SE for k ratio in APIM using the first order delta method

k = p/a

$$SE_{p/a} = \sqrt{\left[\frac{1}{a} - \frac{p}{a^2}\right] \left[\frac{s_p^2}{s_{pa}} + \frac{s_a^2}{s_a^2}\right] \left[\frac{1}{a} - \frac{p}{a^2}\right]} = \sqrt{\left[\frac{s_p^2}{a} - \frac{ps_{pa}}{a^2} + \frac{s_{pa}}{a^2} - \frac{ps_a^2}{a^2}\right] \left[\frac{1}{a} - \frac{p}{a^2}\right]} = \sqrt{\frac{s_p^2}{a^2} - \frac{ps_{pa}}{a^3} - \frac{ps_{pa}}{a^3} - \frac{ps_{pa}}{a^3} + \frac{p^2s_a^2}{a^4}}{a^4}} = \sqrt{\frac{s_p^2}{a^2} - \frac{2ps_{pa}}{a^3} + \frac{p^2s_a^2}{a^4}}{a^4}}$$

a = unstandardized actor effect,

p = unstandardized partner effect

 s_a^2 = variance (SE²) actor effect

 s_p^2 = variance (SE²) partner effect

 s_{pa} = covariance between actor and partner effect