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Abstract 

The assessment of mediation in dyadic data is an important issue if researchers are to test process 

models. Using an extended version of the actor-partner interdependence model (APIM) the 

estimation and testing of mediation is complex, especially when dyad members are 

distinguishable (e.g., heterosexual couples). We show how the complexity of the model can be 

reduced by assuming specific dyadic patterns. Using Structural Equation Modeling, we 

demonstrate how specific mediating effects and contrasts among effects can be tested by 

phantom models that permit point and bootstrap interval estimates. We illustrate the assessment 

of mediation and the strategies to simplify the model using data from heterosexual couples. 

 

Keywords: mediation, dyadic data, APIM, phantom models, bootstrapping 
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Assessing Mediation in Dyadic Data Using the Actor-Partner Interdependence Model 

 

Models of mediation are common and of great importance, as they can provide 

information about causal relationships between variables that are mediated by one or more sets 

of intervening variables. Mediation refers to a mechanism through which an initial (X) influences 

an outcome (Y) by a third variable (M), termed mediator or intervening variable (Baron & 

Kenny, 1986; Judd & Kenny, 1981). In this mediation model, the effect from X to M is 

commonly designated as a, the effect from M on Y as b, and the effect from X on Y as c′ 

(MacKinnon, 2008). The mediating or indirect effect (IE) of X on Y equals ab and the total effect 

equals ab + c′. 

Over the last decade, researchers have begun to examine mediating mechanisms in dyadic 

data. The most commonly used model for this purpose is the actor-partner interdependence 

model (APIM; Kenny, 1996; Kenny & Cook, 1999; Ledermann & Bodenmann, 2006). This 

model allows a researcher to study the impact of a person’s causal variable on his or her own 

outcome variable (actor effect) and on the outcome variable of the partner (partner effect). 

Extending this standard APIM by a third variable pair we get the API mediation model or 

APIMeM. The APIMeM with three pairs of variables, X, Y, and M for two members, has been 

used in several studies. For example, studying heterosexual couples, Riggs, Cusimano, and 

Benson (2011) found that one’s own attachment anxiety mediated the effect of one’s own 

childhood emotional abuse on both one’s own and the partner’s dyadic adjustment. Campbell, 

Simpson, Kashy, and Fletcher (2001) reported that in couples the effect of one’s own 

warmth/trustworthiness on his or her relationship quality is mediated by both the own and the 

partner’s ideal-partner matching. Ledermann, Bodenmann, Rudaz, and Bradbury (2007) showed 
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that the effect of one’s own external stress on both one’s own and the partner’s marital quality 

was mediated by one’s own relationship stress. 

An important issue in dyadic research in general and in using the APIM in particular is 

whether dyad members are distinguishable or indistinguishable (Kenny, Kashy, & Cook, 2006). 

The two dyad members are distinguishable if they can be assigned to two different groups for 

substantive reasons. Examples of distinguishable dyad members are husband and wife or father 

and child. Homosexual couples and same-sex twins are instances of indistinguishable dyad 

members.  

In this article, we address conceptual, statistical, and strategic issues in the assessment of 

mediation in dyadic data using an extended version of the standard APIM. We shall see that 

mediation in this model is complex and that special procedures can be beneficial to deal with this 

complexity.  We begin with a description of the actor-partner interdependence mediation model 

or APIMeM and the different effects that can potentially be estimated in this model. We then 

discuss how the APIMeM can be simplified and show how different mediating effects and 

contrasts among effects can be assessed by calculating bootstrap intervals using Structural 

Equation Modeling (SEM) techniques. Finally, we illustrate the assessment of mediation using 

data from heterosexual couples.  

The APIMeM 

The basic version of an APIMeM enabling the assessment of mediation in dyadic data is 

given in Figure 1. It consists of three pairs of measured variables (represented by rectangles) and 

two pairs of error terms (represented by circles). The X variables represent the initial variables, 

the M variables represent the mediators, and the Y variables the outcomes. The two persons are 

designated 1 and 2 and might be husband and wife or twin 1 and 2. The model consists of six 
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actor (horizontal) and six partner (diagonal) effects indexed by A and P, respectively. The 

double-headed arrows represent covariances. The covariances between the error terms of the 

mediators and of the outcome variables indicate that the residuals covary between dyad members 

due to unmeasured common causes.  

Illustrative Example 

To illustrate the APIMeM, we use data from The 500 Family Study (1998-2000: United 

States) conducted by Schneider and Waite (2008). The purpose of this study was to investigate 

middle class, dual-career families living in the United States. For our illustration, data from 319 

heterosexual couples (husbands and wives) were taken who provided complete data on the 

variables of interest. We used feeling of cannot cope with everything (X) to predict marital 

satisfaction (Y) through depressive symptoms (M). The cannot-cope measure could range from 0 

(never) to 4 (very often), and the measure of depressive symptoms (CES-D) could range from 0 

to 60 with higher scores indicating more depressive symptoms, and the marital satisfaction scale 

(15 items of the ENRICH marital inventory) could range from 15 to 50. The standardized direct 

effects reported here are obtained by standardizing each variable in our dataset prior to the 

analysis using the mean and standard deviation calculated across both husbands and wives (see 

Kenny et al., 2006, p. 179). 

Distinguishable Members 

The standard APIMeM for distinguishable dyad members is a saturated model that has 27 

free parameters: six actor and six partner effects, one mean and one variance for each initial 

variable, one intercept for each mediator and outcome, one variance for each error term, one 

covariance between the initial variable, one covariance between the mediators’ error terms and 

one between the outcomes’ error terms. To distinguish the partner effects in the APIMeM, we 
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label those effects by referring to the dyad member of the explained variable. So, the effect from 

husband X to wife M is the wife partner effect and the effect from wife X to husband M is the 

husband partner effect.  

The estimates of the unconstrained APIMeM for the example are presented in Table 1 

(with index 1 indicating husband and 2 indicating wife). For the a effects, both actor effects are 

positive and statistically significant and both partner effects are not significant. The four b effects 

are all negative and statistically significant. For the four c′ effects, both actor effects are negative 

and statistically significant, whereas the partner effects are not statistically significant. 

In the APIMeM, there are four effects between X and Y that potentially can be mediated, 

which are the XY husband actor effect (X1  Y1), the XY wife actor effect (X2  Y2), the XY 

husband partner effect (X2  Y1), and the XY wife partner effect (X1  Y2). Each of these XY 

effects has two different simple IEs resulting in a total of eight simple IEs. We refer to each 

simple IE by whether the a and b effects are actor or partner effect. For instance, the husband 

actor-actor effect refers to the effect X1  M1  Y1 or aA1bA1. As the Y variable refers to 

husbands, we call it a husband effect. Each XY actor effect has an actor-actor and a 

partner-partner simple IE. So, the XY actor effect, which some considered as not dyadic, can be 

mediated through the partner’s mediator or X1  M2  Y1 and X2  M1  Y2. The XY partner 

effects for both husband and wife are mediated by an actor-partner and a partner-actor effect. In 

the APIMeM, the sum of two IEs for a given XY effect is the total IE. The sum of the total IE and 

the corresponding direct c′ gives the total effect. These different theoretical effects are presented 

in Table 2.  

In the APIMeM, each direct effect that is part of a simple IE is involved in two simple 

IEs. For example, aA1 is involved in aA1bA1 and aA1bP2. As a consequence, the eight IEs are not 
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independent. For instance, if the husband actor-actor indirect effect, aA1bA1, is zero, then either 

aA1 or bA1 must be zero which then implies that either the wife actor-partner, aA1bP2, or the 

husband partner-actor indirect effect, aP1bA1, is zero or that both are zero. More specifically, 

there are two constraints on the 8 IEs which are: 

      021112111  PAAPPPAA babababa  (1) 

and 

      012221222  PAAPPPAA babababa . (2) 

These equations state that if we know three particular IEs, we know a fourth IE. These 

constraints need to be taken into consideration, as we discuss later, when simplifying the model. 

Indistinguishable Members 

As we have previously discussed, sometimes there is not a variable like husband and wife 

to distinguish dyad members and the dyad members are said to be indistinguishable. The 

APIMeM for indistinguishable dyad members within SEM requires 12 equality constraints: six 

for the effects, one for mean, two for intercepts, and three for variances (Olsen & Kenny, 2006). 

We note that here these equality constraints are not theoretically meaningful, but rather are made 

just to account for the non-random assignment to “1” and “2.”  Additionally, there are 

adjustments that need to be on fit statistics (Olsen & Kenny, 2006). 

Alternatively, one might have theoretically distinguishable dyad members, but the actor 

and partner effects do not vary by the distinguishing variable. Thus, if effects are theoretically 

indistinguishable, one can create the following set of constraints: aA1 = aA2, bA1 = bA2, c′A1 = c′A2, 

aP1 = aP2, bP1 = bP2, and c′P1 = c′P2. One could test these six constraints individually or by an 

omnibus test. If the constraints hold, we would say the direct effects are empirically 
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indistinguishable. Testing the six constraints individually, partial indistinguishability can occur 

(i.e., the equality constraints hold for some out of the six effects). 

Using the APIM, we can define three types of empirical indistinguishability. The first is 

the earlier discussed model with equality constraints on the direct effects. The second type is a 

model with equality constraints on the direct effects and on the variances. The third type is a 

model with equality constraints on the means and intercepts in addition to the previous 

constraints. This third model allows one to test whether dyad members are empirically 

distinguishable, as opposed to theoretically indistinguishable. 

Testing for indistinguishability for the sample data, none of the six husband and wife 

effects were significantly different when tested individually: aA1 and aA2 (χ
2
(1) = 0.070, p = 

.792), aP1 and aP2 (χ
2
(1) = 0.003, p = .959), bA1 and bA2 (χ

2
(1) = 0.130, p = .719), bP1 and bP2 

(χ
2
(1) = 1.149, p = .284), c′A1 and c′A2 (χ

2
(1) = 1.244, p = .265), c′P1 and c′P2 (χ

2
(1) = 2.146, p = 

.143). Thus, not surprisingly, the model incorporating these six equality constraints provides an 

excellent fit (χ
2
(6) = 4.284, p = .638). Thus, we can use this more parsimonious model with 

empirically indistinguishable a, b, and c′ effects. Note, here, that we do not test the second and 

third type of indistinguishability with equality constraints on the variances and means and 

intercepts because those constraints do not have an effect on the number of unstandardized 

effects in an APIM.   

The effect estimates of the simplified model are presented in Table 3. We see that for a, 

only the actor effect is statistically significant. However, for b both the actor and partner effects 

were statistically significant, while for c′, again, only the actor effect is statistically significant.  

Setting up the APIMeM for indistinguishable members, there are three actor and three 

partner effects to be estimated which imply just two direct effects from X to Y: one actor and one 
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partner effect. These two effects can be mediated by four simple IEs and two total IEs (see Table 

4). Two IEs mediate the XY actor effect, i.e., the actor-actor and partner-partner IE, and two 

others mediate the partner XY effect, i.e., actor-partner and partner-actor IE. 

As with the model for distinguishable members, the four IEs are not independent of each 

other. The constraint on the four IEs in the indistinguishable case is 

      0 PAAPPPAA babababa . (3) 

Again, this fact needs to be considered when simplifying the model. 

Assessing Mediation 

In a mediation model, the effect of an initial variable on an outcome variable can be 

partially or completely or inconsistently mediated. Partial mediation occurs when the IE and the 

corresponding direct effect c′ are of the same sign. Complete mediation occurs when the IE is 

nonzero and the direct effect c′ is zero. Inconsistent mediation (sometimes called suppression) 

occurs when the IE and the direct effect c′ are nonzero but have opposite signs (Maassen & 

Bakker, 2001; MacKinnon, Krull, & Lockwood, 2000).  

To assess mediation and to test whether partial, complete, or inconsistent mediation 

occurs the estimation and testing of all direct effects and all IEs has been recommended 

(Ledermann & Macho, 2009). In addition, one may wish to compare the magnitude of specific 

effects. For instance, a researcher might want to know if a given simple IE is greater than the 

corresponding direct effect. Moreover, because each effect is mediated by two indirect effects, it 

may be of interest to know if these two are different from each other.  Also in models with two 

or more mediators, a researcher may also wish to know whether one IE is larger than another. In 

the APIMeM, each IE can be compared with the corresponding direct effect c′ and contrasts can 

potentially be tested among the IEs and the total effects. 
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Because indirect effects have non-normal distributions even if the errors are normally 

distributed, the bootstrap method has been advocated for assessing both IEs (e.g., MacKinnon, 

Lockwood, & Williams, 2004; Preacher & Hayes, 2008) and contrasts among effects (Williams 

& MacKinnon, 2008). Some popular SEM programs, including Amos (Arbuckle, 1995–2009) 

and EQS (Bentler, 2006), are limited in testing IEs as the built-in procedure permits point and 

interval estimates of the direct effects, the total IEs, and the total effects in a given model but not 

of specific IEs that are part of a total IE (e.g., aA1bA1 in model of Figure 1). Specific IEs that are 

part of a total indirect as well as contrasts among effects can be tested by means of phantom 

models (Macho & Ledermann, 2011) that permits both point and interval estimates. The 

programs Mplus (Muthén & Muthén, 1998-2010), OpenMx (Boker et al., in press), and LISREL 

(Jöreskog & Sörbom, 2006) have built-in routines enabling the estimation of specific effects and 

contrasts (see Cheung, 2007). 

In complex models like the APIMeM, a phantom model can be built for each specific 

hypothesis whose testing is otherwise prevented by the capability of certain software packages 

such as Amos (see Macho & Ledermann, 2011, for guidance on how to build phantom models). 

Figure 2 presents six different examples of phantom models to test various hypotheses about 

indirect effects: Model 2A enables the assessing of the actor-actor IE aA1bA1; Model 2B provides 

estimates for the difference between the actor-actor IE aA1bA1 and the direct effect of c′A1; Model 

2C tests whether the actor IE aA1bA1 + aP2bP1 differs from the direct effect of c′A1; Model 2D 

compares the husband actor-actor IE aA1bA1 with the husband partner-partner IE aP2bP1; Model 

2E compares the husband actor IE aA1bA1 + aP2bP1 with the wife actor IE or aA2bA2 + aP1bP2; 

finally Model 2F compares the husband actor total effect aA1bA1 + aP2bP1 + c′A1 with the wife 

actor total effect of aA2bA2 + aP1bP2 + c′A2.  



MEDIATION IN DYADIC DATA 11 

To identify a phantom model each path coefficient in the phantom model is set equal to 

the coefficient of the corresponding path in the main model (e.g., aA1 in Model 2A is equated to 

aA1 in Model 1A) or to -1. In addition, the variance of the initial phantom variable Pin is set to 1. 

To obtain the point estimate of a specific effect or a contrast represented by a phantom model the 

total effect is estimated between Pin and Pout. To test a specific effect, the bootstrap confidence 

interval (CI) of the phantom model’s total effect is calculated. If the interval does not include 

zero, the effect is considered to be statistically significant. 

Measuring and Testing Mediation in the Example Data 

To determine whether an IE or a total effect is statistically significant, we use the 

bias-corrected bootstrap 95% CI for the unstandardized effects. The bootstrap estimates 

presented here are based on 5000 bootstrap samples. 

Table 5 presents the total effects, total IEs, simple IEs, and direct effects for the APIMeM 

specified for distinguishable dyad members. For both husband and wife, we find that all IEs 

involving one of the a partner effects are weak and not statistically significantly, whereas all IEs 

involving one of the a actor effects were statistically significant. That is, four of the eight simple 

IE are statistically significant. In addition, all four total effects and total IEs are significant. We 

see that for husband and wife the actor-actor IEs are about 60 and 50 percent, respectively, of the 

actor total effects and the actor-partner IEs are about 50 and 81 percent of the total partner total 

effects. We note that none of the c′ effects is significant when using bootstrapping.  

Table 6 presents the estimates for the total, total IE, simple IE, and direct effects c′ for the 

simplified model with indistinguishable effects. As in the model for distinguishable members, 

the actor-actor IE and actor-partner IE are statistically significant, whereas the two IEs involving 

the a partner effect are not. The significant IEs are 55 and 65 percent, respectively, of the total 
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effect. In the remainder of the paper, we discuss ways in which we can simplify the testing of the 

APIMeM. 

Simplifying the APIMeM 

The complexity of the unrestricted APIMeM, especially in the distinguishable case, may 

act as a deterrent to the use of the APIM for assessing mediation in dyadic data. To overcome 

this obstacle the APIMeM can be simplified. For distinguishable members there are two ways, 

where the second one also applies for indistinguishable members. 

Indistinguishability 

A first simplification for models with theoretically distinguishable dyads is a model that 

suggests partial or complete indistinguishable pairwise effects. For complete indistinguishability, 

we impose constraints on all direct effects, i.e., aA1 = aA2, bA1 = bA2, c′A1 = c′A2, aP1 = aP2, bP1 = 

bP2, and c′P1 = c′P2. Alternatively, equality constraints could be imposed on the (simple) IEs. For 

instance, we might assume that the pairwise indirect effects do not vary by the distinguishing 

variable, i.e., aA1bA1 = aA2bA2, aP2bP1 = aP1bP2,   aA1bP2 = aA2bP1, and aP2bA2 = aP1bA1.  However, we 

have seen that the IEs are not independent of each other. Given Equation 1 and 2, these four 

constraints are really just three independent constraints. Also, if we constrain all eight IEs to be 

the same in a model for distinguishable dyad members the df would increase by five. (This type 

of constraint can be directly imposed in programs like Mplus, OpenMx, or LISREL.) Thus, any 

equality constraints on these effects need to satisfy conditions in Equations 1, 2, and 3.  

Dyadic Patterns 

A second and more conceptually motivated simplification is a model implying one or 

more dyadic patterns. Kenny and Ledermann (2010; see also Kenny & Cook, 1999) provide 

details for testing four specific patterns in the APIM: the actor-only, the couple, the contrast, and 
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the partner-only pattern. The actor-only pattern is indicated if the actor affect is nonzero and the 

partner effect is zero. The couple pattern occurs if both the actor and the partner effect are 

nonzero and equal in magnitude. The contrast pattern takes place if the actor and partner effect 

are nonzero and equal in magnitude but of different signs. The partner-only pattern occurs if the 

partner effect is nonzero, the actor effect is zero.  

These different patterns can be estimated and tested using the parameter k. For the first 

three patterns, k is defined as the partner effect divided by the corresponding actor effect. Thus, 

the actor-only pattern is indicated if k is 0, the couple pattern is supported if k is 1, and the 

contrast pattern occurs if k is -1. For the partner-only pattern, k is defined as the actor effect 

divided by the partner effect with k equal to 0.  

To test statistically the occurrence of these patterns Kenny and Ledermann (2010) 

recommend the computation of a bootstrap CI for k. These CIs provide direct information 

whether a specific pattern takes place: Defining k as the partner-actor ratio, the actor-only pattern 

is verified when 0 but not 1 and -1 is in the confidence interval, the couple pattern is supported 

when 1 but not 0 is in the interval, and the contrast pattern is verified when -1 but not 0 is in the 

interval. Having tested for dyadic patterns, all ks that support a specific pattern are fixed to 0 

(actor-only or partner only pattern), to 1 (couple pattern), or to -1 (contrast pattern). Then we 

re-estimate this simpler model and compare it to the more general model implying no specific 

pattern. If this comparison favors the more parsimonious model (e.g., the difference of the two 

chi-squares is not significant), we proceed with this simpler model. As the partner-only pattern is 

expected to be relatively rare, the focus here is on the k defined as the partner-actor ratio.  

For the indistinguishable APIMeM, there are three ks: one for the a effects or ka = aP/aA, 

one for the b effects or kb = bP/bA, and one for the c′ effects or kc′ = c′P/c′A. Of key importance in 
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simplifying the APIMeM and reducing the number of IEs and total effects is ka and kb. We can 

express the three IEs involving one or two partner effects in terms of these ks and the actor-actor 

indirect effect of aAbA: 

Partner-Partner IE: aAbAkakb 

Actor-Partner IE: aAbAkb 

Partner-Actor IE: aAbAka 

Note that the constraint on the IEs given by Equation 3 is clear when we express the IEs in terms 

of ks. We can then describe the mediational structure using the pair of k’s. For instance, {1, 1} 

mediation implies that both k’s are 1 and that actor and partner effects for both a and b are equal. 

A {0, -1} pattern would imply zero partner effect for the a path and a contrast pattern for the b 

path, the actor and partner effects being equal but opposite sign. Thus, the use of k provides a 

concise way of describing mediational effects. As an example, both Riggs et al. (2011) and 

Ledermann et al. (2010) appear to have a {0, 1} pattern whereas Schröder-Abé and Schütz 

(2011) have {1, 1} mediation. Going beyond the four standard patterns, a researcher may find a 

{0.5, 0.25} mediation pattern (Campbell et al., 2001). 

With distinguishable members, there are six ks (two for the a-effects, two for the 

b-effects, and two for c′-effects) and each k can either be defined in terms of the exogenous 

(independent) or the endogenous (dependent) variable (Kenny & Ledermann, 2010). Parameter k 

defined with respect to the endogenous variable involves two exogenous variables affecting one 

endogenous variable. For example, for X1 and X2 affecting M1, k is aP1/aA1. This conception 

enables a researcher to test whether an endogenous variable is more affected by the actor’s or the 

partner’s exogenous variable. In contrast, k defined with respect to the exogenous variable 

involves one exogenous variable that affects two endogenous variables. For X1 affecting both M1 
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and M2 k is aP2/aA1. This conception is used to test whether a predictor has a stronger effect on 

the actor’s or on the partner’s endogenous variable. In both cases, k can be directly estimated by 

using phantom variables for programs that do not allow nonlinear constraints (e.g., Amos). 

Figure 3 shows the APIMeM with six phantom variables enabling point and interval 

estimates of the ks (dashed arrows). In order to identify the model, constraints need to be placed 

on the parameters. With indistinguishable dyad members, the partner effects are set equal to the 

corresponding actor effects (i.e., aP = aA, bP = bA, c′P = c′A). In the distinguishable case, the 

constraints depend on whether k is defined with respect to the exogenous or endogenous 

variables. For k defined with respect to the endogenous variables, the constraints are aP1 = aA1, 

aP2 = aA2, bP1 = bA1, bP2 = bA2, c′P1 = c′A1, c′P2 = c′A2. Defining k with respect to the exogenous 

variables, the constraints are aP1 = aA2, aP2 = aA1, bP1 = bA2, bP2 = bA1, c′P1 = c′A2, c′P2 = c′A1. 

Recommended Strategy  

Kenny and Ledermann (2010) outlined a procedure to simplify the standard APIM that 

can be adapted for the APIMeM. With distinguishable dyad members, the procedure for the 

APIMeM consists of six steps. First, we estimate the saturated distinguishable model and test all 

the effects. Second, we test for indistinguishability of the direct effects and specify a simpler 

model with those effects constrained to equality for which the indistinguishability assumption is 

justified. Third, we estimate the ks and their confidence intervals. Fourth, if for the a and b 

effects either or both the actor and partner effects vary by the distinguishable variable we 

compare the ks for a and the ks for b. If they are statistically equal, we set the corresponding ks 

equal. Fifth, we fix the ks to 1, 0, or -1 in those cases in which the corresponding CIs suggest a 

specific pattern and determine the relative fit of the model. Sixth, if it is plausible, we respecify 
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the simpler model by constraining effects and removing the k paths. For instance, if we have a 

{0, 1} model, we drop the a partner effects, and we set the b actor and partner effects equal. 

In the case of indistinguishable dyad members, the procedure consists of four steps. First, 

we estimate the indistinguishable saturated APIMeM and test all effects. Second, we estimate the 

two ks of ka and kb and determine their CIs. Third, we place constraints on ka and kb to test for 

specific patterns in those cases where the CIs support specific patterns. Fourth, we remove the 

paths for the ks and, if specific patterns occur, we respecify the model and determine whether it 

is good fitting. 

Example Dataset 

Earlier we reported the test of indistinguishability, and we found that the direct effects 

were empirically indistinguishable. In this model implying indistinguishability, we can estimate 

one k for the a effects and one for the b effects. The k for the a effects was 0.062. The 95% CI 

ranged from -0.092 to 0.226, which supports the actor-only pattern as zero is included in the CI. 

The k for the b effects was 0.662. The 95% CI ranged from 0.436 to 0.896, which does neither 

include 1 nor 0, and so a pattern in between actor-only and couple model was indicated for the b 

effects. We might describe this model in terms of the k’s as a {0, 3
2 }, an actor-only with 

something in between actor-only and couple model.  

Consequently, we estimated a model suggesting the actor-only pattern for the a effects in 

addition to the indistinguishability constraints. The model comparison test supports this more 

parsimonious model ( 2

Diff (1) = 0.639, p = .424), and so we used this to test the hypothesis that 

depressive symptoms mediate the association between work-family conflicts and marital 

satisfaction. 
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In this final model, there are five effects – one a effect, two b effects, and two c′ effects – 

that generate two IEs – aAbA and aAbP – and two total effects – aAbA + c′A and aAbP + c′P . We find 

that the a actor effect is positive (3.556) and statistically significant (p < .001), which indicates 

that feelings of cannot cope with everything is positively related to depressive symptoms within 

husbands and within wives. For the b effects, both the actor and partner effects are negative 

(-0.339 and -0.225, respectively) and significant (both p < .001). That is, one’s marital 

satisfaction is affected by both one’s own and the partner’s depressive symptoms. The effect 

estimates for the IEs, total effects, and specific contrasts are presented in Table 7. Both IEs are 

statistically significant. Comparing the IEs and the total effects, we found that the actor IEs are 

statistically stronger than the partner IEs. In sum, one’s own depressive symptoms mediated 

completely the effect of one’s own feeling of not coping with everything on both one’s own and 

the partner’s marital satisfaction. 

Discussion 

The purpose of this article was to address conceptual, statistical, and strategic issues in 

the evaluation of mediation in data from dyads when using the APIMeM. We provided guidance 

on how the APIM for mediation can be simplified by assuming indistinguishability in the case of 

theoretically distinguishable members and by testing for specific patterns. With distinguishable 

members, we tested for indistinguishability prior to the analysis of dyadic patterns in this article. 

However, a researcher could also test for dyadic patterns prior to indistinguishability. Using this 

strategy, the resulting final model might not be the same, however. To improve the confidence in 

the results a researcher may want to use both strategies or conduct cross-validation. 

Simplifying the APIMeM by testing for indistinguishability and specific patterns are 

strategies to reduce the number of IEs and total effects within the model.  Another one is the 
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implementation of the common fate model (e.g., Griffin & Gonzalez, 1995; Ledermann & 

Macho, 2009; Kenny & La Voie, 1985; Woody & Sadler, 2005). The common fate model 

assumes that two dyad members are affected by a dyadic factor that exerts influence on both 

members of a dyad. A variable can be conceptualized as a common factor when the measured 

construct represents a characteristic of the dyadic relationship or an external source that has an 

effect on both members of dyad (in couples, for example relationship cohesion or quality of 

housing). For each variable pair in the APIM that is modeled as a common factor the number of 

IEs, total IEs, and total effects is divided in half.  

When testing mediation, the detection of substantial IEs can fail due to lack of power. 

There are three strategies that can be employed to increase the statistical power in an APIMeM. 

First, simplifying the model by treating distinguishable members as indistinguishable or by 

assuming specific patterns can lead to an increase in power. Second, modeling dyad common 

variables as common fate factors can also increase the power to detect substantial effects due to 

the reduction of indirect and total effects and the separation of systematic variance from error 

variances. Of course, any model should be in agreement with theoretical and empirical 

considerations. 

The APIMeM depicted in Figure 1 includes only a single mediator. APIMeMs with two 

mediators have been tested by Cobb, Davila, and Bradbury (2001) and Srivastava, McGonigal, 

Richards, Butler, and Gross (2006). Fitting an APIMeM with multiple mediators, the strategies 

outlined in this article to test for indistinguishability and dyadic patterns can be employed too. 

In this article, we have used SEM because of its capability to calculate point and interval 

estimates of specific effects and contrasts and to set specific constraints. In addition, it can easily 

estimate the entire model and can estimate directly indirect and total effects and point and 
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interval estimates of the k parameter. As an alternative, we can use multilevel modeling, but 

currently the capability of standard multilevel modeling packages is limited in both the setting of 

specific constraints and the calculation of indirect, total, and bootstrap estimates.  

In assessing mediation, there are two points we think deserve special attention. First, the 

estimates from and the goodness of fit of a particular APIMeM do not necessarily provide 

information about the correctness of the causal ordering of the variables in a fitted model. This is 

due to the existence of alternative models that are statistically equivalent to the APIMeM 

presented here (Lee & Hershberger, 1990; MacCallum, Wegener, Uchiono, & Fabrigar, 1993, 

Stelzl, 1986). The saturated APIMeM with inverted causal effects (i.e., Y  M  X) is an 

instance of such an equivalent model that is statistically not distinguishable from the X to M to Y 

APIMeM. For the unconstrained APIMeM, there are several equivalent models that may suggest 

very different conclusion (Bentler & Satorra, 2010; Raykov & Marcoulides, 2001, 2007). The 

number of equivalent models is reduced in overidentified structural models relative to saturated 

structural models; yet, the causal interpretation of the relations in a fitted model is prevented by 

the existence of even a single alternative equivalent model, especially if the alternative model is 

similar plausible than the original model. Consequently, the problem of equivalent models is 

alleviated, if theoretical or substantive arguments make alternative models less plausible. 

Therefore, it follows that the ordering of relations among variables must be based on theoretical 

grounds or substantive evidence or both. In the absence of a compelling theoretical foundation 

and substantive arguments, the experimental manipulation of one or more variables or prior 

research can make alternative models less meaningful (e.g., MacCallum et al., 1993). In addition, 

the number of equivalent models can be reduced by introducing an instrumental variable that is 

related to the mediator but not to the other variables (e.g., MacKinnon, 2008). 
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Second, all effects in the APIMeM were considered to be the same for all dyads. If dyad 

members are observed over time or if the dyads are hierarchically clustered in larger groups, 

techniques proposed by Kenny, Korchmaros, and Bolger (2003), Bauer, Preacher, and Gil 

(2006), MacKinnon (2008), and Preacher, Zyphur, and Zhang (2010) that allow for random 

mediation effects can be used to analyze the APIMeM.  

Conclusion 

A growing number of researchers desire to test for mediation with the APIMeM. The 

complexity of the model, however, can have a detrimental effect on researchers interested in its 

use. This can be remedied by treating theoretically distinguishable dyad members as 

indistinguishable and by testing specific patterns which both allow a researcher to simplify the 

model. The evaluation of contrasts among IEs allows one to draw conclusions about the relative 

importance of the intervening variables in a model and to refine the understanding of the 

mediational process. 
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Table 1 

Effect estimates for the example dataset treating dyad members as distinguishable 

Effect Estimate SE p Stand. estimate 

a effects (X  M)     

Husband Actor Effect (aA1) 3.651 0.392 <.001 .486 

Wife Actor Effect (aA2) 3.421 0.378 <.001 .455 

Husband Partner Effect (aP1) 0.368 0.387 .342 .049 

Wife Partner Effect (aP2) 0.070 0.383 .854 .009 

b effects (M  Y)     

Husband actor Effect (bA1) -0.360 0.052 <.001 -.355 

Wife actor Effect (bA2)  -0.319 0.057 <.001 -.315 

Husband partner Effect (bP1)  -0.171 0.053 .001 -.169 

Wife partner Effect (bP2)  -0.284 0.056 <.001 -.280 

c′ effects (X  Y)     

Husband actor Effect (c′A1) -0.842 0.412 .041 -.111 

Wife actor Effect (c′A2)  -0.913 0.434 .035 -.120 

Husband partner effect (c′P1)  -0.437 0.404 .280 -.057 

Wife partner effect (c′P2)  -0.221 0.442 .616 -.029 

Note. X = work-family conflicts, M = depressive symptoms, Y = marital satisfaction, 1 = 

husband, 2 = wife, A = actor effect, P = partner effect. 
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Table 2 

The total effects, total indirect effects, simple indirect effects, and direct effects c′ in the APIMeM 

for distinguishable dyad members 

Effect Coefficient Label 

Husband Actor Effect   

Total Effect aA1bA1 + aP2bP1 + c′A1 Husband Actor Total Effect 

Total IE aA1bA1 + aP2bP1 Husband Actor Total IE 

   Actor-Actor Simple IE aA1bA1 Husband Actor-Actor IE 

   Partner-Partner Simple IE aP2bP1 Husband Partner-Partner IE 

Direct Effect c′ c′A1 Husband Actor Direct Effect 

Wife Actor Effect   

Total Effect aA2bA2 + aP1bP2 + c′A2 Wife Actor Total Effect 

Total Indirect Effect aA2bA2 + aP1bP2 Wife Actor Total IE 

   Actor-Actor Simple IE aA2bA2 Wife Actor-Actor IE 

   Partner-Partner Simple IE aP1bP2 Wife Partner-Partner IE 

Direct Effect c′ c′A2 Wife Actor Direct Effect 

Husband Partner Effect   

Total Effect aA2bP1 + aP1bA1 + c′P1 Husband Partner Total Effect 

Total IE aA2bP1 + aP1bA1 Husband Partner Total IE 

   Actor-Partner Simple IE aA2bP1 Husband Actor-Partner IE 

   Partner-Actor Simple IE aP1bA1 Husband Partner-Actor IE 

Direct Effect c′ c′P1 Husband Partner Direct Effect 

Wife Partner Effect   

Total Effect aA1bP2 + aP2bA2 + c′P2 Wife Partner Total Effect 

Total IE aA1bP2 + aP2bA2 Wife Partner Total IE 

   Actor-Partner Simple IE aA1bP2  Wife Actor-Partner IE 

   Partner-Actor Simple IE aP2bA2 Wife Partner-Actor IE 

Direct Effect c′ c′P2 Wife Partner Direct Effect 

Note. A = actor effect, P = partner effect; IE = indirect effect; 1 = husband, 2 = wife. 
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Table 3 

Effect estimates for the example dataset treating dyad members as indistinguishable 

Effect Estimate SE p Stand. estimate 

a effects (X  M)     

actor effect 3.532 0.272 <.001 .470 

partner effect 0.218 0.272 .424 .029 

b effects (M  Y)     

actor effect -0.339 0.039 <.001 -.335 

partner effect -0.225 0.039 <.001 -.222 

c′ effects (X  Y)     

actor effect -0.888 0.295 .003 -.117 

partner effect -0.340 0.295 .248 -.045 

Note. X = work-family conflicts, M = depressive symptoms, Y = marital satisfaction, A = actor 

effect, P = partner effect. 
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Table 4 

The total effects, indirect effects, total indirect effects, and direct effects in the APIMeM for 

indistinguishable dyad members 

Effect Coefficient Label 

Actor Effect   

Total Effect aAbA + aPbP + c′A Actor Total Effect 

Total IE aAbA + aPbP Actor Total IE 

   Actor-Actor Simple IE aAbA Actor-Actor IE 

   Partner-Partner Simple IE aPbP Partner-Partner IE 

Direct Effect c′A Actor Direct Effect 

Partner Effect   

Total Effect aAbP + aPbA + c′P Partner Total Effect 

Total IE aAbP + aPbA Partner Total IE 

   Actor-Partner Simple IE aAbP Actor-Partner IE 

   Partner-Actor Simple IE aPbA Partner-Actor IE 

Direct Effect c′P Partner Direct Effect 

Note. A = actor effect, P = partner effect; IE = indirect effect. 
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Table 5 

The total effects, total indirect effects, simple indirect effects, and direct effects c′ for the example 

dataset treating dyad members as distinguishable 

Effect Estimate 95% CI Proportion of the Total Effect 

Husband Actor Effect    

Total Effect -2.169 -2.873, -1.394  

Total IE -1.327 -1.902, -0.857 61.2 

   Actor-Actor IE -1.315 -1.858, -0.867 60.6 

   Partner-Partner IE -0.012 -0.142, 0.122 0.9 

Direct Effect c′ -0.842 -1.681, 0.066 38.8 

Wife Actor Effect     

Total Effect -2.108 -3.004, -1.173  

Total IE -1.196 -1.771, -0.734 56.7 

   Actor-Actor IE -1.091 -1.629, -0.677 51.8 

   Partner-Partner IE -0.104 -0.404, 0.114 8.7 

Direct Effect c′ -0.913 -1.861, 0.036 43.3 

Husband Partner Effect   

Total Effect -1.154 -1.912, -0.375  

Total IE -0.717 -1.244, -0.245 62.1 

   Actor-Partner IE -0.585 -1.007, -0.221 50.7 

   Partner-Actor IE -0.132 -0.456, 0.165 18.5 

Direct Effect c′ -0.437 -1.261, 0.388 37.9 

Wife Partner Effect    

Total Effect -1.280 -2.113, -0.444  

Total IE -1.059 -1.636, -0.540 82.7 

   Actor-Partner IE -1.037 -1.557, -0.607 81.0 

   Partner-Actor IE -0.022  2.1 

Direct Effect c′ -0.221 -1.034, 0.660 17.3 

Note. IE = indirect effect. 
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Table 6 

The total effects, indirect effects, total indirect effects, and direct effects in the APIMeM for the 

example dataset treating dyad members as indistinguishable 

Effect Estimate 95% CI Proportion of the Total Effect 

Actor Effect    

Total Effect -2.135 -2.678, -1.556  

Total IE -1.247 -1.628, -0.944 58.4 

     Actor-Actor IE -1.198 -1.560, -0.893 56.1 

     Partner-Partner IE -0.049 -0.192, 0.067 3.9 

Direct Effect -0.888 -1.522, -0.244 41.6 

Partner Effect    

Total Effect -1.208 -1.766, -0.683  

Total IE -0.868 -1.250, -0.545 71.8 

   Actor-Partner IE -0.794 -1.117, -0.507 65.7 

   Partner-Actor IE -0.074 -0.264, 0.108 8.5 

Direct Effect -0.340 -0.936, 0.261 28.2 

Note. IE = indirect effect. 
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Table 7 

Indirect Effect, Total Effect, and Contrasts for the Final Model in the Example Dataset 

Effect Estimate 95% CI 

Proportion of the Total 

Effect 

Actor Effect    

Total Effects -2.095 -2.603, -1.524  

Actor-Actor IE -1.207 -1.566, -0.903 57.6 

Direct Effect c′A -0.888 -1.522, -0.244 42.4 

Partner Effect    

Total Effect -1.140 -1.666, -0.642  

Actor-Partner IE -0.799 -1.122, -0.511 70.1 

Direct Effect c′P -0.340 -0.936, 0.261 29.9 

Contrasts    

Actor-Actor IE – c′A -0.319 -1.196, 0.555  

Actor-Partner IE – c′P -0.459 -1.274, 0.344  

Actor-Actor IE – Actor-Partner IE -0.407 -0.746, -0.116  

Actor TE – Partner TE -0.955 -1.522, -0.378  

Note. IE = indirect effect. 
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Figure 1. 

The Actor-Partner Interdependence Mediation Model 
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Figure 2. 

Phantom models for assessing indirect effects. Model A: Simple indirect effect aA1bA1. Model B: 

contrast aA1bA1 – c′A12. Model C: contrast aA1bA1 + aP2bP1 – c′A1. Model D: contrast aA1bA1 – 

aA1bA1. Model E: contrast aA1bA1 + aP2bP1 – (aA2bA2 + aP1bP2). Model E: contrast aA1bA1 + aP2bP1 + 

c′A1 – (aA2bA2 + aP1bP2 + c′A2) 
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Figure 3. 

The Actor-Partner Interdependence Mediation Model permitting estimates of k 
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