APIMoM Output

Actor-Partner Interdependence Moderation Model Results
March 27, 2017

1. Text

CAUTION: If you do decide to use information contained here in a paper, please make sure that you acknowledge that you have used this program. Also should you decide to copy the exact text below, you would need to put quotes around that material to avoid plagiarism. Although great effort has been undertaken to ensure the accuracy of results, no complete guarantee can be about their accuracy. It is your responsibility to check the results and text for accuracy. If you do find an error, please report it to David A. Kenny.

Summary of APIM Moderation Results

The focus of this study is the investigation of the effect of Other Positivity on Satisfaction being moderated by Tension within the Actor-Partner Interdependence Model or APIM. All three variables are mixed variables and so the relationship between any two variables includes actor and partner effects. The variable names in the dataset are as follows: Other Positivity for is OtherPos_W, Other Positivity for is OtherPos_H, Satisfaction for is Satisfaction_W, Satisfaction for is Satisfaction_H, Tension for is Tension_W, and Tension for is Tension_H. The total number of dyads is 148, and there are no missing data. The dyad members are treated as if they were indistinguishable. The test of distinguishability which includes 8 equality constraints on the coefficients, 5 on the means, 5 on the variances, and 12 on the covariances is statistically significant (chi-square (30) = 44.51, $\mathrm{p}=.043$), with an RMSEA of 0.057 . The structural equation models are estimated using the program lavaan. Standardized estimates use pooled variances across members and for interaction effects the standardization uses the product of the two standard deviations and not standard deviation of the product. The X and M variables have been centered, i.e., the mean has been subtracted from all the scores before conducting the moderation analysis. However, the X-axis for figures use the uncentered Other Positivity variable. The descriptive statistics are contained in Table 1.

For the estimates below to be valid, it must be assumed that there is no measurement error in Other Positivity and Tension. Additionally, it must be assumed that there are no unmeasured common causes (i.e., confounders) between Other Positivity and Tension, between Other Positivity and Satisfaction, and between Tension and Satisfaction. It must be assumed that Satisfaction does not cause Other Positivity or Tension and that Tension does not cause Other Positivity. Finally, it must be assumed that the relationships between Other Positivity and Satisfaction and between Tension and Satisfaction are linear and that the interaction between Other Positivity and Satisfaction is also linear.

The combined test the four moderation effects involves fitting two models, one with interaction effects and one without those effects. This combined test of interaction is statistically significant (chi-square (4) = 31.29, p < .001), with an RMSEA of 0.215. Because the RMSEA is greater than .10 and the chi square is statistically significant, there is sufficient evidence to believe that there is moderation.

Table 2 presents the effects in the moderation model. The multiple correlation for the Satisfaction equations is . 740. First considered are the "main effects" of Other Positivity on Satisfaction. These are the effects of Other Positivity when the scores of both members on

Tension equal zero. The actor effect equals 0.235 ($p<.001$) with a standardized effect of .326. The partner effect equals 0.166 ($p<.001$) with a standardized effect of . 230. Next considered are the "main" effects of Tension on Satisfaction. These are the effects of Tension when the scores of both members on Other Positivity equal zero. The actor effect equals -0.277 ($p<.001$) with a standardized effect of -.278 . The partner effect equals -0.098 ($p=.002$) with a standardized effect of -.099 . The variables Other Positivity and Tension interact to affect Satisfaction in four different ways. Each interaction involves two components, the first being Other Positivity and the second being Tension. Thus, the term actor-partner refers to the interaction between the actor variable of Other Positivity and the partner variable of Tension. The actor-actor effect equals 0.185 ($p=.002$) with a standardized effect of .127. The actor-partner effect equals 0.133 ($\mathrm{p}=.031$) with a standardized effect of .092. The partner-actor effect equals 0.194 ($\mathrm{p}=.002$) with a standardized effect of .133. The partner-partner effect equals 0.032 ($\mathrm{p}=.591$) with a standardized effect of .022 .

To better understand these interactions, Table 3 and Figures 1 and 2 present the effects of Other Positivity on Satisfaction for different values of Tension. Simple slopes are computed when either the actor or the partner scores on Tension are either one standard deviation below or one standard deviation above the mean. Because one standard deviation of the moderator equals 0.686 , one standard deviation below the mean for Tension is a score of 1.745 and one standard deviation above the mean is a score of 3.117 . To examine the actor-actor interaction effect, which is statistically significant ($\mathrm{p}=.002$), the actor effect of Other Positivity on Satisfaction is measured when the actor variable for Tension is one standard deviation below and above the mean. The effect for one standard deviation below the mean is 0.108 ($p=.066$) and for one standard deviation above the mean is 0.362 ($p<$.001). Both of these effects are positive and the Other Positivity actor effect increases as the actor variable for Tension increases. To examine the actor-partner interaction effect, which is statistically significant ($p=.031$), the actor effect of Other Positivity on Satisfaction is measured when the partner variable for Tension is one standard deviation below and above the mean. The effect for one standard deviation below the mean is 0.144 ($p=.018$) and for one standard deviation above the mean is 0.327 (p < .001). Both of these effects are positive and the Other Positivity actor effect increases as the partner variable for Tension increases. To examine the partner-actor interaction effect, which is statistically significant ($p=.002$), the partner effect of Other Positivity on Satisfaction is measured when the actor variable for Tension is one standard deviation below and above the mean. The effect for one standard deviation below the mean is 0.033 ($p=.588$) and for one standard deviation above the mean is 0.299 (p. .001). Both of these effects are positive and the Other Positivity partner effect increases as the actor variable for Tension increases. To examine the partner-partner interaction effect, which is not statistically significant ($p=$.591), the partner effect of Other Positivity on Satisfaction is measured when the partner variable for Tension is one standard deviation below and above the mean. The effect for one standard deviation below the mean is 0.144 ($p=.014$) and for one standard deviation above the mean is 0.188 ($p=.001$). Both of these effects are positive and the Other Positivity partner effect increases as the partner variable for Tension increases.

To further assist in the understanding of these interactions, Table 4 and Figures 3 and 4 present the effects of Other Positivity on Satisfaction for different actor and partner values of Tension. Simple actor and partner slopes are computed when the actor and partner scores on Tension are both one standard deviation below and one standard deviation above the mean.

Model with A Prior Values for the k's

The user has requested to estimate a model in which constraints are placed on interaction effects to create a simpler and more interpretable model. That constant or k for the effect from interaction Other Positivity on Satisfaction has been set to 1.000 and that constant or k from interaction Tension to Satisfaction has been set to 1.000 . The test of the model that imposes these interaction constraints is not statistically significant (chi-square (3) $=5.01, \mathrm{p}=.171$), with an RMSEA of 0.067 . Because the RMSEA is less than .10 and the chi square is not statistically significant, there is evidence that these constraints explain the pattern of interaction effects.

Table 5 presents the effects in the moderation model in which there are constraints on the interaction effects. The multiple correlation for the Satisfaction equations is . 736 . First considered are the "main" effects of Other Positivity on Satisfaction. These are the effects of Other Positivity when the scores of both members on Tension equal zero. The actor effect equals 0.241 (p . .001) with a standardized effect of .334 . The partner effect equals 0.162 (p . .001) with a standardized effect of .224 . Next considered are the "main" effects of Tension on Satisfaction. These are the effects of Tension when the scores of both members on Other Positivity equal zero. The actor effect equals -0.281 ($p<.001$) with a standardized effect of -.282. The partner effect equals -0.091 ($p=.003$) with a standardized effect of -.092. The variables Other Positivity and Tension interact to affect Satisfaction in four different ways. Each interaction involves two components, the first being Other Positivity and the second being Tension. Thus, the term actor-partner refers to the interaction between the actor variable of Other Positivity and the partner variable of Tension. The actor-actor effect equals 0.136 (p . 001) with a standardized effect of .093 . The actor-partner effect equals 0.136 (p. 001) with a standardized effect of .093. The partner-partner effect equals 0.136 ($\mathrm{p}<.001$) with a standardized effect of .093. The partner-partner effect equals 0.136 ($p<.001$) with a standardized effect of .093.

To better understand these interactions, Table 6 and Figure 5 and 6 present the effects of Other Positivity on Satisfaction for different values of Tension with constraints on the interaction effects. Simple slopes are computed when the actor and partner scores on Tension are one standard deviation below and above the mean. Because one standard deviation of the moderator equals 0.686, one standard deviation below the mean for Tension is a score of 1.745 and one standard deviation above the mean is a score of 3.117. To examine the actor-actor interaction effect, which is statistically significant (p < . 001), the actor effect of Other Positivity on Satisfaction is measured when the actor variable for Tension is one standard deviation below and above the mean. The effect for one standard deviation below the mean is 0.148 ($\mathrm{p}=.001$) and for one standard deviation above the mean is 0.334 (p < .001). Both of these effects are positive and the Other Positivity actor effect increases as the actor variable for Tension increases. To examine the actor-partner interaction effect, which is statistically significant ($\mathrm{p}=.031$) , the actor effect of Other Positivity on Satisfaction is measured when the partner variable for Tension is one standard deviation below and above the mean. The effect for one standard deviation below the mean is 0.148 ($p=.001$) and for one standard deviation above the mean is 0.334 (p. 001). Both of these effects are positive and the Other Positivity actor effect increases as the partner variable for Tension increases. To examine the partner-actor interaction effect, which is statistically significant (p = .002), the partner effect of Other Positivity on Satisfaction is measured when the actor variable for Tension is one standard deviation below and above the mean. The effect for one standard deviation below the mean is 0.069 ($p=.131$) and for one standard deviation above the mean is 0.255 ($p<.001$). Both of these effects are positive and the Other Positivity partner effect increases as the actor variable for Tension increases. To examine the partner-partner interaction effect, which is not statistically significant ($p=.591$), the partner effect of Other Positivity on Satisfaction is measured when the partner variable for Tension is one standard deviation below and above the mean. The effect for one standard deviation below the mean is 0.069 ($p=.131$) and for one standard deviation above the mean is 0.255 ($p<.001$).

Both of these effects are positive and the Other Positivity partner effect increases as the partner variable for Tension increases.

To further assist in the understanding of these interactions, Table 7 and Figures 7 and 8 present the effects of Other Positivity on Satisfaction for different actor and partner values of Tension. Simple actor and partner slopes are computed when the actor and partner scores on Tension are both one standard deviation above and one standard deviation below the mean.

2. Tables

Table 1: Descriptive Statistics

Variable	Mean	SD	Minimum	Maximum
Other Positivity	-0.000	0.498	2.600	5.000
Satisfaction	3.605	0.496	1.167	4.000
Tension	-0.000	0.686	1.167	4.000

Table 2: Effects in the Moderation Model

| Cause | Type Estimate | | p value | Lower | 95\% CI | Upper | Standardized |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Other Positivity | Actor | 0.235 | $<.001$ | 0.152 | to | 0.319 | 0.326 |
| | Partner | 0.166 | $<.001$ | -0.159 | to | 0.249 | 0.230 |
| Tension | Actor | -0.277 | $<.001$ | -0.338 | to | -0.216 | -0.278 |
| | Partner | -0.098 | .002 | -0.159 | to | -0.037 | -0.099 |
| Interaction | Actor-Actor | 0.185 | .002 | 0.070 | to | 0.300 | 0.127 |
| | Actor-Partner | 0.133 | .031 | 0.012 | to | 0.254 | 0.092 |
| | Partner-Actor | 0.194 | .002 | 0.073 | to | 0.314 | 0.133 |
| | Partner-Partner | 0.032 | .591 | -0.083 | to | 0.147 | 0.022 |

Table 3: Effects of Other Positivity with Either the Actor or the Partner Effects of Tension +1 (and -1
Type of Effect M for Actor M for Partner Estimate p value Lower 95\% CI Upper

Actor	-1sd	mean	0.108	.066	-0.007	to	0.224
	+1sd	mean	0.362	$<.001$	0.249	to	0.476
	mean	-1sd	0.144	.018	0.024	to	0.264
Partner	mean	+1sd	0.327	$<.001$	0.212	to	0.441
	-1sd	mean	0.033	.588	-0.087	to	0.153
	+1sd	mean	0.299	$<.001$	0.184	to	0.414
	mean	-1sd	0.144	.014	0.029	to	0.260
	mean	+1sd	0.188	.001	0.074	to	0.301

Table 4: Effects of Other Positivity with Both Actor and Partner the Effects of Tension +1 (and -1) Sta Type of Effect M for Actor M for Partner Estimate p value Lower 95\% CI Upper

Actor	-1sd	-1sd	0.017	.793	-0.112	to	0.147
	-1sd	+1sd	0.200	.002	0.075	to	0.324
	+1sd	-1sd	0.271	$<.001$	0.144	to	0.398
	Partner	+1sd	+1sd	0.454	$<.001$	0.332	to
	-1sd	-1sd	0.012	.861	-0.118	to	0.141
	-1sd	+1sd	0.277	$<.001$	0.149	to	0.406
	+1sd	-1sd	0.055	.402	-0.073	to	0.183
	+1sd	+1sd	0.321	$<.001$	0.199	to	0.443

Table 4: Effects of Other Positivity with Both Actor and Partner the Effects of Tension +1 (and -1) Sta)

Cause	Type								Estimate	p	value	Lower	95%	CI	Upper	Standardized
Other Positivity	Actor	0.241	$<.001$	0.158	to	0.324	.334									
	Partner	0.162	$<.001$	-0.152	to	0.245	.224									
Tension	Actor	-0.281	$<.001$	-0.342	to	-0.220	-.282									
	Partner	-0.091	.003	-0.152	to	-0.030	-.092									
Interaction	Actor-Actor	0.136	$<.001$	0.086	to	0.185	.093									
	Actor-Partner	0.136	$<.001$	0.086	to	0.185	.093									
	Partner-Actor	0.136	$<.001$	0.086	to	0.185	.093									
	Partner-Partner	0.136	$<.001$	0.086	to	0.185	.093									

Table 6: Effects of Other Positivity with Either the Actor or the Partner Effects of Tension +1 (and Type of Effect M for Actor M for Partner Estimate p value Lower 95\% CI Upper

Actor	-1sd	mean	0.148	.001	0.059	to	0.237
	+1sd	mean	0.334	$<.001$	0.243	to	0.425
	mean	-1sd	0.148	.001	0.059	to	0.237
Partner	mean	+1sd	0.334	$<.001$	0.243	to	0.425
	-1sd	mean	0.069	.131	-0.021	to	0.158
	+1sd	mean	0.255	$<.001$	0.164	to	0.345
	mean	-1sd	0.069	.131	-0.021	to	0.158
	mean	+1sd	0.255	$<.001$	0.164	to	0.345

Table 7: Effects of Other Positivity with Both the Actor and the Partner Effects of Tension +1 (and -1)
Type of Effect M for Actor M for Partner Estimate p value Lower 95\% CI Upper

Actor	-1sd	-1sd	0.055	.310	-0.051	to	0.161
	-1sd	+1sd	0.241	$<.001$	0.134	to	0.348
	+1sd	-1sd	0.241	$<.001$	0.134	to	0.348
	Partner	+1sd	+1sd	0.427	$<.001$	0.318	to
	-1sd	-1sd	-0.024	.713	-0.155	to	0.106
	-1sd	+1sd	0.162	.003	0.054	to	0.269
	+1sd	-1sd	0.162	.003	0.054	to	0.269
	+1sd	+1sd	0.348	$<.001$	0.239	to	0.456

3. lavaan Computer Output

Moderation Run with Indistinguishable Dyads
lavaan (0.5-22) converged normally after 84 iterations
Number of observations 148
Number of missing patterns 1

Estimator	ML
Minimum Function Test Statistic	44.505
Degrees of freedom	30
P-value (Chi-square)	0.043

lhs op rhs label est se z pvalue ci.lower ci.upper

1	yv1	\sim	mv1	ab	-0.277	0.031	-8.891	0.000	-0.338	-0.216
2	yv2	~	mv2	ab	-0.277	0.031	-8.891	0.000	-0.338	-0.216
3	yv1	\sim	mv2	pb	-0.098	0.031	-3.156	0.002	-0.159	-0.037
4	yv2	~	mv1	pb	-0.098	0.031	-3.156	0.002	-0.159	-0.037
5	yv1	~	$\mathrm{xv1}$	aa	0.235	0.042	5.556	0.000	0.152	0.319
6	yv2	~	xv 2	a	0.235	0.042	5.556	0.000	0.152	0.319
7	yv1	\sim	xv 2	pa	0.166	0.042	3.919	0.000	0.083	0.249
8	yv2	~	$\mathrm{xv1}$	pa	0.166	0.042	3.919	0.000	0.083	0.249
9	yv1	\sim	xm11	iAA	0.185	0.059	3.154	0.002	0.070	0.300
10	yv2	\sim	xm11	iPP	0.032	0.059	0.537	0.591	-0.083	0.147
11	yv1		xm12	iAP	0.133	0.062	2.158	0.031	0.012	0.254
12	yv2		xm12	iPA	0.194	0.062	3.144	0.002	0.073	0.314
13	yv1		xm21	iPA	0.194	0.062	3.144	0.002	0.073	0.314
14	yv2		xm21	iAP	0.133	0.062	2.158	0.031	0.012	0.254
15	yv1		xm22	iPP	0.032	0.059	0.537	0.591	-0.083	0.147
16	yv2	~	xm22	iAA	0.185	0.059	3.154	0.002	0.070	0.300
17	xv1		xv2		0.057	0.021	2.744	0.006	0.016	0.098
18	yv1	~	yv2		0.033	0.010	3.470	0.001	0.014	0.052
19	mv1		mv2		0.149	0.041	3.670	0.000	0.069	0.228
20	xm11		xm22		0.018	0.010	1.703	0.089	-0.003	0.038
21	xm12	~	xm21		0.025	0.009	2.672	0.008	0.007	0.043
22	xv1	~ 1		m1	0.000	0.032	0.000	1.000	-0.063	0.063
23	xv2	~ 1		m1	0.000	0.032	0.000	1.000	-0.063	0.063
24	yv1	~ 1		m2	3.662	0.025	147.757	0.000	3.614	3.711
25	yv2	~ 1		m2	3.662	0.025	147.757	0.000	3.614	3.711
26	mv1	~ 1		m3	0.000	0.046	0.000	1.000	-0.090	0.090
27	mv2	~ 1		m3	0.000	0.046	0.000	1.000	-0.090	0.090
28	xm11	~ 1		m4	-0.126	0.022	-5.716	0.000	-0.169	-0.083
29	xm22	~ 1		m4	-0.126	0.022	-5.716	0.000	-0.169	-0.083
30	xm12	~ 1		m5	-0.093	0.021	-4.322	0.000	-0.135	-0.051
31	xm21	~ 1		m5	-0.093	0.021	-4.322	0.000	-0.135	-0.051
32	xv1	~	$\mathrm{xv1}$	v1	0.248	0.021	11.852	0.000	0.207	0.289
33	xv2		xv2	v1	0.248	0.021	11.852	0.000	0.207	0.289
34	yv1		yv1	v2	0.111	0.010	11.660	0.000	0.092	0.130
35	yv2		yv2	v2	0.111	0.010	11.660	0.000	0.092	0.130
36	mv1		mv1	v3	0.471	0.041	11.599	0.000	0.391	0.550
37	mv2		mv2	v3	0.471	0.041	11.599	0.000	0.391	0.550
38	xm11		xm11	v4	0.125	0.010	12.046	0.000	0.105	0.146
39	xm22		xm22	v4	0.125	0.010	12.046	0.000	0.105	0.146
40	xm12	~	xm12	v5	0.111	0.009	11.869	0.000	0.093	0.129
41	xm21	~	xm21	v5	0.111	0.009	11.869	0.000	0.093	0.129
42	xv1	~	xm11	c1	0.017	0.010	1.662	0.097	-0.003	0.038
43	xv2	~	xm22	c1	0.017	0.010	1.662	0.097	-0.003	0.038
44	xv2	~	xm11	c2	-0.004	0.010	-0.388	0.698	-0.025	0.016
45	xv1	~	xm22	c2	-0.004	0.010	-0.388	0.698	-0.025	0.016
46	xv 1	~	xm12	c3	0.012	0.010	1.262	0.207	-0.007	0.032
47	xv 2	~	xm21	c3	0.012	0.010	1.262	0.207	-0.007	0.032
48	xv 2	~	xm12	c4	-0.004	0.010	-0.409	0.682	-0.023	0.015
49	xv 1	~	xm21	c4	-0.004	0.010	-0.409	0.682	-0.023	0.015
50	mv1	~	xm11	c5	-0.042	0.015	-2.844	0.004	-0.070	-0.013
51	mv2	~	xm22	c5	-0.042	0.015	-2.844	0.004	-0.070	-0.013
52	mv2	~	xm11	c6	-0.016	0.015	-1.086	0.277	-0.045	0.013
53	mv1	~	xm22	c6	-0.016	0.015	-1.086	0.277	-0.045	0.013
54	mv1	~	xm12	c7	-0.016	0.014	-1.154	0.248	-0.043	0.011

55	mv2 ~~	xm21	c7	-0.016	0.014	-1.154	0.248	-0.043	0.011
56	mv2 ~~	xm12	c8	-0.015	0.014	-1.074	0.283	-0.042	0.012
57	mv1 ~	xm21	c8	-0.015	0.014	-1.074	0.283	-0.042	0.012
58	xm11 ~~	xm12	c9	0.039	0.007	5.273	0.000	0.025	0.054
59	xm21 ~~	xm22	c9	0.039	0.007	5.273	0.000	0.025	0.054
60	xm11 ~~	xm21	c10	0.019	0.007	2.581	0.010	0.005	0.034
61	xm12 ~~	xm22	c10	0.019	0.007	2.581	0.010	0.005	0.034
62	mv1 ~~	$\mathrm{xv1}$	c11	-0.126	0.022	-5.593	0.000	-0.170	-0.082
63	mv2 ~~	xv 2	c11	-0.126	0.022	-5.593	0.000	-0.170	-0.082
64	mv2 ~~	$\mathrm{xv1}$	c12	-0.093	0.022	-4.119	0.000	-0.137	-0.049
65	mv1 ~~	xv2	c12	-0.093	0.022	-4.119	0.000	-0.137	-0.049
66	kx :=	pa/aa	kx	0.705	0.199	3.536	0.000	0.314	1.096
67	km :=	pb/ab	km	0.355	0.115	3.099	0.002	0.130	0.579
	std.lv	std.all							
1	-0.277	-0.383							
2	-0.277	-0.383							
3	-0.098	-0.136							
4	-0.098	-0.136							
5	0.235	0.236							
6	0.235	0.236							
7	0.166	0.167							
8	0.166	0.167							
9	0.185	0.132							
10	0.032	0.023							
11	0.133	0.089							
12	0.194	0.130							
13	0.194	0.130							
14	0.133	0.089							
15	0.032	0.023							
16	0.185	0.132							
17	0.057	0.232							
18	0.033	0.298							
19	0.149	0.316							
20	0.018	0.141							
21	0.025	0.225							
22	0.000	0.000							
23	0.000	0.000							
24	3.662	7.390							
25	3.662	7.390							
26	0.000	0.000							
27	0.000	0.000							
28	-0.126	-0.355							
29	-0.126	-0.355							
30	-0.093	-0.278							
31	-0.093	-0.278							
32	0.248	1.000							
33	0.248	1.000							
34	0.111	0.452							
35	0.111	0.452							
36	0.471	1.000							
37	0.471	1.000							
38	0.125	1.000							
39	0.125	1.000							
40	0.111	1.000							

41	0.111	1.000
42	0.017	0.099
43	0.017	0.099
44	-0.004	-0.023
45	-0.004	-0.023
46	0.012	0.075
47	0.012	0.075
48	-0.004	-0.024
49	-0.004	-0.024
50	-0.042	-0.172
51	-0.042	-0.172
52	-0.016	-0.066
53	-0.016	-0.066
54	-0.016	-0.070
55	-0.016	-0.070
56	-0.015	-0.065
57	-0.015	-0.065
58	0.039	0.331
59	0.039	0.331
60	0.019	0.162
61	0.019	0.162
62	-0.126	-0.368
63	-0.126	-0.368
64	-0.093	-0.271
65	-0.093	-0.271
66	0.705	0.705
67	0.355	0.355

Moderation with Constraints on Interaction Effects lavaan (0.5-22) converged normally after 72 iterations
Number of observations 148

Number of missing patterns 1

Estimator						ML				
	Minimu	m Functi	ion Test	t Stat	istic	49.520				
	Degree	s of fre	eedom			33				
	P-valu	e (Chi-s	square)			0.032				
	lhs	op rhs	label	est	se	z	pvalue	ci.lower	ci.upper	std.lv
1	yv1	mv1	ab	-0.281	0.031	-9.005	0.000	-0.342	-0.220	-0.281
2	yv2	mv2	ab	-0.281	0.031	-9.005	0.000	-0.342	-0.220	-0.281
3	yv1	mv2	pb	-0.091	0.031	-2.928	0.003	-0.152	-0.030	-0.091
4	yv2	mv1	pb	-0.091	0.031	-2.928	0.003	-0.152	-0.030	-0.091
5	yv1	xv1	aa	0.241	0.042	5.682	0.000	0.158	0.324	0.241
6	yv2	xv2	aa	0.241	0.042	5.682	0.000	0.158	0.324	0.241
7	yv1	xv2	pa	0.162	0.042	3.808	0.000	0.078	0.245	0.162
8	yv2	xv1	pa	0.162	0.042	3.808	0.000	0.078	0.245	0.162
9	yv1	~ xm11	iAA	0.136	0.025	5.362	0.000	0.086	0.185	0.136
10	yv2	~ xm11	iPP	0.136	0.025	5.362	0.000	0.086	0.185	0.136
1	yv1	~ xm12	iAP	0.136	0.025	5.362	0.000	0.086	0.185	0.136
	yv2	~ xm12	iPA	0.136	0.025	5.362	0.000	0.086	0.185	0.136
13	yv1	~ xm21	iPA	0.136	0.025	5.362	0.000	0.086	0.185	0.136
14	yv2	~ xm21	iAP	0.136	0.025	5.362	0.000	0.086	0.185	0.136

15	yv1	xm22	iPP	0.136	0.025	5.362	0.000	0.086	0.185	0.136
16	yv2	xm22	iAA	0.136	0.025	5.362	0.000	0.086	0.185	0.136
17	xv 1	~ xv 2		0.057	0.021	2.744	0.006	0.016	0.098	0.057
18	yv1	~ yv2		0.032	0.010	3.336	0.001	0.013	0.051	0.032
19	mv1	mv2		0.149	0.041	3.670	0.000	0.069	0.228	0.149
20	xm11	~ xm22		0.018	0.010	1.703	0.089	-0.003	0.038	0.018
21	xm12	xm21		0.025	0.009	2.672	0.008	0.007	0.043	0.025
22	xv1	~ 1	m1	0.000	0.032	0.000	1.000	-0.063	0.063	0.000
23	xv 2	~ 1	m1	0.000	0.032	0.000	1.000	-0.063	0.063	0.000
24	yv1	~ 1	m2	3.664	0.025	148.290	0.000	3.615	3.712	3.664
25	yv2	~ 1	m2	3.664	0.025	148.290	0.000	3.615	3.712	3.664
26	mv1	~ 1	m3	0.000	0.046	0.000	1.000	-0.090	0.090	0.000
27	mv2	~ 1	m3	0.000	0.046	0.000	1.000	-0.090	0.090	0.000
28	xm11	~ 1	m4	-0.126	0.022	-5.716	0.000	-0.169	-0.083	-0.126
29	xm22	~ 1	m4	-0.126	0.022	-5.716	0.000	-0.169	-0.083	-0.126
30	xm12	~ 1	m5	-0.093	0.021	-4.322	0.000	-0.135	-0.051	-0.093
31	xm21	~ 1	m5	-0.093	0.021	-4.322	0.000	-0.135	-0.051	-0.093
32	xv1	$\mathrm{xv1}$	v1	0.248	0.021	11.852	0.000	0.207	0.289	0.248
33	xv 2	xv 2	v1	0.248	0.021	11.852	0.000	0.207	0.289	0.248
34	yv1	yv1	v2	0.113	0.010	11.699	0.000	0.094	0.131	0.113
35	yv2	yv2	v2	0.113	0.010	11.699	0.000	0.094	0.131	0.113
36	mv1	mv1	v3	0.471	0.041	11.599	0.000	0.391	0.550	0.471
37	mv2	mv2	v3	0.471	0.041	11.599	0.000	0.391	0.550	0.471
38	xm11	xm11	v4	0.125	0.010	12.046	0.000	0.105	0.146	0.125
39	xm22	xm22	v4	0.125	0.010	12.046	0.000	0.105	0.146	0.125
40	xm12	xm12	v5	0.111	0.009	11.869	0.000	0.093	0.129	0.111
41	xm21	xm21	v5	0.111	0.009	11.869	0.000	0.093	0.129	0.111
42	xv1	xm11	c1	0.017	0.010	1.662	0.097	-0.003	0.038	0.017
43	xv2	xm22	c1	0.017	0.010	1.662	0.097	-0.003	0.038	0.017
44	xv2	xm11	c2	-0.004	0.010	-0.388	0.698	-0.025	0.016	-0.004
45	xv1	xm22	c2	-0.004	0.010	-0.388	0.698	-0.025	0.016	-0.004
46	xv1	xm12	c3	0.012	0.010	1.262	0.207	-0.007	0.032	0.012
47	xv2	xm21	c3	0.012	0.010	1.262	0.207	-0.007	0.032	0.012
48	xv2	xm12	c4	-0.004	0.010	-0.409	0.682	-0.023	0.015	-0.004
49	xv1	xm21	c4	-0.004	0.010	-0.409	0.682	-0.023	0.015	-0.004
50	mv1	xm11	c5	-0.042	0.015	-2.844	0.004	-0.070	-0.013	-0.042
51	mv2	xm22	c5	-0.042	0.015	-2.844	0.004	-0.070	-0.013	-0.042
52	mv2	xm11	c6	-0.016	0.015	-1.086	0.277	-0.045	0.013	-0.016
53	mv1	xm22	c6	-0.016	0.015	-1.086	0.277	-0.045	0.013	-0.016
54	mv1	xm12	c7	-0.016	0.014	-1.154	0.248	-0.043	0.011	-0.016
55	mv2	xm21	c7	-0.016	0.014	-1.154	0.248	-0.043	0.011	-0.016
56	mv2	xm12	c8	-0.015	0.014	-1.074	0.283	-0.042	0.012	-0.015
57	mv1	xm21	c8	-0.015	0.014	-1.074	0.283	-0.042	0.012	-0.015
58	xm11	xm12	c9	0.039	0.007	5.273	0.000	0.025	0.054	0.039
59	xm21	xm22	c9	0.039	0.007	5.273	0.000	0.025	0.054	0.039
60	xm11	xm21	c10	0.019	0.007	2.581	0.010	0.005	0.034	0.019
61	xm12	xm22	c10	0.019	0.007	2.581	0.010	0.005	0.034	0.019
62	mv1	$\mathrm{xv1}$	c11	-0.126	0.022	-5.593	0.000	-0.170	-0.082	-0.126
63	mv2	xv 2	c11	-0.126	0.022	-5.593	0.000	-0.170	-0.082	-0.126
64	mv2	$\mathrm{xv1}$	c12	-0.093	0.022	-4.119	0.000	-0.137	-0.049	-0.093
65	$\begin{gathered} \text { mv1 } \\ \text { std.a } \end{gathered}$	$\begin{array}{ll} \sim & \text { xv2 } \\ \text { all } & \end{array}$	c12	-0.093	0.022	-4.119	0.000	-0.137	-0.049	-0.093
1	-0.3									
2	-0.3									

3	-0.126
4	-0.126
5	0.242
6	0.242
7	0.162
8	0.162
9	0.097
10	0.097
11	0.091
12	0.091
13	0.091
14	0.091
15	0.097
16	0.097
17	0.232
18	0.285
19	0.316
20	0.141
21	0.225
22	0.000
23	0.000
24	7.393
25	7.393
26	0.000
27	0.000
28	-0.355
29	-0.355
30	-0.278
31	-0.278
32	1.000
33	1.000
34	0.458
35	0.458
36	1.000
37	1.000
38	1.000
39	1.000
40	1.000
41	1.000
42	0.099
43	0.099
44	-0.023
45	-0.023
46	0.075
47	0.075
48	-0.024
49	-0.024
50	-0.172
51	-0.172
56	-0.066
5	-0.066
	-0.070

57	-0.065
58	0.331
59	0.331
60	0.162
61	0.162
62	-0.368
63	-0.368
64	-0.271
65	-0.271

4. Figures

Figure 1: The Effect for the Actor's Other Positivity at Different Actor or Partner Moderator Values

Figure 2: The Effect for the Partner's Other Positivity at Different Actor or Partner Moderator Values

Figure 3: The Effect for the Actor's Other Positivity at Different Actor and Partner Moderator Values

Figure 4: The Effect for the Partner's Other Positivity at Different Actor and Partner Moderator Values

Figure 5: The Effect for the Actor's Other Positivity with Constraints at Different Actor or Partner Moderator Value:

Figure 6: The Effect for the Partner's Other Positivity with Constraints at Different Actor or Partner Moderator Value

Figure 7: The Effect for the Actor's Other Positivity with Constraints at Different Actor and Partner Moderator Value

Figure 8: The Effect for the Partner's Other Positivity with Constraints at Different Actor and Partner Moderator Valu

