization. It is 
thus no small wonder that the secondary analyst's report looks so 
much more polished than the primary researcher's. 

The role of the secondary analyst has often been that of a critic. It 
is difficult to imagine that any secondary analyst would have the 
courage to tell the funding agency that, after spending many 
thousands of dollars, he or she could find nothing wrong with the 
original report. Almost by necessity, the secondary analyst will 
search out every mistake, no matter how minor. 

To perform a secondary analysis, the researcher must first obtain 
access to the data. Some secondary analyses can be performed just 
on the basis of inf orma ti on in the original report. Because the basic 
input for virtually all statistical techniques is a correlation or a 
covariance matrix, one can reanalyze published research reports 
using the primary researchers' own methods or alternative methods 
if those matrices are presented. Even if they are not, we may be able 
to reconstruct them from the original report. Occasionally one may 
need more information than is contained in the original report. This 
requires the assistance of the primary analyst. One could write the 
researcher and try to obtain the necessary results. Obviously, any 
frivolous and needlessly burdensome requests should be avoided. 
Reasonable requests made to reasonable investigators are honored. 
Primary investigators have the obligation to release their data to 
responsible secondary analysts. 

There are three different types of secondary analysis. 

Type I. The first type of secondary analysis is the exact 
reanalysis of the data as was done by the primary investigator. The 
purpose of this is not so much to check the honesty of the primary 
investigator, but to determine if the primary and the secondary 
investigator have the same data. Moreover, the replication of the 
analysis elucidates the many unreported decisions that the primary 
investigator made, for example, how missing data were treated, how 
composites were formed, what covariates were used in the analysis. 
Fortunately, to date most secondary analysts have been able to 
replicate the primary analyst's results exactly. One major exception 
is the finding that. two. variables of the Coleman report were 
mislabeled (Smith, 1972). 
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Type II. The second type of secondary analysis is to use a 
different method to answer the primary researcher's question. 
Included in this type would be tests of the assumptions of the 
primary investigator. For instance, Elashoff and Snow ( 1971) found 
very extreme intelligence test scores in the Rosenthal and Jacobson 
(1968) study, which to some extent invalidated their use of analysis 
of variance. Reanalyses also include more powerful and sensitive 
analyses of the primary researcher's hypothesis. For instance, Cook 
et al. ( 197 5) used many different analysis strategies to evaluate the 
effects of Sesame Street. 

Type III. The third type of secondary analysis has been to 
use the data in order to test a new hypothesis. For instance, Cook et 
al. (1975) asked whether disadvantaged children learned more from 
Sesame Street th.an advantaged children, whereas the primary 
analysts, Ball and Bogatz ( 1970), were content to ask only whether 
disadvantaged children learned. It is this last type of secondary 
analysis that has proved to be most informative. The first two types 
of questions usually only confirm the original researcher's results, 
whereas this third type can extend and refine the original conclu­
sions or can answer new questions that never occurred to the 
primary investigator. 

Cook and Gruder (1978) have argued that secondary analysis 
sh.ould parallel in time the primary analysis. This would allow 
secondary researchers to communicate to the primary researchers 
any problems they see in the study. Then the primary researchers 
could make the necessary changes that they see fit to make. Also, if 
the secondary researchers wished to pose a different question from 
that of the primary researchers, they might be able to entice the 
primary researchers to measure the necessary variables, oversample 
one group, or add another comparison group. 

Combining the results across studies 

In the past few years there has been considerable interest in 
quantitative literature reviews (Rosenthal, 1980). We are all famil­
iar with qualitative reviews that verbally describe studies. The only 
quantitative aspect of such reviews is the "nose count," for example, 
five studies in one direction, two in the opposite direction, and 
twenty, no effects. A quantitative review evaluates the literature 
more formally. We shall present three different approaches to 
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Table 10.2. Results of five hypothetical studies 

Study t df df/(df- 2) z 

l 2.05 40 1.053 l.996 
2 l.43 20 l.l ll 1.393 
3 .79 32 l.067 .786 
4 l.36 180 I.Oil l.357 
5 -.45 18 1.125 -.449 

Sum 5.18 290 5.367 5.083 

quantitative reviews.· The first is the combining of p values across 
studies. The second is combining measures of effect size of each 
study. The third approach is the most formal and relies on Bayesian 
methods. 

Combining p values 

One coarse measure of a treatment effect is the one-tailed p value 
associated with its inferential statistic. One can summarize the 
studies by combining their p values. Doing this may result in 
stronger conclusions than the studies individually. For instance, if 
an investigator did one study and obtained p = .06 and a second p = 

.09, their combined probability would be very small even though 
neither study is statistically significant by itself. Rosenthal ( 1978) 
presents a series of methods for combining probabilities, two of 
which will be briefly outlined. The two methods we present are 
fairly simple and do not suffer from the drawbacks of other methods 
discussed by Rosenthal. In Table 10.2 we present the results from 
five hypothetical studies investigating the same phenomenon. 

Adding t 's . In each study we assume that there is a one­
tailed t statistic associated with the treatment effect. We can 
combine these to yield a standard normal deviate or, as it is 
commonly.called, a Z score, under the null hypothesis of no effect. 
The equation for combining the t's across studies is 

�t 
z - --:====== -

��[df/(df - 2)] 
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The numerator is simply the sum of the t statistics. When a study 
yields a result not in the predicted direction, the t should be 
negative, but still one-tailed. The denominator sums the degrees of 
freedom for each study divided by the degrees of freedom less two. 
For the example in Table l 0.2, we obtain 

--;::::::====
5
=·=1 8====== = 2.236 

�4o/1s + 2o/1s + 32/10 + 18o/ns + 18/16 

This Z has a one-tailed p value of .0127. 

Weighted Z's. The above procedure treats all studies equal­
ly. One might wish to weight them differentially. We can choose to 
weight studies by different criteria that indicate validity. For 
instance, we could create an ''internal validity" scale much in the 
way that Bernstein and Freeman (1975) did. Alternatively, we 
might evaluate the construct validity of each study and judge the 
degree to which a study successfully operationalized the relevant 
constructs. Weighting by measures of internal or construct validity 
may be called weighting by quality. Glass (1976) has questioned 
such procedures, and Taveggia °(1974) has shown at least in one 
instance that the results of a "good" study are no different from the 
results of a "bad" study. Finally, one could weight each study by its 
conclusion validity. The most direct procedure for doing this is to 
weight by degrees of freedom. 3 

Before the weighted Z statistic can be computed, one must 
transform the one-tailed t statistic from each study to a Z statistic. 
This is done by determining the exact one-tailed p value of the t 
statistic and finding the corresponding Z statistic for that value. 
This always results in a Z value that is less than the t in absolute 
value. Wallace (1959) gives· an approximation that should be 
generally servicea hie: 

This approximation tends to be conservative (i.e., produces a Z too 
close to zero) when the degrees of freedom are few. These Z values 

3 Some other weighting strategy is probably more opt'imal than weighting by degrees of 
freedom if the aim is to maximize power. 



Further probing of applied research data 217 
are weighted and then combined by the following formula: 

where the W; are the -weights for study i (e.g., the degrees of 
freedom). The numerator takes each Z and multiplies it by its 
weight and sums across these products. The denominator is the 
square root of the sum of squared weights. The result of this 
formula is a Z statistic with an associated p value. For our example, 
using Wallace's approximation and using the degrees of freedom as 
weights, we would obtain 

369.03 �35,748 = 1.952 

from the results of Table 10.2. This Z has a one-tailed p value of 
.0255. This method produces a Hless significant" result than the 
method of adding t's in our particular example because of the heavy 
weight given to the one study that has 180 degrees of freedom. 

Averaging effect sizes. Rosenthal ( 1978) concludes with the 
warning that combining p values only tells the researcher whether 
the effect across studies is significant. Because virtually every 
treatment has an effect no matter how trivial, and because 
combining across studies increases conclusion validity, we ought to 
expect the combined probabilities of a large number of studies to be 
significant. What we want, then, is not only the combined p value 
but the average size of the treatment effect as well. A measure of 
the treatment effect is in principle not affected by sample size, 
whereas a p value is. 

We need to compute the effect size for each study and average 
them across studies. The best-known example of this method is that 
of Smith and Glass ( 1977). For some 833 outcome studies of 
psychotherapy, they measured the effect size using a mqdified 
version of Cohen's ( 1969) measured, 

· 

YE- Ye 
s 

where YE is the mean for the treated subjects,. Ye is the control 
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mean, and s is the pooled within-group standard deviation.4 Smith 
and Glass (1977) found that the average effect size was .68, 
indicating that persons who received psychotherapy were .68 stan­
dard deviations better off than those who did not receive psycho­
therapy. An effect size or d of .68 corresponds to a .32 correlation 
between psychotherapy and the outcome. 

The results of studies can be combined by computing the mean or 
median of the effect sizes across studies. One can take the mean 
effect size and test whether it is significantly different from zero by 
the following equation 

d{JV 
tN- 1 = -­

Sd 

where tN-I is a t statistic with N - 1 degrees of freedom, N is the 
·number of studies, dis the average effect size, and sd is the standard 
deviation of the effect sizes. This t-test has much less power than a 
combined probability. It is therefore sensible only when N is large. 
One can also test whether effect sizes vary across studies in 
meaningful ways. For instance, Smith and Glass found that psycho­
therapy changed the outcome of anxiety the largest amount 
(d = �97) and changed the outcome of school or work achievement 
the least (d = .31 ) . 

Bayesian methods. When the measures of the outcome 
variable are roughly equivalent across studies, it may be possible to 
combine results more formally. Consider a study by Schmidt and 
Hunter ( 1977) on the use of intelligence tests to predict job 
performance for general clerks. Most studies showed a nonsignifi­
cant correlation between intelligence and job performance. Instead 
of combining probabilities or effect sizes, Schmidt and Hunter took 
a different tack. They argued that the correlation between intelli­
gence and later job performance was a function of the true correla-

4 Frequently we have only a t statistic for the treatment effect instead of the means. To derive 
Cohen's d from the t statistic. 

the equation can be used. where N refers to the respective sizes of the treatment groups. 
Deriving d when covariates or other treatment variables are present becomes more 
complicated. In such cases the d for a dichotomous treatment variable (dummy coded) 
equals that variable's unstandardized regression coefficient divided by the square root of 
the mean square error from the regression equation. The t for that regression coefficient 
should not be used to derive the effect size. 
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tion, restriction of range in the intelligence test, and unreliability in 
the measure of job performance. Restriction of range refers to the 
fact that the standard deviation of intelligence varied with study. 
Using a complex approach based on Bayesian principles, they 
estimated the population correlation between intelligence and job 
performance to be .67. Even though their method predicted such a 
large correlation between the two variables, it also explained why 
most studies yielded a nonsignificant correlation. The interested 
reader is urged to consult Schmidt and Hunter for details. 

The choice of the procedure for combining results may be less 
important than other issues. Let us consider three of these. First, 
there is the file-drawer problem. A large effect across a combined 
set of studies may be due to the fact that studies that obtained no 
significant effect were never published but were deposited in a file 
drawer. Rosenthal (1979) provides at least a partial answer to this 
problem. A second problem is that many primary researchers do not 
present enough detail to provide input for the formulas to combine 
results. Too often, if a result is nonsignificant, only that fact is 
mentioned and the t-value is omitted. Berman (1981) gives a 
detailed account of the problems and pitfalls of combining results 
when researchers fail to present sufficient results. Third, research­
ers may not employ t statistics but may use x2 or For a nonparamet­
ric statistic. Rosenthal ( 1978) provides some guide to this problem, 
but in many cases the researcher must be quite ingenious to apply 
the relevant formulas. 

Conclusion 

The analysis of applied data should not end with an For a t statistic. 
The results can be probed in useful ways. First, the primary 
researcher may investigate how the effect works and for whom. 
Second, another researcher may reanalyze the data to provide 
answers to new questions. Finally, the study itself may serve as a 
single data point in a study of studies. 
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Conclusion 

Our original intention in writing this book was to present a set of 
discrete chapters on different applied research designs and their 
analyses. However, it soon became apparent to us that much of 
what we had to say consisted of .themes or ideas that ran across 
designs. All of the designs we have discussed represent variants on 
certain central design themes. Likewise, in the analysis of these 
designs there are certain fundame.ntal problems that appear again 
and again. In this concluding chapter, it is our intention to discuss 
these common issues of design and analysis. 

Fundamental analysis issues 

We started in Chapter 2 by outlining the fundamental analysis 
model that has been used throughout. In its basic form this model is 
quite straightforward. Multiple regression is used to estimate the 
treatment effect by regressing the outcome measure on the treat­
ment variable. To obtain an unbiased estimate of the treatment 
effect, we need to control for the assignment variable in this analysis 
if the assignment variable is correlated with the outcome in the 
absence of treatment effects. 

The most important result from this general analysis model is the 
treatment effect estimate. This treatment effect estimate is an 
unstandardized partial regression coefficient. As we saw in Chap­
ters 4 and 6, this regression coefficient represents the difference in 
the mean outcomes between the treatment and control groups, 
adjusting for the assignment variable. In and of itself, this effect 
estimate is a meaningful piece of information, independent of the 
inferential statistics associated with it. It provides us with our best 
expectation concerning th_e magnitude of the treatment effect in 
terms of the actual metric of the outcome variable rather than 

220 
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relative to the variation in the sample on which the research was 
conducted. It should generally be reported in all research reports. 

In the applicat,ion of this general model to the analysis of data 
from any of the designs we have discussed, three important issues 
are encountered. The first issue is the accuracy of the treatment 
effect estimate. We have given the name bias to this problem and 
discussed it repeatedly. The second issue concerns how "noisy" or 
reliable the estimate of the treatment effect is, regardless of the 
presence or absence of bias. This issue has been referred to as the 
precision of our test. The third issue concerns our ability to estimate 
the noise or reliability of the estimate of the treatment effect. This 
last issue, one of bias in the estimate of the reliability of the 
treatment effect, has been discussed repeatedly under the assump­
tion of independence of observations. In the following paragraphs 
these three issues are briefly reviewed. 

Bias results when the assignment variable is hot controlled in the 
analysis, if the assignment variable is related to the outcome in the 
absence of treatment effects. The strength of randomized experi­
ments lies in the fact that the assignment variable, a random one, is 
known on 

'
the average to be uncorrelated with the outcome. In 

designs like the regression discontinuity design, where the assign­
ment variable is known, bias can be eliminated as long as the correct 
functional form for the assignment variable-outcome variable rela­
tionship is specified. Eliminating bias is the fundamental problem 
whenever the assignment variable is unknown, as in the nonequiva­
lent control group design. In. such cases, we can never be sure that 
we have adequately controlled for the unknown assignment vari­
able. We have therefore recommended that multiple adjustment 
strategies be employed in attempting to remove bias. Although we 
have focused on the problem of serial dependency in the interrupted 
time-series design, the problem of bias is just as large, if not larger, 
there as it is in the nonequivalent control group design. We use time 
to control for what is frequently an unknown assignment rule. To 
the extent that time is a poor proxy for the rule, the estimate of 
treatment effects is biased. Finally, in the post-only correlational 
design, the assignment rule is unknown and attempts to remove bias 
are likely to be unsuccessful. 

Even if our estimate of the treatment effect, the unstandardized 
partial regression coefficient, is unbiased, it may not be very 
reliable. To define the reliability of the treatment effect estimate, 
we need to think of exact replications of the research. To the extent 
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that the treatment effect estimates vary across these replications, its 
reliability is low. More formally, the reliability is the standard error 
of the treatment effect estimate. When the treatment effect esti­
mate is unreliable, the research has relatively low conclusion valid­
ity and we may decide that the treatment exerts no effect when in 
fact it is effective. In Chapter 3 we discussed factors that affect the 
reliability or precision of the estimated treatment effect. Likewise, 
in all of the designs that we have examined we have reminded the 
reader of analysis decisions that affect the precision of the treat­
ment effect estimate. 

The analysis strategy that underlies the basic analysis model is 
the equivalent of analysis of covariance, translated into a multiple 
regression for mat. This equivalence was demonstrated in Chapter 4. 

Analysis of covariance simultaneously has effects on both the bias 
problem and the precision problem. If we know the assignment 
variable and use it as the covariate, then its primary function as the 
covariate is to remove bias. At the same time, however, to the extent 
that it is correlated with the outcome, it improves the precision with 
which the treatment effect is estimated. In other cases, especially in 
randomized experiments, we use covariates with the sole intention 
of improving the precision of the treatment effect estimate. Inevita· 
bly, however, unless there is absolutely no relationship between the 
covariate and the treatment variable, some adjustment results from 
the inclusion of the covariate. 

The third issue in the analysis of applied research designs 
concerns our ability to estimate the reliability of the treatment 
effect estimate (i.e., its error variance). Whereas the second issue 
refers to the relative magnitude of that reliability in theory, this 
third issue concerns our ability in practice to estimate its magnitude 
without bias. Tests of the statistical significance of the treatment 
effect assume that we have the correct estimate of its reliability. To 
the extent that our estimate of its magnitude is biased, we are prone 
to make either Type I or Type II conclusion errors. Bias in the 
estimate of error variance is a completely separate issue from bias in 
the estimate of treatment effects. The former sort of bias affects 
conclusion validity; the latter threatens internal validity. As we have 
discussed extensively in Chapters 4, 7, and 8, the major source of 
bias in the estimate of error variance derives from inappropriate 
assumptions concerning the independence of observations. In Chap­
ter 7 a type of nonindependence, serial dependency, was identified 
and a substantial part of the chapter was devoted to corrections that 
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must be made to overcome serial dependency. As we saw in Chapter 
8, the problem of nonindependence or of serial dependency can 
cause us either to have more confidence in our treatment effect 
estimate than we should, or it can lead us to underestimate the 
reliability of the treatment effect estimate. 

Fundamental design issues 

Just as the analyses of applied research designs are variants on a 
general analysis model, so, too, the research designs themselves can 
be seen as variants on certain central notions of research design. 
Thus, rather than seeing these research designs as a diverse and 
discrete set, it becomes possible to relate them to each other along a 
small set of fundamental dimensions. 

In Chapter 2 we argued that the minimal requirement for 
purposes of internal validity is the presence of both treatment and 
comparison observations. Unless we have some set of observations 
that are recorded under the treatment condition and another set 
under a nontreatment condition, we have no hope of estimating the 
treatment effect. Given that we do have observations in both treated 
and comparison conditions, either we can observe the same units in 
all treatment conditions or the data in different treatment condi­
tions may be derived from different units. In the language of 
experimental design, between-treatment comparisons can be made 
either between units or within units. For instance, if we were 
assessing the effects of some particular drug, either we could 
observe all patients with and without the drug (within-unit compari­
sons), or we could assign one group of subjects to receive the drug 
and the other not to (between-unit comparisons). A third type of 
"design," an inadequate one from the point of view of internal 
validity, does not permit between-treatment comparisons, because it 
gathers observations from only a single treatment condition. In this 
type, there is no estimate of the treatment effect. In summary, 
research designs either assess the treatment effect by comparisons 
between units or within units, or no between-treatment comparisons 
are made. 

Just as between-treatment comparisons are necessary to estimate 
treatment effects, so it is necessary to gather more than a single 
observation within each of the treatment conditions in order to 
estimate the reliability or precision of the treatment effect estimate. 
In the extreme, if we have only one observation in each treatment 
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condition, we have no estimate of within-condition variation and, 
hence, we are unable to calculate the statistical significance of the 
observed treatment effect. Multiple observations within treatments, 
or replications, can be gathered either within or between units. That 
is, within each of the various treatments, we can observe the same 
unit repeatedly (within-unit replication), or we can observe multiple 
units (between-unit replication). In some designs we may do both: 
Observations within treatment conditions may be gathered from 
more than a single unit, but, in addition, each unit may be observed 
multiple times. 

In addition to the basis for between-condition comparisons and 
for within-condition replications, we can differentiate between 
research designs by an old and familiar factor: the nature of the 
assignment variable. For our purposes, it has been important to 
distinguish three types of assignment variables - a random one, a 
known but nonrandom one, and an unknown one. Whenever treat­
ment comparisons are made, the nature of the assignment variable 
has, of course, profound implications for internal validity and 
analysis. When there is only a single treatment from which observa­
tions are gathered, there is by definition no assignment variable. 

If we take each of these dimensions that differentiate research 
designs and form all possible combinations, as in Table 11.1, we 
come up with a set of research designs that subsume those discussed 
in this book. Although all of the designs in this set are possible, they 
differ in their informativeness or utility. They also differ in the 
frequency with which they are used. 

In the next few pages we discuss the specific research designs that 
constitute the cells of this table. Before doing so, it may be helpful 
again to review the difference between the rows and columns of the 
table. The columns represent the ways in which we may take 
multiple observations wiihin any given treatment: We may observe 
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Table I I. I. Basic social research designs 

Within-condition replications 
Between-condition Assignment 
comparisons variable Between units Within units None 

Between units Random 1 8 15 

Known 2 9 16 

Unknown 3 10 17 

Within units Random 4 11 18 

Known 5 12 19 

Unknown 6 13 20 

None 7 14 21 

observing different subjects or units a single time in the different 
treatments of interest, as in cells I, 2, and 3 of Table I I. l. In other 
words, units are nested within treatments and, hence, between­
condition comparisons are made between units. At the same time, 
within any treatment condition, the outcomes from a number of 
units are likely to be measured. Hence, within-treatment ·replica­
tions are likewise between units. 

Most randomized experiments involve between-unit comparisons 
and between-unit replications. Likewise, the regression discontinu­
ity design, the nonequivalent control group design, and the post-only 
correlational design are typically of this form. These designs, 
however, differ from each other on the third design factor, that is, 
the nature of the assignment rule. Randomized experiments, of 
course, employ a random assignment rule (cell I). The regression 
discontinuity design employs a known assignment rule (cell 2). And 
both the nonequivalent control group design and the post-only 
correlational design have an unknown assignment rule (cell 3). To 
distinguish between these last two designs, it is necessary to .intro­
duce a fourth design factor: the presence of a pretest or pre­
treatment measure. In the nonequivalent control group design a 
pretest is gathered. In a correlational design the data are exclusively 
cross-sectional. 

When within-treatment replications are between units, but treat-. 
ment comparisons are made within units, repeated measurement 
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designs result (cells 4, 5, and 6). In these designs, every unit or 
subject is observed a single time under each of the treatment 
conditions. In other words, treatments are crossed with subjects. 
These designs, which are relatively uncommon in applied social 
research, are discussed in Chapter 4. 

In the final cell of the first column of Table 11.1 (cell 7), we have 
a design in which there are no comparisons between conditions and 
yet there are replications between units. In other words, there is 
only a single treatment with observations from multiple units in that 
group. With no treatment comparisons, of course, this sort of design 
is susceptible to nearly all of the threats to internal validity .. 
Nevertheless, such a design is used surprisingly frequently. For 
instance, if we want to evaluate a course in a college, students who 
are enrolled in the course are typically asked what they thought of 
it. In spite of the absence of any meaningful comparison group, the 
responses in such an evaluation are usually considered by them­
selves to be a valid indicator of the quality of the course. 

In the second column of Table 11.1, replications within treat­
ments are within units. In other words, the same unit, be it a person, 
a classroom, a family, or whatever, is observed multiple times in any 
given treatment condition. Strictly speaking, only a single unit is 
observed in each of the treatment conditions. 

Cells 8, 9, and 10 depict designs that involve treatment compari­
sons between units with within-unit replications. These designs are 
relatively uninteresting, because, with only a single unit in every 
condition, the type of assignment rule is essentially irrelevant. 
Under a random assignment rule, we have a randomized experi­
ment, but, with only one unit per condition, unit differences are 
confounded with treatment effects. The same is true with a known 
or an unknown assignment rule. 

The designs of cells 11, 12, and 13 of Table 11. l are variations on 
the interrupted time-series design that was discussed in Chapter 7. 

In these designs, a single unit is observed repeatedly within condi­
tions, and between-condition comparisons are also made within that 
same unit. As we saw in Chapter 7, the assignment variable refers to 
the rule for deciding whether any observation is treated or not. A 
random assignment rule is one in which the unit goes into and out of 
any given treatment on a random basis. Frequently time serves as 
the known assignment rule in these designs. In such a case, it is 
known before any observations are taken at what point in time or in 
what order the unit will be in each treatment. Most frequently, the 
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true assignment variable is unknown. The unit receives the treat­
ments in a given order, but we do not know exactly what determined 
the order. 

The design of cell 14 is one in which there is only a single 
treatment condition and a single unit is repeatedly observed in that 
condition. Just as in the design of cell 7, the absence of a control 
group makes this design an especially poor one from the point of 
view of internal validity. The design is frequently used in an 
informal way, particularly for diagnostic purposes. Suppose that we 
want to diagnose why a particular individual seems to be having 
trouble keeping a job. It makes sense, as a start, simply to observe 
that individual repeatedly on the job in order to get a sense of what 
the problem might be. 

The third column in Table 11.1 (cells 15 through 21) defines a 
series of designs in which there is no variation within conditions 
because only a single observation is made in each. In these designs, 
as long as we make treatment comparisons, the treatment effect can 
be estimated. Unfortunately, however, without replications we are 
unable to estimate the reliability of that estimate. In spite of this 
serious deficiency, these designs can be quite useful in a sort of 
heuristic manner, if our goal is to formulate hypotheses for more 
systematic research. 

· 

Our purpose in dwelling upon Table 11.1 and its three research 
design factors is to clarify how various design decisions affect both 
the research validities discussed in Chapter 3 as well as the three 
analysis issues that we identified in the first section of this chapter. 

Internal validity is of course dependent on making treatment 
comparisons. Regardless of whether those comparisons are between 
or within units, without a treatment and a comparison group, at the 
minimum, we have no estimate of the treatment effect. 

As we have said throughout the book, the distinctions among 
assignment variables are also crucial for internal validity. With a 
random assignment rule we can have confidence that the treatment 
effect is estimated without bias. With a known assignment variable, 
such confidence is possible as long as we know the functional form 
of the relationship between the assignment variable and the 
outcome. With an unknown assignment variable, confidence that 
bias has been avoided is severely r·educed. Having a pretest helps 
some, but even here the distinct possibility of bias remains. 

Replications within treatment conditions are necessary so that we 
can calculate the reliability of the treatment effect estimate. In 
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other words, if we have a design without replications, we have no 
conclusion validity. In statistical terms, we have no within-condition 
variation with which to compare the between-condition difference. 

Assuming that we have replications within treatment conditions, 
we then want to know if we can assess the reliability of the observed 
treatment effect without bias. As we discussed in Chapter 8, we are 
likely to misestimate the reliability of the treatment effect whenever 
observations are not independent of each other, either within 
treatment ·conditions or between treatment conditions, that is, 
whenever multiple observations are taken from the same unit. Such 
misestimation can increase the c.hances of either Type I or Type II 
conclusion errors, depending on the conditions that were identified 
in Chapter 8. There we also suggested that whenever nonindepen­
dence of observations is a threat, whether in the interrupted time­
series design or elsewhere, data adjustments or transformations are 
necessary to eliminate bias in the estimate of the reliability of the 
treatment effect. Occasionally, changes in the unit or level of 
analysis can also alleviate nonindependence pFoblems. 

Final comment 

Just as we believe that there are common threads that run across the 
designs and analyses discussed in this book, so we believe that none 
of these designs or analysis strategies is sufficient by itself. They are 
.all subject to errors. Different designs are better for some purposes 
than are others. Likewise, different analyses of the same design are 
better for some purposes than are others. No single design, nor any 
single analysis, is the choice across occasions and research prob­
lems. Flexibility and replication are required if we are to have 
confidence in our results. Flexibility and replication are required 
both within and across research studies. Within any given study, we 
have urged the reader to analyze the resulting data in more than a 
single way. Thus, for instance, we have recommended the simulta­
neous use of different adjustinent strategies in the nonequivalent 
control group design, and we have encouraged different approaches 
within the same interrupted time-series design to alleviate the 
problem of serial dependency. Between studies, we encourage 
researchers to use different designs, with different strengths, to look 
at the same research problem. Initially, for purposes of hypothesis 
formation, a descriptive correlational study may be most appropri­
ate. A randomized experiment may then be best to gain confidence 
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in the hypothesized treatment effect. Then, a quasi-experimental 
research design may be appropriate to increase both the construct 
and the external validities of the experimental work. Such a 
multifaceted approach has the best chance of reaching conclusions 
that are valid. 

Our fundamental goal in writing this book has been to maximize 
the validity of applied social research. We feel that we have 
highlighted the issues of construct and conclusion validities that 
have been too often ignored with unfortunate consequences. More­
over, we feel that we have presented an honest, if somewhat 
pessimistic, appraisal of the internal validity of the various research 
designs. This problem of potential bias seems to raise its head nearly 
everywh�re. In spite of that, however, we do believe that well­
conducted applied social research is invaluable. Only through such 
research can we begin to assess whether social interventions are 
effective. Both caution and flexibility are necessary resources to the 
researcher. To the oxtent that this book gives those resources to the 
reader, we shall judge it to have .accomplished our goal. 
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