$S E$ for k ratio in APIM using the first order delta method

$$
\begin{aligned}
& k=p / a \\
& \begin{aligned}
& S E_{p / a}\left.=\sqrt{\left[\frac{1}{a}\right.}-\frac{p}{a^{2}}\right]\left[\begin{array}{cc}
s_{p}^{2} & s_{p a} \\
s_{p a} & s_{a}^{2}
\end{array}\right]\left[\begin{array}{c}
\frac{1}{a} \\
-\frac{p}{a^{2}}
\end{array}\right] \\
&\left.\quad=\sqrt{\frac{s_{p}^{2}}{a^{2}}-\frac{2 p s_{p a}}{a^{3}}+\frac{p s_{p a}^{2} s_{a}^{2}}{a^{4}}} \frac{s_{p a}}{a}-\frac{p s_{a}^{2}}{a^{2}}\right]\left[\begin{array}{c}
\frac{1}{a} \\
\left.-\frac{p}{a^{2}}\right]
\end{array}=\sqrt{\frac{s_{p}^{2}}{a^{2}}-\frac{p s_{p a}}{a^{3}}-\frac{p s_{p a}}{a^{3}}+\frac{p^{2} s_{a}^{2}}{a^{4}}}\right. \\
& a=\text { unstandardized actor effect, } \\
& p=\text { unstandardized partner effect } \\
& s_{a}^{2}=\text { variance }\left(S E^{2}\right) \text { actor effect } \\
& s_{p}^{2}=\text { variance }\left(S E^{2}\right) \text { partner effect } \\
& s_{p a}=\text { covariance between actor and partner effect }
\end{aligned}
\end{aligned}
$$

