Understanding Group Effects Using the Co-Partner Design

David A. Kenny University of Connecticut davidakenny.net/doc/KennyM3_23.pdf

- □ Introduction
- Model Specification
- Design Examples
- Estimation
- □ Results
- Additional Issues

Group Effects: The Traditional Story

- □ A group effect is added to each group member's score
- $\square \text{ Person } i \text{ in group } j: Y_{ij} = m + I_j + e_{ij}$
- \Box I_j is often called a *random intercept*.
- □ Analogous to the *common fate* effect in dyadic models.

Is that how group effects work? An alternative model: Partner Effects

Imagine you are playing on golf team and you can add to your team one of two persons:

Alice

Ted

Alice

- Praises you when you make good shots and does not criticize you when play poorly.
- Plays quickly but does not rush you.
- Makes humorous comments and makes you laugh.

Ted

- Complains when you make a poor shot.
- Plays slow and is overly deliberate.
- Gets angry when he makes a bad shot.

How are you going to play?

- Perhaps you would play better with Alice and poorly with Ted.
- Perhaps how well you play depends on with whom you play: a partner effect.
- Partner effects as an alternative to the random intercept formulation of group effects.
- □ How can we model partner effects?

Model Specification

Model of Partner Effects

Three person group:

$$Y_{1j} = m + p_2 + p_3 + e_{1j}$$

$$Y_{2j} = m + p_1 + p_3 + e_{2j}$$

$$Y_{3j} = m + p_1 + p_2 + e_{3j}$$

Empirically, the partner effect model is indistinguishable from the random intercept model, unless ...

Each Person in Multiple Groups

- That way you can see if people perform better when some people are in their group and worse if other people are in the group.
- □ Also in the model:
 - Actor effects: Some people perform better than others, regardless of whom is in their group.
 - Random intercepts

Co-Partner Model

$$X_{i(jk)m} = \mu + a_i + p_j + p_k + I_m + e_{i(jk)m}$$

 μ : overall mean
 a_i : actor effect
 p_j and p_k : partner effects
 I_m : random intercept
 $e_{i(jk)m}$: error

Model Parameters

m: overall mean

 σ_a^2 : actor variance

- σ_p^2 : partner variance
- σ_{ap} : actor-partner covariance
- σ_I^2 : group variance
- σ_e^2 : error variance

References for the Co-Partner Model

- Bond, C. F., Jr, & Kenny, D. A. (2002). The triangle of interpersonal models. *Journal of Personality & Social Psychology*, 83, 355-366.
- Bond, C. F., Jr., & Cross, D. (2008). Beyond the dyad: Prospects for social development. In N. A. Card, J. P. Selig, & T. D. Little (Eds.), *Modeling dyadic and interdependent data in the developmental and behavioral sciences* (pp. 387–409). Routledge/Taylor & Francis Group₁₄

Design Examples

Data Examples

- Problem Solving Groups
 - Hallmark (1991) Masters Thesis
 - 108 persons in 4 3-person groups
 - outcome: liking of others
- □ Golf Study
 - 45 golfers, 432 groups, over 58 days
 - 3- and 4-member teams
 - outcome: individual performance`

Multiple Group Designs: Balanced

- □ Rotation design used by Hallmark (1991)
- Group of size n; n^2 persons; each person in n + 1 groups
- □ Consider 9 persons: A,B,C,D,E,F,G,H,I

ABC	ADG	AEH	AFH
DEF	BEH	BFG	BDI
GHI	CFI	CDH	CEG

Each person is in four groups and with each of the other eight persons.

Multiple Group Designs: Haphazard

- □ Ideally, each person is assigned to many groups
- Design used in Golf Study
 - 45 golfers
 - Teams with 3 or 4 members
 - The typical golfer was in 29 groups with 79 partners. Some were the same person, as there were 44 playing partners available.

Estimation

Estimation of the Partner Model: ANOVA with a Balanced Design

- □ Steps
 - Estimate actor, partner, group, and residual effects.
 - Compute their variance (mean squares) and the actor-partner covariance (mean crossproducts).
 - Determine what the these quantities equal in terms of the models' parameters.
- □ Problematic with missing data and covariates ²⁰

Estimation of the Partner Model: MLM with a Haphazard Design

- Adopts the strategy discussed in Snijders & Kenny (1999).
- □ Uses dummy variables {0,1} for actor and partner effects for each person.
- Constrains variance-covariance matrix of random effects (tau matrix).
- □ Requires SAS or MLwiN.

Covariance Matrix of Random Effects

Files: Hallmark Study

- Data
 - davidakenny.net/doc/hallmark.sas7bdat
- □ SAS (MLM analysis)
 - davidakenny.net/doc/co_partner_SAS.pdf
- □ R (ANOVA analysis)
 - davidakenny.net/doc/co_partner_R.pdf

Results

Hallmark Study: Actor and Partner Effects

- □ Outcome: Sum of two measures across two partners
 - To what extent would you be willing to talk intimately with this person?
 - To what extent would you be willing to meet this person?
- □ Effects
 - Actor Effect: Does a person consistency like or dislike others in the group?
 - Partner Effect: Does having a particular person in the group lead to more or less liking of group members?
 - Group Effect: Do people in some groups get along better than people in other groups?

Hallmark Study: Liking of Others

Percent Variance
51.6*
6.7*
6.9*
34.8

Actor-Partner Correlation: .061 (ns) Fixed effect of time: 0.11** p < .05

Golf Study: Actor and Partner Effects

- Outcome: Points earned: Stableford system
- □ Effects
 - Actor Effect: Does a golfer consistently play better or worse?
 - Partner Effect: Does playing with a particular golfer lead one to play better or worse?
 - Group Effects: Do some groups play better than others?
 - Day Effect: Do golfers play better on some days than others?

Golf Study: Points Earned

Component	Percent Variance
Actor	68.7*
Partner	0.1
Team	1.5*
Day	3.0*
Error	26.8

Actor-Partner Correlation: -.411 (ns) * p < .05

Golfer DAK's Performance?

Actor Effect: 16 out of 45Partner Effect: 38 out of 45

Additional Issues

Design Issues

- Distinguishable Members
 Doctor, Nurse, Pharmacist
- Unequal Group Sizes: Effect of Partner
 Sum
 - □ Average

Relation to the Social Relations Model

- For groups with two members, the model becomes the Social Relations Model.
 - The dyadic reciprocity in the Social Relations
 Model becomes the group effect in the Co-Partner Model.
- □ Can add dyadic terms to the model.
 - Dave plays better golf when Bruce is on his team, but others do not play better with Bruce.

Estimation Alternatives

- Partner effects could be estimated using "multiple membership" strategy; however, unable to estimate covariance of actor and partner effects.
- Possibility of using a strategy developed by Andrew Knight to use lmer in R to estimate the model.
- Bayesian Estimation

Thank You! davidakenny.net/doc/KennyM3_23.pdf

