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Models for Nominal
Dependent Variables

The preceding five chapters discussed models in which the dependent variable
is assumed to be measured at the interval level of measurement. In this
chapter models are considered in which the dependent variable is measured at
the nominal level of measurement. And in the final chapter the dependent
variable is assomed to be measured at the ordinal level of measurement.
Techniques that do not assume an interval dependent variable are sometimes
referred to as nonparametric or distribution-free methods. The term dis-
tribution-free is preferred because so-called nonparametric tests do test hy-
potheses about parameters. Methods that presume normality and homogeneity
of variance such as the two-sample ¢ test, analysis of variance, and regression
will be called distribution-tied methods.

There are three major reasons for employing the methods described in this
chapter and the next. The first reason is that sometimes the data are clearly not
at the interval level of measurement. The dependent measure may be a set of
ranks or a set of categories. In these cases it would be clearly inappropriate to
use the methods described in the previous five chapters. So if the level of
measurement of the dependent variable is clearly not at the interval level
of measurement, the methods presented in this and the next chapter are appro-
priate.

The second use of distribution-free procedures is that one may be reason-
ably confident that the dependent variable is at the interval level of measure-
ment, but one is worried about the assumptions made to perform a f or F test.
In particular, one may be especially concerned that the assumption of a
normal distribution for the residual variable is false. The dependent variable
may be highly skewed or bimodal, and so it is quite likely that the residual
variable does not have a normal distribution. One then desires to do a
statistical test, but one is unwilling to make assumptions concerning the
distribution of the residual variable. Becanse distribution-free methods make
no assumptions concerning the distribution of any of the variables, they can
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be used with bimodal or bighly skewed distributions. This is why these
methods are called distribution-free.

If the residual variable does have a normal distribution and all the other
assumptions are met, there is a cost in not doing an analysis that preswmes the
interval level of measurement. The techniques described in this and the next
chapter have less power than the procedures described in the previous chap-
ters when the assumptions made by distribution-tied tests are true. Thus
analysis of variance and the two-sample ¢ test are more powerful statistical
procedures than the distribution-free procedures described in this and the next
chapter. However, if the classical assumptions of normality and homogeneity
of residvals do not hold, the p values obtained from analysis of variance are.
not correct and are usually too liberal, resulting in too many Type I errors. It
can even happen that for some distributions, a distribution-free method is
more powerful than a distribution-tied method.

A distribution-free test is ordinarily less powerful than its distribution-tied
cousin because the distribution-free test ignores the interval information in the
data. Consider the following patiern of numbers of two samples A and B.

A 1,2,3,6
B: 7,8,9 12

There is no overlap in the numbers and the means (3.0 for sample A and 9.0
for sample B) differ by six units. Consider the pattern of the following
numbers from two samples.

A 1,2,3,6
B: 107, 108, 109, 112

Again there is no overlap, but now the means (3.0 for sample A and 109.0 for
sample B) differ by 106 units. A distribution-free test would see no difference
between the two patterns, whereas a distribution-tied method would see the
second pattern as more convincing evidence that the two groups differ.

However, distribution-free tests do have their advantages. Distribution-tied
tests believe even the most anomalous aspect of the data. Consider again the
first pattern of the numbers of two samples A and B:

A 1,2,3,6
B: 7,8,9, 12

There is no overlap in the numbers and the means differ by six vnits. Consider
the following numbers from two samples.

A 1,2,3,6
B: 7,8,9,120

The numbers are exactly the same except that the last number in the B sample
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is ten times larger in the second pattern. The distribution-free test would see
no difference between the two patterns, whereas a distribution-tied method
would see the second pattern as much more convincing evidence that the two
groups differ even though the value of 120 would appear to be an outlier.

The third reason for choosing a distribution-free test is that it tests a
different null hypothesis from the null hypothesis tested by the distribution-
tied analog. For instance, consider the following two samples.

A 1,2,3,3,4,4,4,5,5,5,6,6,7,8
B: 1,1,1,2,2,2,2,7,7,7,7,8, 8,8

Both groups have means of 4.5, but clearly the groups differ. Sample B has
more exireme scores than sample A. A distribution-free test can reveal such a
difference, but a 7 test cannot, '

Although there are clear-cut cases in which a distribution-free statistic is
clearly superior to its distribution-tied cousin, the choice between the two may
be more a matter of taste and custom than of right or wrong. For instance,
researchers in medicine are much more likely to employ a distribution-free
method than researchers in economics, even though data in medicine are no
less likely to be normally distributed than in economics. Perhaps the prefer-
ence is explainable by need to be somewhat more conservative when lives are
at stake than when dollars are. I suspect, however, that the real reason has
more to do with custom than anything else.

In cases in which the researcher is in doubt about the type of analysis, both
types of tests might be employed. Most of the time the two sets of results
agree. In such a case the distribution-tied tests are reported with mention that
the distribution-free resnlts are in essential agreement. In cases in which the
analyses are in conflict, vsually the distribution-free results are reported
because they tend to be more conservative.

This chapter considers distribution-free tests in which the dependent vari-
able is at the nominal level of measurement. Two basic types of models are
considered. In the first, hypotheses concerning the distribution of a nominal
dependent variable are tested. In the second, both the independent and
dependent variable are at the nominal leve} of measurement. For this second
model, either the scores can be independent across levels of the independent
variable or they can be nonindependent. Different analysis strategies for
models are needed when the groups are independent and when they are
nonindependent.

First, this chapter shows how to test whether a nominal variable affects a
second nominal variable in which the groups are independent. This test is
commonly called a x? test of independence. Tts distribution-tied analogs are
the two-group ¢ test, one-way ANOVA, and regression. The second test
considered in this chapter is the McNemar test, which evalvates the effect of a
dichotomous nominal variable on a dichotomous dependent variable in which
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the groups are nonindependent. Its distribution-tied analog is the paired ¢ test
which was presented in Chapter 13. The final test that is discussed evaluates
the adequacy of an a priori prediction of a nominal variable’s distribution. The
test is commonly referred to as a y? goodness of fit test. Its distribution-tied
analog is a ¢ test of a constant which is presented in Chapter 12.

As was explained in Chapter 8, for a nominal variable the data can be
converted into frequencies. A frequency of a category equals the total number
of objects for the category of the nominal variable. For the statistical tests
presented in this chapter, the y? distribution is the sampling distribution that
is employed. In all cases the distribution of the test statistic is approximately
x?. The test statistic for these y tests always compares the observed or actual
frequencies to those frequencies expected under a restricted model.

Test of Independence of Two Nominal

Variables

TABLE 17.1

In this case there are two nominal variables and the issue is whether the two
variables are associated. One variable may be distingwished as independent

- and the other dependent or they may not be, Such a distinction does not affect
‘the p value but it does affect the interpretation of the result.

As an example, consider a study by Brown (1981). He had a pair of
persons stand in a mall talking to one another. Persons approaching the pair
could either walk through the pair or walk around. Brown varied the racial
composition of the pair. They were either both black, both white, or mixed
race. So the independent variable is racial composition of the pair, and the
dependent variable is the behavior of the subject: walking through versus
around. A total of 508 subjects were observed, and the results are shown in
Table 17.1.

The first row of the table consists of those who walked through. For
instance, a totat of 125 persons walked through the black pair. The second
row consists of those who walked around. The final row is called the set of
column margins and consists of the number of persons in the sample for type

Observed Frequencies for the Brown (1981) Study

‘Racial Composition

Behavior Black White Mixed Total
Through 125 67 65 257
Aromd € 76 108 251
Total 194 508

143 171
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of pair. The final column contains the row margins. They give -the total

number of persons who walked through and around. The number in the
bottom right-hand corner, 508, is the total number of persons in the study.

As discussed in Chapter 8, a table of frequencies is, by itself, not very
interpretable. To increase interpretability the percentage of those who walked
through for each racial composition is computed. Percentages are computed
for each column because racial composition is the independent variable and
behavior is the dependent variable. The result is shown in Table 17.2. The
subjects are most likely to walk through the pair when the pair is black and
least likely when the pair is mixed. Interestingly, the mixed-pair percentage
does not fall halfway between the black and white pairs.

It might be asked whether these results could be explained by sampling
error. Is it possible that, by chance, the subjects in the black condition just
happened to be persons who would walk through any pair? Can the hypothesis
that the racial composition does not affect behavior and that the observed
differences are due to sampling error be rvled. out?

If there is no association between the two nominal variables, then it is said
that the two variables are independent. Thus, the complete model assumes
that the two nominal variables are associated and the restricted model is that
the two variables are independent.

To evaluate the restricted model, it is necessary to estimate the number of
subjects who would walk through the black pair if the variables of racial
composition and behavior were independent. The actual or observed number
is compared with the frequency expected if the two variables were in-
dependent.

The expected frequency for a given cell equals the row margin times the
column margin divided by the total number of persons. {Note that frequen-
cies, not proportions, are used.) So, the expected number of persons who
walk through the black pair is the row margin (257) times the column margin
(194) divided by the total number of persons (508) or

(257)(154)

= 98.15
508

"TABLE 17.2 Percentages by Column for the Brown (1981) Study

Racial Compaosition
Behavior Black White Mixed

Through 64 47 38
Around 36 53 62
Total 100 100 100
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It is not at all unusual for the expected frequency to be a noninteger value.
Normally the expected frequencies are computed to two decimal places.

The expected frequency is computed for every cell of the table. For the
example, for the six cells of the table the expected frequencies are as shown in
Table 17.3.

Note that the row and column margins of the table of expected frequencies
are exactly the same as the observed frequencies. This mathematical necessity
(within the limits of rounding error) can be used as a computational check to
see whether the expected frequencies aré computed correctly.

Now the observed frequency minus the expected frequency is computed for
each cell. With these differences for each cell of the table the following is
computed:

(observed minus expected)?
expected

and this quantity is added across all the cells of the table. This sum has
approximately chi square distribution under the restricted model of in-
dependence. The degrees of freedom given r rows and ¢ columns in the table
are as follows:

degrees of freedom = (¥ — 1)(c - 1)

For the racial composition example, there are two rows and three columns.
Thus, (r— 1)(c — 1) equals 1 times 2, or 2. The chi square test of independence
is

(observed minus expected)?

2 . . =
X 1=D(e-1)] sum expected

The observed frequency is denoted as ¢ and the expected frequency is
denoted as e. The mathematical formula for the chi square test of in-
dependence is

(0 - &’

X -1e-Dl=3 —

TABLE 17.3 Expected Frequencies for the Brown (1981) Stedy

Racial Composition
Behavior Black White Mixed Total

Through 98.15 72.34 86.51 257.00
Around 95.85 70.66 84.49 251.00
Total 194.00 143.60 171.00 508.00
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The x*(2) for the example is 26.49. Using Appendix G, the p value for the
value of y2 is less than .001, and so the null hypothesis that behavior and
racial composition are unrelated is rejected. The differential probability of
walking through racial pairs cannot be explained by chance.

For 2 X 2 tables (that is, a table with two rows and two colummns), various
measures of association were presented in Chapter 8. One such measure is the
phi coefficient. As explained in Chapter 8, phi {¢) is a correlation coefficient.
If phi is known, y2 can be computed directly

x*(1) = N¢?
where N is the total number of persons in the study. So y? equals the sample
size times phi squared. This only applies to tests using 2 X 2 tables.

If the chi square is not significant, one concludes that the two variables are
independent; that is, the variables are unrelated. If chi square is statistically
significant, then one concludes that the variables are associated. To determine
the direction of the association, one can compute percentages across Tows or
columns. '

The fact that the degrees of freedom of the y? test are (r — 1){c — 1) is not as
mysterious as might seem. Recal] that the degrees of freedom for interaction
in analysis of variance take on a similar form. They equal the product of the
number of levels of the first independent variable Jess one times the number of
levels of the second variable less one. The total number of cells in the table
are rc, the number of rows times the number of columns. To test for
independence, the row and column margins are used. The sum of the expected
frequencies must equal these row and column margins. There are r row
margins and ¢ column margins. Because both the row column margins must
sum to N, there is one constraint on the row and column margins. So the
number of unconstrained frequencies is the total number of cells less the
number of rows and columns plus one. In terms of symbols,

rc—-r—c+1
which equals
(r—Dic-1)

This equals the degrees of freedom for the y” test of independence.

Assumptions

One major assumption of the x? test is that observations are independent. To
ensure that the assumption is met, the total N must represent that many unique
responses. The same person must not enter the table more than once. The
number of persons must equal the number of observations.

The x? test of hypotheses of association between variables is only an
approximate test. That is, the sem of the observed minus the expected squared
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divided by the expected has only approximately 2 y? distribution under the
restricted model of independence. The p values obtained are only approx-
imate. How good the approximation is depends, in general, on the overall
sample size. The larger the sample size, the better is the approximation. A
good rule of thumb is that the total N divided by the number of cells must be at
least five before the approximation becomes quite good. In terms of symbols:
N must be greater than or equal to Src; that is, N = 3rc,

McNemar Test

The x? test of independence presumes that the observations are independent.
It is not at all uncommon far observations to be linked, In Chapter 13, the
paired ¢ test for scores that are linked or paired across two conditions is
described. Described here is a similar procedure for linked scores in which
both the independent and dependent variables are dichotomies.

Consider an clection survey in which 100 persons are interviewed and 55
favor candidate A and 45 candidate B. These same 100 persons are in-
‘terviewed again and asked who if is that they prefer. Now 49 prefer A and 51
prefer B. The issue is whether the percentage of those favoring the candidates
has changed significantly over time. The independent variable is time, and the
dependent variable is candidate preference. It would not be valid to employ a
x* test of independence because the same persons were interviewed in both of
the surveys. '

To perform the McNemar test, one examines only those who have changed
over time. So, the number who switched from candidate A to B is compared
with the number who switched from B to A, If the independent variable had
no effect on the dependent variable, within the limits of sampling etror, these
two numbers should be the same. The McNemar test evaluates the null
hypothesis that the two types of changers are equal. If this null hypothesis is
false, the null hypothesis that the independent variable has no effect on the
dependent variable also is false.

There are two key frequencies that must be determined to compute the
McNemar test. The persons who switch from one category to the other
category for the dependent variable must be counted. The two frequencies are
designated as @ and d. So, for the example, a is the number who switched
from candidate A to B and 4 is the number who switched from B to A. The

formula for the McNemar test is
(la-d|-1.0?
2 1) e 22—~ 1 =777

x() a-+d

(The expression |a — d| is the absolute value of @ — d. If a - d is negative, the
sign becomes positive.} The degrees of freedom for the McNemar test are
one. The —1.0 term in the numerator is calied the correction for continuiry.
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Such a correction improves the accuracy of the y? approximation. (A similar
correction was proposed for the y? test of independence for 2 X 2 tables.
Recent work has shown that the correction there is not necessary.)

Assumpltions

Even though the two groups are nonindependent, all other scores must be
independent. Also, the x? distribution is used to approximate the sampling
distribution of the McNemar test. If a + 4 is small, the approximation is not
‘very good. One rule of thumb is that @ + & must be at least ten before the test
is performed. Even if the approximation were good for a + d less than ten, the
test would be of little use because its power would be so low.

Example

Consider the following experiment. Mita, Dermer, and Knight (1978) took
one picture of 33 persons, but for each person two different pictures were
developed. One was a usual or regular picture. For the other, the negative was
turned upside down before printing, causing the print to represent a mirror
image of the person photographed. Each person and a person’s friend were
asked which of the two pictures they preferred. The normal print would show
the way that others see the person, and the reversed print would show how the
person would see him or herself as in 2 mimor. According to the social
psychologist Robert Zajonc, individuals generally prefer the familiar, -and so
friends should prefer the regular photo and the persons themselves should
prefer the reversed photo.

The independent variable from this experiment is friend versus self, and
the dependent variable is picture chosen, regular or reversed. Although there
-are 66 persons in the study, only 33 of them are independent because there are
actually 33 pairs of friends. To perform the McNemar test, it must be
determined how many times the friend preferred the regular picture and the
self preferred the reversed picture. According to Mita and his colleagues this
number should be high relative to the number of times that the friend preferred
the reversed picture and the self preferred the regular picture.

The results from the experiment by Mita, Dermer, and Knight are that 15
pairs operated as predicted and 7 pairs were in the opposite direction. The
McNemar test result is

([15-7|-1.0)
15+ 7
The x2 (1) value is 2.23. Using Appendix G, this value does not equal or
exceed the value of 3.84 necessary for it to be statistically significant at the

.05 level of significance. So although the results are in the predicted direction,
they are not statistically significant. There is no statistically significant
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evidence that persons prefer the reversed picture of self and friends prefer the
normal picture. :

xZ Goodness of Fit Test

Sometimes a researcher has a hypothesis about the distribution of a nominal
variable and wishes to ecvaluate it. Consider the following examples:

1. In a study of extrasensory perception, a researcher asks 40 supposed
psychics whether a coin that is flipped is heads or tails. Of the 40 psychics,
24 dre correct and 16 are incorrect. Is this significantly better than 20
correct and 20 incorrect expected by chance?

2. A computer scientist wants to test how random her random number
generator-is. She has a computer generate 1000 random integers from 1 to
10. If the generator is truly random, then each integer should appear 10%
of the time, _

3. A researcher seeks to compare whether enough women are called for jury
duty in a given county of the United States. By using census data, the
researcher determines that 52% of the adult population is female. Of 458
persons called for jury duty 212 are females.

In each of these cases, there is a nominal variable. For the first, it is heads or
tails; for the second, it is integer from one to ten; and for the third, it is
gender. The researcher has some way of predicting the percentage of cases for
B, each category of the nominal variable. The expected frequency for a category
’ equals the total N times the proportion that is predicted for that category. So
for each category of a nominal variable, there is an observed frequency and an
expected frequency.

The observed frequency can be compared to the expected frequency. It

turns out that the expression

(observed — expected)?
expected

sum

has a y? distribution with k — 1 degrees of freedom, where k is the number of
categories of the nominal variable. If 2 is significant, the model or theory
that predicts the distribution is incorrect in some way. If y? is not significant,
the frequencies-are compatible with the theory.

Note that the formula for the x? goodness of fit test is identical to that for
the x? test of independence. The difference between the two tests is in how
the expected frequencies are computed.

Assumptions

The x? goodness of fit test requires that observations be independent. One
consequence of this assumption is that the same person may enter the table
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only once. A second assumption is that all expected values must be nonzero.
If theory predicts that a category has no members, a x? test is not necessary.
One need only see whether the categery has any members. If it does the
theory is falsified. For the y? approximation to be adequate, expected values
should be at least five.

Example

In 1866 the monk Gregor Mendel reported the results of his experiments on
the inheritance of traits. Mendel took seeds that were pure strain yellow and

pollinated them with pure strain green. A total of 529 plants were produced. If

his theory of inheritance were correct, then 25% of the peas produced should
be pure yellow, 25% pure green, and the remaining 50% should be a hybrid
mixture of yellow and green.

What Mendel found was as follows:

Yellow 126
Hybrid 271
Green _13_2
Total 529

At issuc is how well Mendel's theory of inheritance predicts the distribution
of pea plant colors.

Because the theory predicts 25% yellow, 50% hybrid, and 25% green the
expected frequency of plants are '

Yellow: .25 X 529 = 132.25
Hybrid: .50 X 520 = 264.50

Green: .25 X 529 = 132.25

Each of these expected frequencies equails the proportion predicted by the
theory times the total number of cases. The sum of these expected frequencies
is 529, which is what it should be.

Now these expected frequencies are compared with the observed frequenc-
fes.

Plant Observed Expected Observed—Expected
) Yellow 126 . 132.25 —6.25

Hybrid 271 264.50 6.50

Green 132 132.25 -.25

Note that the sum of the observed minus expected is zero, which is a

mathematical necessity. So, for Mendel’s data, the x? is found to be
25y 507 (=.25)%

(=6.25) +650 +( .

132.25  264.50 13225 46

x4 =

‘Using Appendix IG, a value of y? with two degrees of freedom requires a

value of 5.99 to be significant at the .05 level of significance. So y%(2) = .46
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is not statistically significant. The degrees of freedom are two because there
are three categories, making & equal to three, Hence the difference between
Mendel’s obtained distribution of peas and the disiribution expected by theory
can be attributed to sampling error. The results are compatible with Mendel’s
theory.

Other Models for Nominal Dependent

Variables

Summary

There are many more complex models for nominal dependent variables than
those considered in this chapter. For instance, more than one independent
variable may be present and the effect of the interaction between the two
independent variables may be of interest. Or one may wish to test the effect of
a three-level nominal variable on a nominal variable with nonindependent
groups. To estimate and test such models, a general method catled log linear
analysis can be used (Fienberg, 1977; Reynolds, 1977).

The model for log linear analysis is formally similar to an analysis of
variance model. Like the methods presented in this chapter, log linear analy-
sis produces a set of expected frequencies which are compared to the ohserved
frequencies. However, for most log linear models the expected frequencies
require extensive computation, and therefore computers must be used. The
discrepancies between observed and expected frequencies are evaluated by
the y* distribution. Log linear models are used primarily in survey research,
but they could be applied to almost any area of research.

The methods discussed in this chapter were developed for variables measured
at the nominal level of measurement, whereas the methods discussed in the
previous five chapters assume that the dependent variable is measured at the
interval level of measurement. These methods, as well as those for ordinal
dependent variables, are called distriburion-free methods because no assump-
tions are made concerning the distribution of the residual variable. There are
three reasons for using distribution-free methods. First, because the de-
pendent variable may be clearly measured at the nominal or ordinal level of
measurement, the procedures developed for interval data are inappropriate.
Second, the dependent variable may be at the interval level of measorement,
but the researcher may be unwilling to assume that the residual variable has a
normal distribution. Third, the distribution-free test evaluates a different nunll
hypothesis from that of the distribution-tied test.

The x? test of independence is used to evaluate association between a pair
of nominally measured variables. It takes as the restricted model that there is
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no association between the two variables. The x? distribution is used as an
approximation to evaluate the plausibility of the restricted model. It involves
computing the frequencies expected given no association and comparing them
with the observed frequencies. The expected frequency for a cell equals the
cell’s row margin times the cell's column margin divided by the total number
of observations. The degrees of freedom of the test are the number of rows
minus one, times the number of columns minus one.

The McNemar test evaluates whether a nominal independent variable
affects a rominal dependent variable in which the groups are not independent.
To use this test, the number of persons who switch from one category to the
other is determined. The x? test has one degree of freedom.

For the x? goodness of fit test a theory predicts the relative frequencies for
each category of the nominal variable. Like the yZ test of independence, the
goodness of fit test compares observed to expected frequencies. The number
of degrees of freedom is the number of categories less one.

More complicated models for nominal dependent variables can be tested
through the use of log linear models. Like the y° tests presented in this
chapter, log linear models involve specifying a restricted model and making
predictions concerning the expected frequencies. These expected frequencies
are compared to the observed frequencies through the y? distribution.

1. Locate in the x2 table in Appendix G the minimal value of x to achieve
statistical significance.

af  p level

a. 1 .05

b. 5 .01

c. 3 001

d 2 .05

e 10 .01

f 19 .10

2. For the following table compute and interpret the x? test of in-
dependence.
Male Female

Yes 15 30
No 25 8
Undecided 12 20

Interpret the result.

3. A researcher secks to compare- how many women are called for jury duty
in a given county of the United States, in relation to the number of men.
By using census data, the researcher finds that 52% of the population
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is female. Of 438 persons called for jury duty 212 are females. Are those
called for jury duty representative of the general population?

. The following table (Anderson, 1954) presents the relationship between
seeing an ad and buying a product.

See an Ad
Yes No
Yes 138 147
Buy the
Product
No 118 543

Compute a y? test of independence and interpret the resuit.

. Below is a table of the preferences of blacks and whites to be stationed in
a northern and southern camp during World War II (Stouffer, Suchman,
Devirney, Star, & Williams, 1949).

Blacks Whites
North 2027 2024
Regional
Preference
South 2268 1717

Compute a y? and interpret the result.
If one splits persons by where they were born, North versus South, one
obtains the following pair of 2 X 2 tables.

Area of Birth
Regional North South
Preference Blacks Whites Blacks Whites
North 1263 1829 764 195
South 286 672 1982 1045

Compute the x? test of independence separately for those born in the
North and those born in the South. For each group interpret the rela-
tionship. -
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10.

11.

In a study of extrasensory perception, a rescarcher asks 40 supposed
psychics whether a coin that is flipped-is heads or tails. Of the 40
psychics, 24 are correct and 16 are incorrect. Is this significantly better
than the 20 correct and 20 incorrect expected by chance?.

A computer scientist wants to test how random her random number
generator is. She has the computer generate 1000 random integers from 1
to 10, If the generator is truly random, then each integer should appear
about 10% of the time. She finds the following results.

Integer

1 2 3 4 3 6 7 g 9 10

105 99 101 111 85 103 101 96 101 98

Use a x? goodness of fit test to evaluate’ whethér the ten numbers are
equally likely.

. A local politician wants to know if her popularity is improving. She had

surveyed 112 persons and found that 40 thought that she was doing a
good job and 72 did not. In a more recent survey, 50 thought that she was
doing a good job and 62 did not. Given that the two groups are in-
dependent, test to see if her popularity is improving.

For problem 8, assume now that the same set of persons were interviewed
at both times. The complete set of results are as follows:

Time 1 Time 2 n

good good 35
good poor 5
poor good 15
poor poor 57

Is her popularity significantly improving?

In problem § the candidate is rated as good by 40 and poor by 72 in her
first survey. Test the hypothesis that as many persons like the candidate
as dislike her.

An investigator has 27 mothers and fathers listen to recorded cries of their
infant child and the cries of another child. Each parent is asked to identify
the cries of their own child. The results are as foliows:

Father Mother

Correct Correct n
yes yes 5
yes no 1

no yes 9
no RO 12
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Are mothers better able than fathers to recognize the cries of their own
infant?

12. Consider the variables of religion and support for or against abortion,
where the entries represent observed frequencies.

Religion
Abortion Attitude Protestant Catholic Jewish Other
Approve 33 44 14 54
Disapprove 21 65 4 33

Compute a y? test of independence. Interpret the results.
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Models for Ordinal
Dependent Variables

In the preceding chapter it was pointed out that statistical techniques that are
used for variables measured at the interval level of measurement are not
always appropriate. First, the dependent variable may clearly not be measured
at the interval Jevel of measurement. Second, the researcher may be unwilling
to make the assumptions that are required for distribution-tied tests. For
instance, the normality assumption may be clearly implausible. If either of
these cases holds, a distribution-free test may be needed. In this chapter, the
topic is the set of models for dependent variables measured at the ordinal level
of measurement. As explained in Chapter 1, the ordinal level of measurement
implies that the objects can only be rank ordered and that quantitative
differences between pairs of objects cannot be assessed.

In this chapter all models have an ordinal dependent variable. The set of
models to be considered are presented in Table 18.1. The Mann-Whitney U
test is the distribution-free analog of the two-sample ¢ test discussed in
Chapter 13. The independent variable is 2 nominal variable with two levels.
So for a Mann-Whitney test there are two groups of persons. Additionally, the
dependent variable is measured at the ordinal level of measurement. The
Kruskal-Wallis test is the distribution-free analog to one-way analysis of
variance, There are multiple groups of persons with the Kruskal-Wallis test
and so the independent variable is a nominally measured variable. Like the
Mann-Whitney test, the dependent variable is measured at the ordinal level of
measurement.

Both the Mann-Whitney and the Kruskal-Wallis presume that the groups
are independent. If the groups are not independent, then different tests must
be employed. If the independent variable is a dichotomy and the scores in
each group are linked, the sign test is appropriate. The sign test’s distribution-
tied analog is the paired ¢ test described in Chapter 13. If there are more than
two groups that are nonindependent, the appropriate test is Friedman two-way
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TABIE 18.1 Models for Ordinal Dependent Variables

Level of

Measurement

of the

Independent Independent Distribution-Tied

Variable Groups Test Counterpart

Nominal Yes Mann-Whitney t test
(dichotomy)

Nominal Yes Kruskal-Wallis One-way ANOVA
{multilevel) ANOVA

Nominal No Sign test Paired # test
(dichotomy)

Nominal No Friedman two-way Repeated measures
(multilevel) ANOVA ANOVA

Ordinal — Rank-order Correlation

coefficient

ANOVA. Its distribution-tied znalog is the repeated measures ANOVA,
which was presented in Chapter 5.

Finally, if both the independent and dependent variable are measured at the
ordinz] Jevel of measurement, then the degree of association between the two
variables is measured by the rank-order coefficient, sometimes called Spear-
man's rho. This coefficient is the distribution-free analog to the ordinary
correlation coefficient. (Because the independent variable is not nominal, it is
not relevant to refer to independent or nonindependent groups.)

It is important to realize that a distribution-free method evaluates different
null hypotheses than the comparable distribution-tied method. If the different
groups have the same distribution but different medians, the distribution-free
tests evaluate whether the groups have equal medians. If, however, the groups
have different distributions, then the null hypothesis becomes more com-
plicated to state.

For the Mann-Whitney test and Kruskal-Wallis ANOVA, the generai null
hypothesis is that the groups, when considered as a single sample, all have
mean percentile ranks of 50.0. For the sign test and Friedman two-way
ANOVA, the null hypothesis is that, for each pair of conditions, persons are
just as likely to have a higher score in one condition as they are in the other.
‘When presenting these tests, for reasons of simplicity the null hypothesis will
be stated that the groups have equal medians. It should be remembered that
when the distributions are different, the null hypothesis is more complicated.

The rank-order coefficient measures any consistent positive or negative
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relationship between a pair of variables. The ordinary cotrelation coefficient,
or r, measures only the linear association between a pair of variables. So, the
null hypothesis for Spearman’s rho is no positive or negative relationship
between the variables.

The procedures that are to be presented in this chapter for ordinal data
presume that there are no ties. If there are ties, then each score is given the

. mean of the tied rank. So, the following set of scores

5 6,6,6,9,9,12, 13, 13, 13, 13
would yield ranks of
1,3,3,3,55,55,7,95,9.5,95,95

Methods that correct for ties in the ranks for formulas described in this chapter
are described in more advanced texts (Bradley, 1968; Siegel, 1956). Howev-
er, not correcting for ties when there are not many seems to have little effect
on the p values.

When working with ranks there are two useful computational checks. The
first is to make sure that the last rank (given that it is not tied) equals #, the
sample size. If it does not, there is an error in the ranking. The second
computational check is to compute the mean of the ranks. It should equal (# +
1)/2, even if there are tied ranks. If the mean of the ranks does not equal {(n +
1)/2, there is an erfor in assigning ranks.

Mann-Whitney U Test

The Mann-Whitney U test is analogous to the two-sample ¢ test described in
Chapter 13. However, the assumptions concerning normal distribution and
homogeneity of variance are not made by the Mann-Whitney U test. 1t is then
a distribution-free “r test.” The test is fairly commonly used in medicine and
the biological sciences, but it is relatively infrequently used by most social
scientists. Nonetheless, it is an appropriate test when the assumption of
normality seems totally implausible,

The Mann-Whitney U test evaluates not the similarity of the means of two
groups but rather any consistent difference in the mean percentile scores of the
two groups. If the two groups have similar distributions, the Mann-Whitney
evaluates whether the two groups have equal medians. Because the mean and
median may not be the same, even in the population, the f test and the
Mann-Whitney test do not evaluate exactly the same null hypothesis.

The Mann-Whitney test begins with a ranking of all the scores ignoring the
fact that the perscns are in two different groups. Persons are therefore treated
as if they were members of one large group. The ranks then are averaged for
the persons in each of the groups, and the difference is computed. This
difference between the ranks in the two groups will be denoted as Q. At issne
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is whether the difference between ranks is much larger than it would be if the
ranks were assigned randomly.

One way to determine the unusualness of the value of Q is through random
assignment of a rank to each person. That is, the actual data are ignored and
the subjects are rank ordered again, but this time the ranking is done random-
ly. Then with these random ranks, the value of O is computed. If this were
done repeatedly, one would obtain a distribution for Q. One would then
determine just how unusual the obtained value of Q is relative to the values
obtained for @ by using a random procedure. This is the essence of the
Mann-Whitney U test. It essentially computes the difference between the
average rank for the persoms in the two groups and judges whether that
-difference between ranks could have occurred by chance. It does this by
comparing the obtained value of Q to what the value of Q would be if persons
were randomly assigned ranks.

Consider the following simple case:; The number of persons in each group
equals three, The data for the two groups are

Group 1: 12,19, 18
Group 2: 25, 23, 30
The six scores are rank ordered from smallest to largest, as follows:
Group 1: 1,3,2
Group 2: 5,4, 6

The mean or average rank is 2.0 for group 1 and 5.0 for group 2. The
difference between the mean rank of group 1 from the mean rank of group 2 is
3.0. At issue is how unusual the value of 3.0 is. If ranks were randomly
assigned to each of the six persons, the mean rank difference could be
computed. If done enough times, the following mean rank differences with
the following probabilities would be obtained.

Difference in Cumulative
Mean Rank Probability Probability
3.00 .05 .05
2.33 .05 10
1.67 10 20
1.00 15 35

33 15 50
- .33 A5 65
-1.00 15 80
-1.67 A0 90
-2.33 05 95
-3.00 03 1.00

For instance, a difference between mean ranks of 1.00 or greater for two
groups of size three would occur by chance 35% of the time. It can be seen
that the obtained value of the difference between ranks of 3.0 is unusual and
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would occur by chance only 5% of the time. Because a value of —3.0 would
also occur by chance 5%, the two-tailed p value is .10.

For the Mann-Whitney test, the average difference between the ranks is not
the statistic that is computed but rather a statistic that could be used to derive
it. The statistic computed is the sum of the ranks of the group with the smaller
sample size. To see that the sum of the ranks of one group yields the
difference between mean ranks, consider the example of two groups of size
three. If the sum of the ranks for one group is K, then it is a mathematical
necessity that the mean difference between ranks must be 2R/3 — 7. Soif R is
six, the mean rank difference must be —3.0. The advantage of the sum of the
ranks over the mean rank difference is that the sum of the. ranks is always a
positive integer, whereas this is not true of the mean rank difference. This fact
makes it much easier to table the sum of the ranks rather than the mean
difference.

To conduct a Mann-Whitney one proceeds as follows, All of the numbers
are rank ordered from smallest to largest. Then the ranks in the smaller sized
group are summed (not averaged). The sum of the ranks in the smaller sized
group is denoted as R. If both groups have the same sample size, the sum of
ranks of either group can be used. The sample size of the smaller group is
denoted as n; and the sample size of the larger group as n;. The Mann-
Whitney test statistic, U is:

#(n + 1)

= mny +
U nna 20

R

where R is the sum of the »; ranks. The value of U ranges from zero to nyn,. If
the ranks are, on average, larger in the n, group, U is small. If the ranks are
larger, on average, in the n, group, then U is large. So if the restricted model
of equal medians is false, the value of U is either very large or very small. To
determine whether U is unusually large or small depends on the sample sizes.
If both r;, and n, are less than or equal to 20, tables are used. If either is
greater than 20, an approximation is used.

and n; Are Less than or Equal to 20

First the value of U/ is computed. Then the obtained value is compared to
those values tabled in Appendix H. If the value of U is greater than or equal to

‘the larger value in the table or smaller than or equal to the smaller value in the

table, then the restricted model that the medians of the two groups are equal is
rejected. So for instance, if #; = r; = 10, the value of U must exceed or equal
78 to be significant at the .05 level or be less than or cqual to 28, In Appendix
H, the smaller sample size n, is the first column, and #, is the second column.
Four significance levels are given: .10, .05, .02, and .01.
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Either n; or n; Is Greater than 20

In this case, one does not use the tables in Appendix H, but rather relies on the
fact that as the sample sizes increase, the distribution of I/ approaches the
normal distribution, with a mean of

Ry7

2

and a standard deviation of

Hlnz(nl + (5] + I)
12

Using these facts, U is converted into a variable that has approximately a
standard normal distribution under the restricted model. This quantity is
denoted as Zy. That is, from U its theoretical mean is subfracted and the
difference is divided by its theoretical standard deviation. The complete
formula is

_ U~ nmny/2
Vil + np + 1712

Zy

Although the formula looks complicated, it involves only the sum of the ranks
and n, and ny. The quantity Z;, has a standard normal or Z distribution. That
is, given the restricted model, the statistic is approximately normally distrib-
uted, with a mean of zero and variance of one. Appendix C can be used to
determine the p value. The value closest to Zy; (ignoring sign and rounding
down) is located. Then take the probability for Z and subtract it from .5, and
multiply this difference by two. So for Z; = —2.51, the probability is .4838.
The p value is (.5000 — .4838) x 2 = .0324.

As was stated earlier the statistic is only approximately normally distrib-
uted, This means that the p values are only approximate. How good the
approximation is depends on n, and n,. As they get larger, the approximation
gets better. ‘

Examples

Consider the data in Table 18.2. Because the groups have the same sample
size, either group's ranks can be summed. The sum of the ranks in group A is
71. Because n; and n, are both seven, the value of U is

77 + 1)

(N +—2—— i1 =6

Looking this value up in Appendix H, a value of U of six with ny and n,
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TABLE 18.2 Example of Mann-Whitney Test

Sign Test

Group A Group B
Score Rank Score Rank
23 5 34 2
43 9 19 4
53 11 11 1
64 13 13 2
27 7 25 6
82 14 18 3
63 i2 51 10

equal to seven is statistically significant at the .05 level. This value indicates
that the groups’ distributions are significantly different.

Assume that there are two groups, n; = 18, r; = 22, and U = 246. Given
n; = 18 and n, = 22, the expected mean is

(18)(22) _ 198
2
The variance is
(18)(22)(18 + 22 + 1)
12

The square root of 1353 is 36.78. The test that U/ does not differ from its
population mean is

= 1353

246 — 198

z 36.78

= 1.31

.which is not significant. Therefore the distributions of the two groups do not

significantly differ.

Although the Mann-Whitney test does not presume normality or homogeneity
of variance, it is still required that the scores be independent from ome
another. It may happen that scores are paired, as described for the paired ¢ test
in Chapter 13. Each score in a given group is paired or linked to one and only
one score in the other group. Scores can be paired because they come from the
same person, come from a couple such as friends or littermates, or come from
two persons who interact with each other.

A procedure called the sign fest can be used to test hypotheses about the
medians of two samples whose scores are linked. The sign test is very simple.
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The two conditions are denoted as I and II, and it will be assumed that the
same person is in both conditions. (As with any nonindependent group
design, it need not be person that links together the pair of scores, but persons
" are used in the illustration. ) If a person has exactly the same score in condition
I as condition II, that person’s scores are dropped from the analysis and the n
is reduced by one. Like the paired ¢ test, a difference is computed for each
person. So the condition I score is subtracted from condition II score. The
rumber of scores with positive signs is denoted as ¢. If », the number of
untied cases, is less than or equal to 25, then Appendix I is used to determine
significance.
If n is greater than 25, the following Z approximation is used.

| 2c-n|-10
Vn

where n is the number of persons who have different scores and ¢ is the
number of persons whose difference score is positive. (The expression
| 2c~n | is the absolute value, so the sign of 2¢ — n is always positive.) To
determine the p value, the probabilities in Appendix C are used. (See the
discussion of Zy; in the Mann-Whitney section.)

As an example, each of ten nine-year-old children work with a seven-year-
old child on a task. Observers rate the degree of creativity for each child on
the task. The hypothesis is that nine-year-olds are more creative than seven-
year-olds. The data are as follows:

Z

Pair Nine-Year-Old Seven-Year-Old

DD 00 1L R L)
hWD D 00 w320 Lh & )
AW SW R G

[

First, it is noted that because the two scores are the same for pair 3, that pair is
dropped from the analysis. The » now becomes nine. The difference scores
are 2,2,4,4,3,-2,4, 3, and 2. Of these nine differences, eight are positive.
So n is nine and c¢ is eight. Using Appendix I for these values, the result is
statistically significant at the .05 level. So, it is concluded that the nine-year-
olds are more creative than the seven-year-olds.

As a second example consider 45 persons who entered a smioking reduction
program. One year later, 27 persons have reduced their amount of smoking
but 18 increased. Because » is greater than 25, the Z method is used. The
value of Z is
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5 | @27 -45]-1.0
V45

which equals 1.19 with a p value of .234, which is not statistically significant
at the .05 level of significance. Thus the number of persons that reduced their
smoking is not significantly greater than the number that increased.

Kruskal-Wallis Analysis of Variance

The Mann-Whitney test is limited to a dichotomous independent variable,
whereas the Kruskal-Wallis test allows for multilevel independent variables.
Its distribution-tied cousin is one-way analysis of variance. Although Krus-

_kal-Wallis and Mann-Whitney appear to be very different, it is a statistical

fact that Mann-Whitney is a special case of Kruskal-Wallis.

Like the Mann-Whitney U test, the Kruskal-Wallis test begins with a
ranking of all of the data from smaliest to largest. The ranks are summed in
each group. It is the sum of these ranks that are analyzed. Also, like the
Mann-Whitney test, the Kruskal-Wallis test evaluates whether the groups
have any consistent differences in mean percentile rank.

The formula for the Kruskal-Wallis analysis of variance, called H, is

- 3N+ 1}

b

i

12
NN + 1)

where N is the number of persons across groups, & is the number of groups, n;
is the sample size in the jth group, and X; is the sum of the ranks in the jth
group. The quantity H is approximately distributed as y* with k— 1 degrees of
freedom under the restricted model that the medians of all the groups are
equal. Hence a significant y? indicates that the groups differ in their medians,
It has been found that this y > approximation is quite good if the sample size in
every group is at Jeast five.

The formula for the Kruskal-Wallis test looks bewildering. Actually its
rationale, if not its derivation, is quite simple. Imagine that the scores are first
ranked. Then using the ranks, & one-way ANOVA is computed. From this
one-way ANOVA the mean squares for groups would be computed. Such a
mean sguare would take the total of the ranks and square it. These terms are
present in the Kruskal-Wallis formula. Also, the 3(N + 1) term in the formula
is analogous to the correction term for the mean in ANOVA. This mean
square for groups is not divided by the mean square for persons within groups
but rather by a population variance for groups, and that is why the distribution
is ¥ and not F (see Chapter 11). The population variance can be determined
because the scores are ranks, and the variance is therefore known.

Consider the data in Table 18.3. The sums of the ranks in the three groups
are 63, 30, and 78. The Kruskal-Wallis statistic is
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TABLE 18.3 Kruskal-Wallis Analysis of Variancé

Group A Rank Group B Rank Group C ~ Rank

24 4 19 2 53 17
29 7 21 3 46 14
34 10 36 1 39 12
47 15 17 1 ) 13
31 9 30 8 50 16
55 18 25 5 28 6
Svm 63 30 78
12 632 30 782
H=|—"—|[— + =+ —| - 3(19) = 7.05
[18(18 +1j]l6 6 6 (19)

Using the x? distribution with two degrees of freedom, the value of 7.05 is
statistically - significant at the .05 level of significance. So, the restricted
model that the groups have the same population medians is iejected.

Friedman Two-Way ANOVA

As described in Chapter 15, a design in which each person is at each level of a
nominal independent variable is called repeated measures ANOVA. Here, the
distribution-free analog to repeated measures ANOVA is presented. It is
called the Friedman two-way ANOVA.

As in repeated measures ANOVA, each person is at every level of the
independent variable or observations are linked across conditions in some
way. However, with the Friedman test, the null hypothesis is that the groups’
medians, as opposed to the groups’ means, are equal.

To conduct a Friedman ANOVA, scores are separately ranked for each
person. This is different from the Kruskal-Wallis, where the entire set of
scores is ranked. The formula for the Friedman test is

12
nk{k + 1)

where n is the number of persons in the study, k is the number of conditions,
and R; is the sum of the ranks for condition j. ‘
When there are two conditions and £ is two, the Friedman test is essentially
identical to the sign test. Two minor adjustments should be made. First, the
square root of the Friedman y? should be taken to make it comparable to the
sign test Z value, Second, the square root of x? is slightly larger than the Z
value of the sign test because the formula for sign test Z has a 1.0 value

Y R? - 3nk + 1)
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subtracted, which is not the case in the Friedman test. If there are just two
groups, the sign test should be preferred.

The data in Table 18.4 were presented earlier in this chapter. However, in
this instance it is assumed that the data are from six subjects, each of whom is -
in every condition.

In the table, the three conditions are rank ordered for each subject. The
sum of the ranks in the three conditions are 13, 7, and 16. The nis six and k is
three. The Friedman statistic is

(132 + 72 + 16%) - 3(24) = 7.00

12
18(3 + 1)

Using the x? distribution with two degrees of freedom, this value is statistical-
ly significant at the .05 level of significance.

Spearman-’s Rank-Order Coefficient

TABLE 18.4

In Chapter 8 Spearman’s rank-order coefficient was described. It is a measure

. of association between two ordinally measured variables. Spearman’s rank-

order coefficient is denoted by rs. Its formuia is the standard correlation
coefficient applied to ranks. For this measure the scores for each variable are
separately rank ordered. Like r, rs can vary between —1 and +1, and zero
indicates that there is ho association between the two variables,

There are three major reasons for employing the rank-order coefficient
instead of the distribution-tied test. First, the data may be truly ordinal, and
not interval as assumed by the ordinary correlation coefficient. Second, it is
useful in cases where it cannot be assumed that the varables have a normal
distribution. Third, the relationship between the two variables may not be
exactly linear. If as X increases, ¥ increases but in a nonlinear fashion, then
the rank-order coefficient may be a more appropriate measure of association
than the ordinary cormrelation coefficient.

Friedinan Two-Way ANOVA

Person Group A Rank Group B Rank Group C Rank

1 24 2 19 1 53 3
2 29 2 21 1 46 3
3 34 1 36 2 39 3
4 41 3 17 1 42 2
5 31 2 30 1 30 3
6 55 3 25 1 28 2

Sum . 13 7 16
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As discussed in Chapter 8, the rank-order coefficient is an actual correla-
tion between ranks. Besides actually correlating the ranks, there is a com-
' putationally simpler formula for the rank-order coefficient. It is based on the
difference between each pair of ranks for all persons. The formula is

6 2 1),'2
rs=1-—-

n(n® — 1)
where n is the sample size and D, is the difference between ranks for person i.
This formula presumes that there are no ties. If there are ties, the ranks should
be correlated using the regular formula for a correlation.

To evaluate whether the rank-order coefficient is significantly different
from zero, the distribution of ry under the restricted model of no association
can be obtained by randomly assigning the ranks to one of the two variables.
Consider the following pairs of scores.

Person X Y
1 5 3
2 8 9
3 6 4
4 4 1

If the scores are ranked separately for each variable, the following set of ranks
would be obtained.
Rank of

Person
1

— 0 b
— s b

2
3
4

Thus, there is perfect correspondence in the ranks, and the rank order
coefficient is 1.0.

To determine how uvnlikely a value of 1.0 is, the sampling distribution of rg
for n = 4 is derived. The complete set of possible ranks is enumerated; there
are a total 24 possible ranks. These 24 are listed by column, as follows:

1111 1122222233333 344444 4
2233441133441 12244112233
3 4242334141324 141223131 2
4 3 42 32 43 413142 4121323121

Using these ranks for the X variable and the ranks 1, 2, 3, and 4 for the ¥
variable, these 24 pairs of ranks produce ail the possible rank-order coeffi-
cients. There are eleven different rank-order coefficients with the following
frequencies:
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Rank-Order

Coefficient Frequency Probability

1.0 1 .04125

- .8 3 12375

b 1 04125

4 4 16500

2 2 08250

.0 2 08250

-2 2 08250

-4 4 .16500

-6 1 04125

-8 3 12375

-1.0 1 04125

So, the obtained rank-order coefficient of 1.0 would cccur by chance only
4.125% of the time. Allowing for a perfect negative rank-order coefficient,
the exact p value is .08235.

Fortunately, it is not necessary to do all this work. Tables and approxima-
tions are used to test rs. The procedure used to test whether ry is equal to zero
in the population depends on the sample size, If n is less than or equal to 30,
one uses the table in Appendix J. If the observed value of rg equals or exceeds
the tabled value in Appendix I, the value of rs is statistically significantly
different from zero at the appropriate level of significance. So for example, if
nis 15 and rs is .31, it does not exceed the critical values in Appendix J, and
50 the correlation is judged not to be statistically significant.

If n is greater than 30, one uses the ordinary test of a correlation coeffi-
cient.

rs\/n—2
Vl“rSZ

where rg is the Spearman rank-order coefficient and » the sample size. So, if
is greater than 30, the ¢ distribution is used as the test statistic. The use of the
formula is only an approximation. How good the approximation is depends on
n. As n gets larger, the approximation gets better.

To illustrate the computations, consider the following example. A total of
twelve countries are rank-ordered on their economic wealth and their rate of
literacy. The results are

1(n=2) =

Country: A B CDEVFGHT1IJJI KL
Wealth: 5 8 10121 9 3 6 4 2 7 11
Literacy: 6 8 1112 1 7 3 4 5 2 9 10

The sum of the discrepancies squared is 16 and the rank-order coefficient is

18 _ _ om

I- 20022 -1)
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Using the table in Appendix I, it is found that a .944 coefficient with an n of
12 is statistically significant at the .002 level. Thus, the association between
wealth and literacy cannot be explained by chance.

If 40 persons’ intelligence and athletic ability are ranked, the rank-order
coefficient might be .125. The test of this correlation is

125 V40 - 2
V1 - .1252

This value is not statistically significant at the .03 level.

1(38) = = 777

Power Efficiency

To measure the relative power of a distribution-free and a distribution-tied
method, statisticians have developed a measure called power efficiency.
Assume that there are two tests A and B and A is the more powerful test. Let
n, be the number of subjects needed to achieve a given level of power for test
A and »n; be the number of subjects needed for test B to achieve the same
power as test A with n, observations. Because test A is more powerful than

" test B, n, must be less than #,. The power efficiency of test B in relation to
test A is defined as

100 X == percent
ny

So, if the power efficiency of a given distribution-free test is 50%, one would
need twice as many subjects for the distribution-free test to achieve the same
power as with the distribution-tied test.

The power of the Mann-Whitney is comparable fo the power of the
standard two-sample ¢ test. When the set of assumptions hold for the two-
sample ¢ test, the power efficiency of the Mann-Whitney test for moderate
samples is about 95%. This value indicates that there is little loss of power in
employing the Mann-Whitney U test instead of the ¢ test when the distribution
is normal. There exist certain types of distributions for which the Mann-
Whitney U iest has a power efficiency greater than 100%.

The power efficiency of the sign test compared to the paired ¢ test depends
on the sample size. For very small sample sizes (1 = 6), the power efficiency
of the sign test is 95.5%. For very large samples, the power efficiency drops
to 63.7%. '

The power of the Kruskal-Wallis test is measured in its efficiency versus
the F test from an analysis of variance. When the set of assurnptions hold for
the F test, the power efficiency of the Kruskal-Wallis test is about 95%. There
is little loss of power in employing the Kruskal-Wallis test even when the
assumptions required by analysis of variance apply. This 95% figure refers to
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the normal distribution. There exist certain types of distributions for which the
Kruskal-Wallis test has a power cfficiency of greater than 100%.

The power efficiency of the Friedman two-way ANOVA depends on the
number of conditions and the number of subjects. If there are only two
conditions and many subjects, the power efficiency of the test can be as low as
63.7%. If there are either very few subjects or very many conditions, the
power efficiency of the Friedman test can be as high as 95.5%.

The power efficiency of the rank-order coefficient is 21% compared to the
ordinary correlation coefficient. So when the assumptions necessary for
computing the ordinary correlation coefficient are true and r is computed, one
needs 91% of the subjects to have the same power to be able to reject the null
hypothesis as one would need if Spearman’s rho were computed. When the
assumptions necessary for r do not hold, the power efficiency of the rank-
order coefficient may be almost as good as that of the Pearson r, and in some
cases it is even better.

When the dependent variable is a set of ranks or when one is unwilling to
make the assumptions required in distribution-tied statistics, tests that require
only variables at the ordinal level of measurement are useful.

The Mann-Whitney test is used to test whether a two-level independent
variable affects an ordinally measured dependent variable. The test primarily
evaluates whether the two groups have the same median. All the scores are
ranked and the average rank of the two groups is compared. If the number of
observations in both groups is less than or equal to 20, a table is used to
determine statistical significance. If not, an approximation to the standard
normal distribution is used.

When the independent variable is a dichotomy and the dependent variable
is set of ranks and the two groups are nonindependent, the sign fest is
appropriate. The sign test involves determining which observation is larger. If
the number of paired observations is less than or equal to 25, a table is used;
and if greater than 25, a y? approximation is used.

The Kruskal-Wallis test is an extension of the Mann-Whitney test when
there are more than two groups. Like the Mann-Whitney test, all the scores
are initially ranked, and then analyzed. The test statistic, called H, is evalu-
ated by a x? approximation. The degrees of freedom for the test are the
number of groups less one.

When there are multiple groups that are nonindependent, Friedman two-
way ANOVA can be employed. This test involves a ranking of the scores
separately for each subject and then using a y? approximation. Its dis-
tribution-tied analog is a repeated measures ANOVA.

The rank-order coefficient is used to measure association between two
ordinally measured variables. The scores for each variable are first rank
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ordered. The rank-order coefficient is a standard correlation of these ranks.
With this measure the relationship between the variables need not be exactly
linear. If the sample size is less than or equal to 30, a table is used to
determine statistical significance. If n is greater than 30, the standard ¢ test of
a correlation can be used to approximate the p value.

Distribution-free tests make weaker assumptions about the data. They do
have somewhat less power than distribution-tied methods when the assump-
tions mide by distribution-tied methods are true. However, the power effi-

ciency of distribution-free tests is usually in the mid-90s. That is, the compar-

able distribution-tied test has the same power as the distribution-free test with
about 95% of the subjects.

1. For the following data compute a rank-order coefficient, test it, and
interpret the resulis.

Person: 1 2 3 4 5 6 7 8
X: 7 9 11 3 12 4 5 16
Y. 10 7 6 12 4 5 8 3

2. Perform a Mann-Whitney U test for the following data set
A 15, 21, 28, 17, 31, 24, 18
B: 19, 7,15, §,12,19, 10

3. For the following data compute a rank-order coefficient, test it and
interpret the results.

Person: 1 2 3 4 5 6
X 10 4 10 3 15 5
Y: 6 7 6 11 3 R

4. Using a Kruskal-Wallis analysis of variance, test whether the groups’
medians differ.

I 11, 18, 19, 24, 3t
I 19, 27, 15, 8,13
I 15, 12, 21, 29, 17

5. An experimenter investigated the success of three methods of lowering
the level of cholesterol in the blood. Using a Kruskal-Wallis analysis of
variance, test whether the groups’ medians differ.

I. 111, 128, 190, 214, 198
I: 193, 207, 125, 88, 103, 176
o 150, 152, 221, 129, 171
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6. Twelve subjects were measured before and after psychotherapy on an

adjustment scale. Higher scores indicate greater adjustment. The num-
bers are as follows:

Subject Before After
23

1 32
2 27 25
3 31 40
4 32 31
5 26 38
6 25 29
7 25 3
8 24 24
9 33 40
10 22 34
il 36 38
12 29 25

Using a distribution-free test, evaluate whether persons improved after
psychotherapy.

. Subjects were asked to lift three weights and rank order them from

lightest to heaviest. All three weights were identical in objective weight,
but they differed in shape: spherical, conical, and cubical. For ihe 20
subjects the results were as follows.

Spherical Conical Cubical

Heaviest 3 5 12
Middle 9 4 7
Lightest 8 11 [

The numbers in the table indicate the number of subjects who gave the
object that rank. For example, 11 subjects felt that the conical object was
the lightest. Do the three objects differ significantly in perceived weight?

. The following scores are taken from a study that compared two different

methods of increasing vecabulary. The scores of ten persons, five under
each method, are

A: 16, 19, 20, 18, 24
B: 12, 15, 16, 15, 14

On the basis of a distribution-free test, is there any evidence that one
method is superior to the other?

. A program is developed to improve the intelligence (IQ), scores of

preschool children. Two groups of children are randomly formed. Using
a distribution-free test, test whether the program affects IQ score.

Treated group: 109, 123, 141, 119, 133, 117, 118, 120
Contro] group: 106, 193, 114, 120, 116, 107, 98
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10. Twenty persons are randomly assigned to one of two treatments. In the
treatment group, ten persons are taught a series of strategies to improve
their memory. The control group learned noné of the strategies. The
Scores on a memory test are

Memory group: 88, 76, 83, 75, 64, 80, 76, 73, 84, 78
Contro] group: 84, 73, 84, 78, 68, 78, 71, 70, 80, 79
Using a distribution-free test, are the two groups different?

I1. A psychologisi studies the degree of happiness of people at various stages
ir: life. His measure of general happiness varies from 0 to 60, In one
study he compared the happiness of married and single men aged 25.
Using a distribution-free test, is there a significant difference between the
two groups?

Married Single

58 37
45 44
50 59
54 44
49 39
39 60
50 44
51

12. Nine persons were asked to rate the taste of cola A and cola B on a scale
from one to ten. Using a distribution-free test, do persons significantly
prefer one drink to the other?

Person Cola A Cola B

OO0 1 N B L) R e
p—t

~1 00 G0N OO 00 00~

00O N~ L~ O

13. A psychologist is interested in the relationship between handedness and
athletic ability. He measures the athletic ability of three groups of
persons: left-handed, right-handed, and ambidextrous. His results are:

Left-handed: 11, 13, 14, 13, 15
Right-handed: 10, 8, 7, 10, 14
Ambidextrous: 12, 8, 6, 11, 15

Do a Kruskal-Wallis ANOVA to determine whether the groups signifi-
cantly differ.
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14.

15.

16.

17.

Problem 7 in Chapter 14 described a study of the effectiveness of three
different treatments in relieving headache pain. The drugs studied were
aspirin, acetaminophen, and a placebo. Ten different persons took one
drug and rated their pain on a ten-point scale after three hours. The scores
were

Aspirin: 7,6,9,5 3,5,3,2,4,2

Acetaminophen: 5, §,6,4,7,4,6,2,3,7
Placebo: 9,7,8,7,5,4,6,8,3,7

Using a distribution-free test, evaluate whether the groups significantly
differ,

A researcher seeks to compare the marital satisfaction of women who
have been married for varying number of years. She finds the following
(higher numbers, greater satisfaction).

One Year: 56, 48, 57, 41
Two Years: 63, 51, 65, 54
Ten Years: 70, 61, 55, 58

Using a distribution-free test, evaluate the effect of length of marriage on
satisfaction.

The following data are taken from Diehl, Kluender, and Parker (1985}.

Subject ! I i

DS 20 19 21
MM 21 18 20
JH 28 24 31
IS 17 6 10

TA 30 16 25
VS 34 29 32
CJ 21 20 20

Using a distribution-free test, test for an effect due to condition,
In a smdy involving 20 experimentals and 25 controls:

a. The sum of the ranks of the 20 experimentais is 248. Do a Mann-
Whitney test to determine if the groups’ distributions differ.
b. What would be your answer if the sum of the ranks was 3427



Postscript

Models for Ordinal Dependent Variables 327

18. For the following values of the rank-order coefficient and 7, state
whether the correlation is significantly different from zero.

s n
a. —.21 78
b. .45 42
c. .71 12
d .35 20
e. .17 99
f. 47 29
g .46 33
h. —.19 17

In Chapter 1 we began our journey. We have traveled through a sea of
numbers, terms, formulas, and tables. Research in the social and behavioral
sciences brings with it a bewildering array of symbols and terminology. If
used properly, they can help us understand why human beings are the way
they are. But even more important, they can help us understand how we can
come to be more than what we are today.



	dabook.pdf
	dabook.pdf
	working.pdf
	working.pdf
	temp3.pdf
	Kenny Bookk.pdf
	Kenny 5.pdf









