
P R E F A C E
Researchers in the social sciences often require reference 

books to aid them in the computation and interpretation of statistics.  
These books are usually organized around a set of statistical tools and 
give extensive detail to the formulas used in estimation.  Researchers 
also use computer packages to compute these statistics.  A simple, one-
line command will give birth to multiple regression, factor analysis, or 
analysis of variance. 

On the bookshelves next to the statistical texts and computer 
manuals are the books that summarize and interpret the field.  These 
texts of substantive theory may occasionally present statistical 
summaries of data, but data play a small role in such texts.  To some 
extent, theory and data rarely touch each other in the social sciences.  
To bridge the gap, over the past ten or so years, an area called causal or 
structural analysis has developed.  This area takes as its task the 
explication of a statistical method in terms of how the method relates 
to substantive theory. 

This text is a general introduction to the topic of structural 
analysis.  It is an introduction because it presumes no previous 
acquaintance with causal analysis.  It is general because it covers all 
the standard, as well as a few nonstandard, statistical procedures.  
Since the topic is structural analysis, and not statistics, very little 
discussion is given to the actual mechanics of estimation.  Do not 
expect to find computational formulas for various statistical methods.  
One should consult the standard sources if interested in them.  
Moreover, it is presumed the reader has some familiarity with the two 
standard multivariate methods of multiple regression and factor 
analysis.  The emphasis is not on the mechanics of a statistical 
technique but rather its structural meaning. 

I have attempted to present the material in an informal style.  
Instead of discussing the general case I have chosen small specific 
examples.  Also, to keep the algebra simple, I have not employed 
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matrix algebra.  This has made parts of the discussion accessible to the
beginner, though it may seem somewhat awkward to the advanced
student.  I apologize if at times you feel as if you are being talked 
down to.  Please try to sympathize with the concern to write a book
that has something to say to both beginner and expert.

I would suggest that you try to read the book with someone
else.  The corrective nature of dialogue can prevent misapplication
better than the addition of another 100 pages.  I must warn the reader 
that a number of sections of the book are not easy to read.  I would
suggest reading the book with a pencil and calculator in hand.  If you
take the time to puzzle through various difficult sections, I expect you 
will find the result to be rewarding. 

I have included many examples taken from interesting data
sets-for example, the accuracy of psychics, Vietnam protest, concerns
of dying cancer patients, and productivity of scientists-which I believe 
will facilitate the readers’ own applications of the methods described in 
this book.  In many cases, however, the models proposed for the data
do not fully exploit the structure of the data.  The examples then are 
not meant to demonstrate the successful application of the procedures, 
but rather the mechanics.  Successful applications require full chapters,
not two or three pages.  Since I provide where possible the full 
correlation matrix, the reader is invited to fit alternative models.

The text is divided into four major sections, each with three
chapters. The first three chapters are introductory: Chapter 1
discussing causal analysis and its role in the social sciences, Chapter 2
presenting a set of simple rules for manipulating covariances, and 
Chapter 3 introducing path analysis and defining key concepts applied 
in the remaining chapters. 

Chapters 4 to 6 discuss classical econometric methods for
estimation of structural parameters.  Chapter 4 considers models for
which multiple regression analysis estimates causal coefficients;
Chapter 5 considers error of measurement in causes and unmeasured
third variables; and Chapter 6 briefly introduces feedback models, 

Chapters 5 and 6 using two-stage least squares to estimate causal
parameters.

The third section considers in detail models with unmeasured
variables. Chapter 7 discusses models with a single unmeasured
variable and multiple indicators, whereas Chapter 8 allows for multiple
unmeasured variables and Chapter 9 details causation between 
unmeasured variables.  All the models discussed in Chapters 7 to 9 are
factor analysis models, and maximum likelihood estimation is
recommended.

Chapters 10 through 12 consider the application of 
correlational methods to experimental and quasi-experimental designs.
Chapter 10 considers a causal modeling approach to experimentation,
as well as additional correlational analyses that could be performed;
Chapter 11 considers the analysis of the nonequivalent control group
design; and Chapter 12 considers cross-lagged panel correlation
analysis.  The final chapter of the book, Chapter 13, ties together the 
loose ends. 

A beginning student should read Chapters 2, 3, 4, 7, and the 
first section of Chapter 10.  An advanced student should read the 
remaining chapters but should concentrate on 5, 8, and 9.  I would
recommend the following chapters for a course on correlational 
methods: Chapters 1, 2, 7, 8 (section on the multitrait-multimethod
matrix), and 12.  For a course on survey analysis, I would recommend
Chapters 2 through 9. For a course on experimentation, I would
recommend Chapters 2, 3, 4, 7, 8, 9, 10, and 11. 

To some purists I may seem to be rather careless.  First, I have 
often unnecessarily limited generalization by employing standardized
variables.  I did so because I did not want to confuse the beginner.  I
clearly state the limits of standardization in Chapters 3 and 13. 
Second, at some points the distinction between population value and
estimate is blurred.  I did so in order not to have a text filled with
distracting symbols.  If these practices disturb you, I apologize.  But I 
felt that if I had to sacrifice elegance for the experts in order to obtain 
clarity for the beginner, I would choose clarity.
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A project like this represents not the work of one, but of the
community of scholars, and this is especially true of this text.  Most of 
what is contained represents the contributions of others.  I would like 
to thank three persons in particular: first, Don Campbell, who pointed 
me in this direction and redirected me when I was getting lost;
whatever contributions there are in this text are his and not mine; 
second, Steven H. Cohen, who suffered with me, pondering many a
sentence and analysis; I only wish I were beginning the project now so
that he and I could collaborate in it; third, Pierce Barker, who 
encouraged and prodded me to finish the project; moreover, he 
provided detailed feedback for a number of chapters. 

Countless others provided helpful feedback throughout the
project.  Those who occur to me now are Charles Judd, Dean
Simonton, Allan Lundy, Jeffrey Berman, William McGarvey, Judith 
Harackiewicz, Louise Kidder, Lawrence La Voie, Mary Ellen Kenny,
Michael Milburn, Reid Hastie, James Garvey, and Susan Fiske. 
Special thanks are due to Alice Mellian and Mary Ellen Kenny, who 
assisted me in the preparation of the book. 

David A. Kenny

Storrs, Connecticut
January 1979
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P R E F A C E
T O  T H E  R E V I S E D E D I T I O N

The book Correlation and Causality has been out of print for
over a decade. Many have encouraged me to write a second edition of 
the book.  However, with the publication of many excellent new books
(e.g., Kline, 1998), such an effort seems unnecessary. The book still 
continues to be cited and its approach, though clearly dated, seems to 
be of use to many, if only as an historical document.  So a revised 
edition may be of interest to some.  I would ask people if they could
continue to cite the original edition and not this revised edition. 

The revised edition is essentially the same as the original 1979 
book.  I have corrected the errors that I knew of.  I have added a few 
new references.  However, in no way this revised edition should be 
considered an updated version of the manuscript. So as an example,
the book does not employ the contemporary convention of denoting
latent variables by having a circle around the name.

One thing that I have changed is that the original edition used 
the population symbol for correlation, , at times when the sample
symbol, r, should be used.

In preparing this preface, the saddest part was my noting of the
passing of several persons who were very helpful in the preparation of 
the book.  I want to especially note the deaths of my two parents to
whom the book was dedicated and the deaths of Donald T. Campbell
and Pierce Barker.  Also sad is the fact that some of those who were
very helpful in the preparation of the book I am no longer in contact.
Despite the passage of more than a quarter of a century, I remain most
grateful to all who helped.

I want to thank my two daughters, Katherine and Deirdre 
Kenny who have together done most of the work in preparing this
revision.  They were the ones who scanned the original version with
Deirdre doing most of the work.  It was Katherine who was mainly
responsible for the design of the book, much of it done long distance in
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Prague. Thanks are also due to Virginia Carrow, Marina Julian, and
Matthew Beloin who assisted in the preparation.

If you have suggestions or find typographical errors, please 
send me an email at davken@rcn.com

David A. Kenny

Storrs, Connecticut
March 2004 



xii

B O O K
D E D I C A T I O N

O R I G I N A L  E D I T I O N  

Mary Ellen and My Parents

R E V I S E D  E D I T I O N  

Virginia Carrow 



Chapter  1 C O R R E L A T I O N A L  I N F E R E N C E 1

1
C O R R E L A T I O N A L

I N F E R E N C E
Given the old saying that "correlation does not imply 

causation," one might wonder whether the stated project of this book—
correlational inference—is at all possible. Correlational inference is 
indeed possible through the application of standard multivariate 
statistical methods to a stated structural model. Because a great amount 
of both confusion and controversy center around the terms 
"correlational" and "inference," it is first needed to have a common 
understanding about the meaning of each.  

First, correlational means a statistical relationship between a 
set of variables, none of which have been experimentally manipulated. 
Although correlations and covariances can be computed from 
experimental data, we usually reserve the term correlation for a 
relationship between unmanipulated variables. Very often, the random 
assignment of units to treatment conditions, the backbone of 
experimental inference, is impossible and there is only correlational 
data. In such a case, causal inference may still be the goal.  

Second, inference means confirmation or disconfirmation of a 
scientific hypothesis by the use of data. To interpret data, there must be 
a set of reasonable assumptions about how the data were generated and 
additional assumptions about how the data can be summarized. The set 
of assumptions about how the data were generated is usually called the 
model, and data are summarized by statistical methods. For at least two 
reasons, an inference does not imply in any way that the hypothesis is 
proven to be true. First, the inference is usually evaluated statistically: 
at best one knows only the probability the results that would have 
obtained by chance given the model. There is no certainty, only a 
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probability. Second, and more importantly, the model or assumptions 
on which the inference is based can always be questioned. Every 
inference but cogito ergo sum is based on a set of assumptions. One 
cannot ascertain simultaneously the validity of both the assumptions 
and the inference. Modern epistemology states that proof is a goal that 
is never achieved by social scientists or any scientist for that matter. As 
the ancient Hebrews felt about their God, the scientist should never 
speak the words truth or proof but always keep them in mind. 

Quite clearly the strength of inference is very different for 
confirmation than for disconfirmation. Especially for correlational 
inference, disconfirmation is usually more convincing than 
confirmation. A disconfirmation implies that the data are incompatible 
with the hypothesis. A confirmation shows the opposite, that the data 
are compatible with the hypothesis. However, the data also normally 
confirm a host of alternative inferences. It shall be seen that the 
confirmation process in correlational inference can be greatly 
strengthened by having the hypothesis state not only what should 
happen with the data but also what should not. 

Confirmatory inference is strong then, only if there are no 
plausible rival explanations of an effect. Campbell and Stanley (1963) 
in their classic text show how randomized and quasi-experimental 
designs may rule out a set of stated plausible rival hypotheses. 
Although the exact list of rival hypotheses in Campbell and Stanley 
does not fit very well with correlational designs, the core ideas of that 
text are extremely helpful in evaluating the strength of correlational 
inference. For instance, one important idea of Campbell and Stanley is 
the necessity of tests of statistical significance. Before a relationship 
can be interpreted, it must be demonstrated that it is not plausibly 
explained by chance. 

The term correlational inference should not be taken to mean 
that various statistics are by themselves inferential. Regression 
coefficients factor loadings, and cross-lagged correlations do not, in 
and of themselves, have an inferential quality. Given a plausible 
model, a statistic can be used for inferential purposes, but the statistic 

itself is merely a passive tool. Inference goes on in the head of the 
researcher, not in the bowels of the computer. 

C A U S A T I O N

There is one particular type of inference that we often wish to 
make from correlational data: a causal inference. For many years both 
scientists and statisticians were reluctant to even say the word 
“causation.” Judea Pearl (2000), almost single-handedly, has returned 
the concept of causality to the parlance of scientific discourse. A causal 
statement, to no one's surprise, has two components: a cause and an 
effect. Three commonly accepted conditions must hold for a scientist 
to claim that X causes Y:

1.  time precedence 
2.  relationship 
3.  nonspuriousness 

    For X to cause Y, X must precede Y in time. Such time 
precedence means a causal relationship is asymmetric. To see this let X
cause Y with a lag in time, and we then have, Xt causes Yt+k where the 
subscript refers to time with k > 0. Note that Yt+k cannot cause Xt since 
this would violate time precedence. (It is true, however, that Yt could 
cause Xt+k.) Causal relationships are then fundamentally asymmetric 
while many statistical measures of relationship are symmetric. Implicit 
in a causal vocabulary is an active, dynamic process that inherently 
must take place over time. 

There is no obvious logical objection to instantaneous 
causation (although it would be difficult to observe), but philosophers 
of science have not chosen to assume it. In a sense, something like 
causation backwards in time happens with rational foresighted 
creatures. Suppose an individual named John examines the current 
economic conditions and sees that a depression is inevitable. John then 
makes a series of economic decisions to cushion himself from the 
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impending effects of the depression (if that is at all possible). One 
might argue that depression that occurs after John's decisions causes 
these prior decisions. We can easily see the fallacy in this line of 
reasoning. It is not the depression per se that causes the decision, but 
the perception of the impending depression. Like any perception it may 
not be veridical. If we allowed for the veridical perception of the future 
(prophecy), it would be empirically impossible to rule out backwards 
causation.

The second condition for causation is the presence of a 
functional relationship between cause and effect. Implicit in this 
condition is the requirement that cause and effect are variables, that is, 
both take on two or more values. For example, the United States 
Surgeon General tells us that cigarette smoking causes lung cancer. The 
statement that "smoking causes lung cancer" is actually shorthand for 
saying that, other things being equal, smoking increases the probability 
of lung cancer, over not smoking. Thus, to elaborate "smoking causes 
cancer" we must define two variables: smoking—presence or absence—
and lung cancer—again presence or absence. To measure a relationship 
between two variables, first it is necessary to define the meaning of no 
relationship between variables or, as it is sometimes called, 
independence. Two variables are independent if knowing the value of 
one variable provides no information about the value of the other 
variable; more formally, X and Y are independent when the conditional 
distribution of Y does not vary across X. If variables are not independent, 
then they are said to be related. 

   In judging whether two variables are related, it must be 
determined whether the relationship could be explained by chance. 
Since naïve observers are very poor judges of the presence of 
relationships, statistical methods are used to both measure and test the 
existence of relationships. Statistical methods provide a commonly 
agreed upon procedure of testing whether a sample relationship 
indicates a relationship in the population. 

   The third and final condition for a causal relationship is 
nonspuriousness (Suppes, 1970). For a relationship between X and Y to 
be nonspurious, there must not be a Z that causes both X and Y such 

that the relationship between X and Y vanishes once Z is controlled. A 
distinction should be made here between a spurious variable and an 
intervening or mediating variable. Variable Z intervenes between X and
Y if X causes Z and Z in turn causes Y. Controlling for either a spurious 
variable or an intervening variable makes the relationship between X
and Y vanish; but while a spurious variable explains away a causal 
relationship, an intervening or mediating variable elaborates the causal 
chain. Many analysts see the issue of spuriousness as the biggest 
stumbling block in causal analysis, and it has been variously called the 
third variable problem, the excluded variable, common factoredness, 
and cosymptomatic relationship. A commonly cited example of 
spuriousness is the correlation of shoe size with verbal achievement 
among young children.  The relationship is spurious because increasing 
age causes increasing shoe size and verbal achievement. Spuriousness 
usually plays a much more subtle role. Much of the discussion of this 
book centers around the problem of spuriousness. 

  Besides the three formal requirements for causality of time 
precedence, relationship, and nonspuriousness, there is perhaps a 
fourth condition for causation that is difficult to state precisely. This 
fourth condition is that causality implicitly implies an active, almost 
vitalistic, process. It is difficult to convey this notion of causality 
formally just as it is to formally define space or time. The philosopher 
Immanuel Kant has called causality, along with space and time, a 
synthetic a priori, that is, an idea that we bring to our experience of 
phenomena. This distinctively human bias toward causal explanations 
has recently become a central topic among social psychologists who 
study the attribution process. 

T H E  N E E D  F O R  C A U S A L  M O D E L I N G

Although causal analysis may pervade our everyday life, it is 
controversial whether causal analysis is an appropriate concern of the 
social sciences. It is the contention here that causal modeling should 
have a central position within social research, although there are other 
very important tasks in the social sciences such as observation, 
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measurement, data reduction, and theory formulation. For at least three 
reasons causal modeling needs to be applied to social science research: 

1. Because most researchers either implicitly or explicitly  
construct models, a formal development of the method 
would assist these researchers. 

2.  Causal modeling can assist the development, modification, 
and extension of measurement and substantive theory. 

3.  Causal modeling can give social science a stronger basis for 
applying theory to solving social problems. 

Beginning with the first point, since causal modeling is already 
being employed, an increased understanding of the process would aid 
researchers. Most researchers find themselves with large data sets to 
which they apply statistical methods. Any such method implies a 
statistical model. Common models with which most researchers are 
familiar are the analysis of variance, multiple regression, and factor 
analysis models. Very often a statistical model can elegantly and 
simply summarize the data. Although the fit of the statistical model 
may satisfy the curiosity of the statistician, it only whets the curiosity 
of the social scientist since most social scientists gather data to test 
substantive theory. They invest their egos and reputations in theory, 
not in statistical models. 

Usually the skeleton of a theory is a string of causal 
statements, although as is later discussed, the heart of any theory is a 
metaphor or image. Experiments and surveys are conducted to test a 
set of causal statements, which are usually called hypotheses. The 
formation of scientific hypotheses is guided by theory and not by a 
statistical model. Consider an example. A theory of deviance states that 
deviance causes social rejection and social rejection in turn causes 
alienation. It then makes sense to control for social rejection if we are 
to measure the impact of deviance on alienation. Although it makes 
theoretical nonsense to control for alienation in estimating the effect of 
deviance on social rejection, it is perfectly permissible to control for 

alienation statistically in estimating the relationship between deviance 
and social rejection. Many of the serious errors in data analysis are due 
not to lack of knowledge of statistical methods, but to a failure to apply 
the appropriate statistical method given the conceptual problem. Levin 
and Marascuilo (1972) have called such errors, Type IV errors. 

The ready availability of computer packages contributes to this 
conceptual slippage between the idea and data analysis. Users can 
quickly and cheaply apply factor analysis, multiple regression, and 
analysis of variance to their data. Even though users may understand 
the statistical assumptions necessary to apply these techniques, they 
may not fully comprehend the conceptual assumptions. One good 
example is factor analysis. Many are sophisticated in the ins and outs 
of rotation, but few have a solid understanding of the relationship of 
factor analysis to substantive theory. As seen in Chapter 7, one use of 
factor analysis is to test for unidimensionality, that is, the set of 
measures taps a single construct, but few researchers understand how 
to apply factor analysis to answer this important question. A better 
understanding of the process of causal modeling would help 
researchers choose the appropriate statistical method, use it in the 
correct way, and interpret it intelligently. 

The second reason why causal modeling is important is that it 
can be used to more exactly state theory, to more precisely test theory, 
and then to more intelligently modify theory. Unfortunately most of 
what passes for data analysis seems more like a ritual than an 
investigation into the underlying process of how the data are generated. 
A researcher who approaches data from a modeling approach is 
somewhat more likely to learn something new from the data. Ideally 
the researcher starts with a model or formulates one. Then the 
researcher determines if the data to be analyzed can estimate the 
parameters of the model and if the data can falsify the model. Such 
estimation and testing reveal whether the model is too general, too 
simple, or just plain wrong. As is seen in Chapter 3, a researcher who 
carefully follows all the steps of causal modeling is in the position to 
test theory. Although causal modeling offers an exciting possibility for 
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researchers, it also clearly shows the limits of data analysis in resolving 
theoretical issues. 

A third reason for causal modeling is that it can provide a 
scientific basis for the application of social science theory to social 
problems. If one knows that X causes Y, then one knows that if X is 
manipulated by social policy, ceteris paribus, Y should then change. 
However, if one only knows that X predicts Y, one has no scientific 
assurance that when X is changed, Y will change. A predictive 
relationship may often be useful in social policy, but only a causal 
relationship can be applied scientifically. 

 Even when a causal law is known, one must take care in 
applying it. For instance, although the scientific literature is viewed by 
some as not very supportive of psychotherapy as a cause of "mental 
health" (see Smith & Glass (1977) for a contrary view), it would be 
premature to replace it by more "scientific" methods. Often in 
conventional wisdom resides an implicit knowledge that surpasses the 
formal knowledge of science. It may be fortunate that political and 
practical considerations impede the application of social science to 
social problems. In absence of strong theoretical causal models, the 
practitioners such as social workers and clinicians deserve to be 
listened to more than the ivory tower academic. It is a sad commentary 
that the social scientist is often better skilled not in designing better 
social programs to solve social problems but only in evaluating the 
success or failure of existing social programs (Weiss, 1972). 

L I M I T S  O F  C A U S A L  M O D E L I N G

Although causal modeling is important in the advancement of 
social science, it has very definite limitations: 

1.  The research and data must be grounded in a solid 
foundation of careful observation. 

2.  The central ideas or driving themes of theory are not 
usually causal laws but are more likely images, ideas, and 
structure.

3.  Causal modeling is open to abuse. 

Regarding the first point, models are built upon qualitative 
examination of phenomena. Adherents of participant observation often 
criticize the elaborate "laws" of statistical modelers, and argue that 
before a tradition can be developed in an empirical domain, a wealth of 
qualitative lore must be built up. This careful, almost clinical sensitivity 
to empirical phenomena is not easily taught or appreciated. Sadly, this 
sensitivity seems to be primarily emphasized in the study of phenomena 
of behaviors not easily amenable to the quantitative methods, for 
example, deviance. Careful observational methods form the basis for 
measurement (institutionalized observation), and measurement in turn is 
the basis for quantitative data. Let us not forget that the validity of 
measures in social science is usually nothing more than face validity and 
face validity is only based on common sense. 

Too often, even in the early stages of research on a topic, the 
researcher is too far separated from the observation of the empirical 
process. Almost as often the researcher never sees the raw data but only 
highly aggregated statistical summaries. True enough, interviewing and 
observation by themselves can lead to mistaken and facile explanations 
of behavior, but they nonetheless provide a wealthy source of data, albeit 
difficult to characterize; and from such observations models and 
hypotheses can be formed. 

Second, although theory takes the form of causal statements, the 
guiding ideas of theory are not those statements but rather an image or 
an idea. Many of the important ideas of natural science are not causal but 
are pictures of a process. Although evolution, the periodic table, and the 
kinetic theory of gases have a mathematical form, they are 
fundamentally images. 

Some causal modelers seem to act as if the major problem 
facing an area is finding a key cause of the correct variable. For instance, 
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if a researcher is interested in drug use, research will then be defined as 
measuring all the possible causes of drug use and seeing which is the 
best predictor. Given finite samples and the multitude of "independent 
variables," to no great surprise, some variables are found to be 
significant. Even though most of these effects are usually obvious and 
unsurprising, elaborate explanations are found for these variables.  Then 
there are marginal but "interesting" variables. How easy it is to delude 
oneself that one's study is the study to find the key variable. Of course, 
no other study can then replicate the key variable. Causal modeling 
provides no certain path to knowledge. In fact, causal models are 
maximally helpful only when good ideas are tested. Good ideas do not 
come out of computer packages, but from people's heads. 

Third, like any tool causal modeling can be misused. There is no 
magic in the pages that follow. The techniques to be discussed—factor 
analysis and multiple regression—are already in common use. This book 
elaborates how to more carefully and consistently relate these techniques 
to theory. One cannot take bad data and turn it into gold by calling it a 
causal model. The potential promise of the method is that it puts the 
theoretical assumptions up front. Ideally methodological and statistical 
questions become clarified and disappear, and the focus of the argument 
is then turned to the substantive assumptions of the researcher. 

There will be a temptation to dress up statistical analyses by 
calling them a "causal analysis." Although the term causal modeling 
sounds impressive, remember it forces the researcher to make stronger 
assumptions in order to make stronger conclusions. 

C A U S A T I O N  A N D  F R E E D O M

There is a final criticism of causal modeling that is put forth. 
To some, it is repugnant to think of persons being pushed and pulled 
by a set of causes external to them. Causal models of human behavior 
give rise to a vision of persons as marionettes pulled by the strings of 
some set of universal laws. Ironically the same people who object to 
social science as an enterprise, usually also have an unrealistic view 

that social science can be used to manipulate human behavior to 
achieve evil ends. The fear that advertising or behavior modification 
can change people's lives is an implicit recognition that human 
behavior is indeed caused. A simple illustration that our behavior is 
caused is that, even though we are "free" to travel when and where we 
want, traffic patterns are even more predictable than the weather. 

Although we cannot deny that human behavior is caused, our 
intuitions and traditions are still correct in telling us that people are 
free. Even highly developed causal models do not explain behavior 
very well. A good rule of thumb is that one is fooling oneself if more 
than 50% of the variance is predicted. It might then be argued that the 
remaining unexplained variance is fundamentally unknowable and 
unexplainable. Human freedom may then rest in the error term. The 
hard core determinist would counter-argue the error is potentially 
explainable, but at the present moment science lacks an adequate 
specification of all the relevant causes. Einstein took this approach in 
his arguments against physical indeterminacy. This, however, is only a 
conjecture and it seems just as plausible and no less scientific that 
human behavior is both caused and free. There is no logical or 
scientific necessity to argue that behavior is totally determined. 

Equating unpredictability with freedom may seem peculiar, but 
Ivan Steiner (1970) in his discussion of perceived freedom defines 
decision freedom as the condition in which the decision choice is 
unpredictable. Choices made with no constraints are free. 
Unpredictability is only one of two parts of freedom. The person must 
also be responsible for the behavior. The velocity of a subatomic 
particle may be unpredictable, but it is hardly responsible for its 
position. Human beings are responsible for their behavior. 

There may even be a biological basis for human freedom. The 
fuel of evolution, both biological and cultural, is variation (Campbell, 
1974). There can only be evolution if there are a set of different 
behaviors from which the environment selects. Perhaps nature 
programmed into the human brain something like a random number 
generator. This random number generator creates behavioral 
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responses some of which are by chance adaptive. The organism then 
begins to learn which responses are adaptive to the situation. 
Culture, socialization, and values continually select from this pool 
of variable responses. For operant conditioning to work, one needs a 
variable organism to shape. If human beings are fundamentally 
variable and, therefore, at least partially unknowable, then 
traditional social science has erred in presuming that human action 
is totally determined. Sadly, social science has taken only one track. 
It has emphasized control and constraint instead of emphasizing 
freedom and possibility. 

Causal modeling can be compatible with the preceding 
notion of human freedom. It can also allow us to understand the 
causes of our behavior so that we can transcend those causes. This 
transcendence can be viewed in both a weak or strong sense. The 
weak sense is that a causal relationship can be mitigated through 
intervention. For instance, if high employment causes inflation, the 
government can take steps to reduce inflation when employment is 
high. If the governmental action has the desired effect of reducing 
inflation and little or no effect on employment, it would then be 
possible to reduce or even reverse the relationship between 
employment and inflation. The causal relationship between 
employment and inflation would still exist, but the statistical 
relationship between the two variables would vanish. By the 
stronger sense of transcendence, it is meant that if we understand 
the rules of the game (i.e., causal relationships), we can decide to 
change not the variables, but the rules themselves. We may, for 
instance, decide that rules generated by a free enterprise economy 
should be abolished and we should play by a set of rules determined 
by a socialist economic structure. Only by understanding the ways 
in which we are determined, can we transcend those rules. 

C A U S A L  L A W S

Now that we have discussed the pluses and minuses of 
causal modeling, let us begin to discuss causal modeling itself. A 
causal law is of the general form: 

For all Q, X causes Y.

The term Q refers to the set of objects or persons to whom the 
causal law applies, X refers to the cause, and Y the effect. Neglected 
in many causal models is the specification of Q. In social science Q
is usually some subset of persons, although Q can also be the set of 
words, situations, generations, or nations. If Q is the set of persons, 
usually additional specifications are made. For instance, it is usually 
assumed that the person is an adult, is awake, is not mentally 
retarded, and is healthy. Normally these qualifications of the 
population are implicitly made. Often for a causal law to operate, 
certain important necessary conditions must hold. For instance, the 
person must be motivated, must have already learned a relevant 
behavior, or must attend to various stimuli. In this text the "for all 
Q" part of a causal statement is usually omitted. One should, 
however, avoid the reification of causal laws. As Sartre points out 
(1968, p. 178), causal laws do not operate in heaven but on people:  

About 1949 numerous posters covered the walls in Warsaw: 
"Tuberculosis slows down production." They were put there as the 
result of some decision on the part of the government, and this 
decision originated in a very good intention. But their content 
shows more clearly than anything else the extent to which man has 
been eliminated from an anthropology which wants to become pure 
knowledge. Tuberculosis is an object of a practical Knowledge: the 
physician learns to know it in order to cure it; the Party determines 
its important in Poland by statistics.  Other mathematical 
calculations connecting these with production statistics 
(quantitative variations in production for each industrial group in 
proportion to the number of cases of tuberculosis) will suffice to 
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obtain a law of the type Y = f(x), in which tuberculosis plays the 
role of independent variable. But this law, the same one which 
could be read on the propaganda posters, reveals a new and double 
alienation by totally eliminating the tubercular man, by refusing to 
him even the elementary role of mediator between the disease and 
the number of manufactured products. 

Although it is all too easy to do, let us not lose sight that causal laws in 
the social sciences refer to people.  

Because both the cause X and the effect Y are variables, the 
relationship between them can be put into some functional form: Y = 
f(X) called a structural equation. The typical functional form is a linear 
one:

Y = b0 + b1X

The bl term is called the causal parameter and its interpretation is 
straightforward. If the variable X were increased by one unit, the 
variable Y would be increased by b1 units.  The relationship is linear 
because if X were plotted against Y, there would be a straight line with 
slope bl and a Y intercept of b0. Instead of just one X causing Y, there 
may be a set of Xs. These Xs could be combined in a number of ways, 
but the simplest is an additive combination: 

Y = b0 + b1X1 + b2X2 + b3X3 +  . . . + bnXn

Each causal variable, the Xs, is multiplied by its causal parameter, and 
these parameter-variable combinations are then summed. One could 
concoct other mathematical forms, but the linear model is one of the 
simplest. 

Given a set of variables in a causal model, most if not all the 
information can be summarized in the covariances between variables. 
Statisticians call the covariances the sufficient statistics. Before 
discussing causal modeling any further, let us take a necessary detour 
and develop the algebra of covariances. 
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2 [(X – M )(Y – M )]X Y________________ [2.2]
N – 1

C O V A R I A N C E
A L G E B R A

where observations are independently sampled and MX and MY are
sample means and N is the sample size. A common computational
formula for covariance is ( XY – X Y/N)/(N – 1). Covariance is a 
measure that is in the scale of both variables. If X is measured in 
feet and Y in yards, their covariance is in feet-yards. If the units of
measurement of X or Y are changed, then the value of the
covariance changes. 

The information about the set of parameters of a linear model,
causal or otherwise, is all contained in the covariances between
variables. To recover the model's parameters, covariances must be 
manipulated. Thus, to become proficient at causal modeling the 
researcher must learn how to determine the covariances between
variables. A covariance occurs between a pair of variables, say X and 
Y, and is symbolized here by C(X,Y). The term C(X,Y) is read as the
covariance between X and Y. If it is known that X = aZ + bU, then it is
also known that C(X,Y) = C(aZ+bU,Y), and so within a covariance a
variable's equation can be substituted for the variable itself. 
Additionally a covariance is a symmetric measure; that is, C(X,Y) =
C(Y,X).

A covariance is a measure of association or relationship 
between two variables. The covariance is positive if a person who is 
above the mean on X is expected to be above the mean on Y. With a
negative covariance the pattern is reversed: above the mean on X and
below the mean on Y or below the mean on X and above the mean on
Y. This relationship between X and Y is ordinarily not perfect but only
a tendency. Thus if the covariance is positive usually not all the 
persons above the mean on X are above the mean on Y, but only the 
"average" person is. A zero covariance implies that being above the
mean on one variable is in no way predictive of the other variable. 

D E F I N I T I O N  O F  C O V A R I A N C E F A C T O R S  I N F L U E N C I N G  T H E  S I Z E  O F  A  C O V A R I A N C E

So far we have only given a symbol for covariance.
Mathematically it is defined as 

Before moving on to the algebra of covariances, consider 
factors that may make covariance a misleading measure of association:
outliers and nonlinearity. As shown by Equation 2.1, a covariance is 
the sum of cross-product deviations from the mean. Scores that are 
more deviant from the mean more heavily influence the covariance. In 
computing covariances researchers should check for outliers that could
distort the covariances. An outlier is usually said to be three or more
standard deviations from the mean. According to Anscombe (1968), 
there are three different explanations for outliers: (a) measurement
errors, (b) multiple populations, and (c) random values. 

E[(X – X)(Y – Y)]   [2.1]

where E is the expectation or best guess and X is the population mean
of variable X and Y of Y. Some texts refer to covariance as XY. The 
unbiased sample estimate of a covariance is given by
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Figure 2.1  Nonlinear relations between X and Y: Curvilinear,
cyclical, and crossover interaction

Likely most outliers are due to a malfunction of the measuring
instrument or an error in the transfer of data to a computer file. Some
of the possible sources of measurement errors are that a respondent
could misunderstand the instructions, the response could be mistakenly
transposed onto coding sheets or the data analyst could make a 
data-entry error. There are indeed all too many sources of error. Errors
are often detected by noting whether the obtained value is within the 
possible range of values. For instance, negative values for either

dollars earned and or for reaction time are ordinarily not allowable. For 
outliers that are errors, the correct value can often be recovered
whereas in other cases this is impossible.

A second, and more problematic, source of outliers is multiple
populations. The underlying distribution of the variable is bimodal 
with a second peak that is considerably different from the first. In a 
study on memory for phone numbers in which one person's
performance is abysmally low, the researcher may discover that the 
person has some organic problem. The researcher should have
screened the participants and excluded from the study those who had
organic problems. In a study of income, if one of the sample
respondents is a millionaire, this one person could considerably bias 
the conclusions of the study even if the sample size were large. This
person's income may be a social error but it is not a measurement error. 
Researchers interested in unraveling causal relationships are usually 
well advised either to exclude from the study any highly deviant group
or to oversample them for an additional separate analysis. If the 
interest is in estimating population parameters, it is unwise to exclude 
such units.

Finally, outliers are expected by chance. Given a sample size
of 2000 and a normal distribution, about five persons would be three or
more standard deviations from the mean and about one would be four 
or more.  If an outlier cannot be attributed to measurement error or
sampling from multiple populations, then it is reasonable to explain the 
outlier by chance. To reduce the effect of outliers on covariances, one 
might trim the distribution: Ignore the highest and lowest values or the 
two highest and lowest. Although trimming is not yet a common
practice, statisticians are currently developing this strategy as well as 
other resistant methods (Tukey, 1977).

Using a covariance as a measure of association presumes that
the functional relationship between variables is linear, that is, a 
straight-line functional relationship. For the examples in Figure 2.1,
although there is marked functional association between X and Y, their 
covariance is zero. For all three examples, if the Xs across each Y are 
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The first rule states that the covariance of a variable with a 
constant is zero. Thus, if X is a variable and k a constant, C(X,k) = 0.
Since k is constant across all participants, its mean (Mk) is k and so k –
Mk is always zero and every product with (X – MX) is zero. If we 
plotted X against k, we would obtain a flat line with zero slope 
indicating no functional relationship between X and k.

averaged, a vertical line is obtained, indicating no linear relationship 
and zero covariance. (Even though a line is obtained, a perfect vertical
or horizontal line indicates zero covariance.) The first example in 
Figure 2.1 is a curvilinear relationship. A substantive example of a 
curvilinear relationship is the Yerkes-Dodson law stating that as 
motivation increases performance increases up to a point, then as 
motivation continues to increase performance decreases. We all know
that moderate amounts of anxiety increase performance, but large 
doses are debilitating. The second example in Figure 2.1 is a cyclical
relationship. A simple substantive example is one in which X is month 
of the year and Y is mean temperature for the month. Cyclical
relationships are rather common when time is one of the variables. The 
final nonlinear example in Figure 2.1 is an interaction. The relationship
between X and Y is linear but the slope varies for two different groups.
The slope is positive, or ascending, for one group while the second 
group has an identical slope of opposite sign. This intersection of lines
is sometimes called a crossover, or disordinal interaction. As a
substantive example, it seems that among 10-month old infants fear of 
strangers and cognitive development are positively related (that is, the 
more fearful are more intelligent) whereas the relationship reverses for 
12-month old infants (Jacobson, 1977). Although nonlinearity is a 
limitation in the generality of covariance as a measure of relationship, 
it need not be a limitation for the analysis of linear, structural
equations. We return to the nonlinear function relationships in Chapter
13 and discuss strategies for coping with the problem.

The second rule is C(kX,Y) = kC(X,Y). Thus, if a variable is 
multiplied by a constant, the constant can be factored out of the 
covariance. Some simple corollaries are C(kX,bY) = kbC(X,Y) and
C(X,–Y) = –C(X,Y).

The third rule states that a covariance of a variable with itself,
or autocovariance, is simply the variance of the variable. This can be 
seen by taking the definitional formula for covariance and substituting 
X for Y, yielding

[(X – M )(X – M )]X X________________
N – 1 

which is simply the definition of sample variance. Using the second
rule, a theorem about variance can be derived. If we multiply a variable 
by a constant, we multiply the variance of that variable by the constant 
squared: C(kX,kX) = k2C(X,X) = k2V(X) where V(X) denotes the 
variance of X.

The fourth and final rule is that the covariance of a variable with the 
sum of two variables is simply the sum of the covariances of the variable
with each of the components of the sum: C(X,Y+Z) = C(X,Y) + C(X,Z).

T H E  F O U R  R U L E S
Table 2.1  Rules of Covariance Algebra
_______________________________________________________So far we have defined a covariance and developed two 

problems in interpretation: outliers and nonlinearity. We now turn to 
the central topic of this chapter: covariance algebra. Since all 
information about causal parameters is contained in the covariances,
one must find the key to unlock their precious secrets. The key is
contained in four fundamental rules of covariance algebra.

Null rule C(X,k) = 0 
Constant rule C(kX,Y) = kC(X,Y)
Variance definition C(X,X) = V(X)
Sum Rule C(X,Y+Z) = C(X,Y) + C(X,Z)
________________________________________________



2 2 C O R R E L A T I O N  A N D  C A U S A L I T Y    Chapter  2 C O V A R I A N C E  A L G E B R A 2 3

Adding the two C(X,Y)s and using the variance definition yieldsSo covariance algebra can be reduced to four simple rules. For 
convenience, they are stated in Table 2.1. To provide names for the
rule let us call them the null rule (C[X,k] = 0), the constant rule 
(C[kX,Y]) = kC[X,Y])), the variance definition (C[X,X] = V[X]), and the
sum rule (C[X,Y+Z]) = C[X,Y]) + C[X,Z])). It should be noted here one 
nonrule: C (X/Y,YZ) does not necessarily equal C(X,Z).

V(X+Y) = V(X) + V(Y) + 2C(X,Y)

The theorem is useful and should be memorized. A more general
theorem is that a variance of a sum equals the sum of variances plus
twice all possible covariances. 

Note that adding a constant does not influence a covariance. 
First, using the sum rule yields

A P P L I C A T I O N S  O F  C O V A R I A N C E  A L G E B R A

Using the rules one can now expand the following covariance, 
applying the sum rule first C(X+a,Y) = C(X,Y) + C(a,Y)

and the null rule reduces the preceding to C(X,Y).C(aX+bY,X+cZ) = C(aX+bY,X) + C(aX+bY,cZ)
Many of the familiar measures of linear relationship like

regression and correlation can be defined in terms of covariances. For 
instance, the regression of Y on X (X the predictor and Y the criterion),
or bYX is simply C(X, Y)/V(X). The metric of a regression coefficient is
in units of Y per X. As the metric and the formula suggest, the
regression coefficient is not symmetric: bYX does not ordinarily equal
bXY.  Because bYX = C(X,Y)/V(Y), bYX = bXY only if V(X) = V(Y) or 
C(X,Y) = 0. Much more is said about regression coefficients in later 
chapters, but for the moment, let us think of them as the ratio of two
covariances.

again applying the sum rule 

= C(aX,X) + C(bY,X) + C(aX,cZ) + C(bY,cZ)

Now applying the constant rule 

= aC(X,X) + bC(Y,X) + acC(X,Z) + bcC(Y,Z)

and finally the variance definition 
A scale-free measure of linear relationship is correlation:

= aV(X) + bC(Y,X) + acC(X,Z) + bcC(Y,Z)
C(X,Y)___________

[V(X)V(Y)]1/2With some familiarity the sum rule need not be successively
applied. One can compute the covariance of two sums as the sum of 
the covariance of all possible cross-products. For instance, find the 
variance of X + Y. The sum of covariances of cross-products is 

or, as it is symbolized, rXY in the sample and XY in the population. As 
is well known, a correlation varies from +1 to –1 and rXY = rYX. There 
is a simple relation between correlation and regression coefficients 

C(X,X) + C(X,Y) + C(Y,X) + C(Y,Y)
rXY = bYX[V(X)/V(Y)] 1/2
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The sign of both a correlation and a regression coefficient depends on 
the numerator, C(X,Y). Along the same lines, a correlation and a 
regression coefficient can only be zero if C(X,Y) = 0. 

A correlation can be thought of as a covariance between two
standardized variables. Standardization means that the variable has 
been transformed to have zero mean and unit variance; so to 
standardize X compute (X – MX) /V(X)1/2. An examination of the 
formula for correlation shows that if X and Y are standardized 
variables, C(X,Y) = rXY because [V(X)V(Y)]1/2 = 1 given that X and Y
have unit variance through  standardization. The fact that the 
covariance of standard scores is a correlation will be of special help in 
the development of path analysis in the next chapter. 

Using our knowledge of regression coefficients and 
covariances, one can determine C(Y – bYX,X):

C(Y–bYXX,X) = C(Y,X) – bYXV(X)

by the sum and constant rule and variance definition, 

= C(Y,X) – [C(X,Y)/V(X)]V(X)

by the definition of the regression coefficient,

= C(X,Y) – C(X,Y)

= 0 

Some readers may recognize that Y – bYXX is the residual from the 
regression line. It has then just been shown that the residual is
uncorrelated with the predictor X.

Covariance algebra is especially useful for showing that
seemingly, theoretically meaningful relations between variables are, in 
fact, only mathematical necessities. For instance, let X be a pretest and 
Y the posttest. A researcher may wish to correlate "change," Y – X,

with initial status, X. Let us determine rX,(Y–X) in the special case where
V(X) = V(Y). Since C(X,Y – X) = C(X,Y) – V(X) and V(Y – X) = V(Y) + 
V(X) – 2C(X,Y), the definition of correlation implies that r(X)(Y–X) equals 

C(X,Y) – V(X)___________________________
(V(X)[V(Y) + V(X) – 2C(X,Y)])1/2

and given V(X) = V(Y) and some algebraic manipulation the formula
becomes:

=  –[(1 – rXY)/2]1/2

Thus, the correlation of change with initial status must be negative
if the variances of X and Y are equal and rXY, is less than one. This
fact is part of what is meant by regression toward the mean. Note
that the difference is negatively correlated with X.  Thus, those who
are high on X have on the average lower standard scores on Y and 
those who are low on X have higher scores on Y. The interpretation
of covariances containing sums and differences must be made with
great care.

Another illustration of a potentially misleading covariance is
C(X+Y,X–Y), which simply equals V(X) – V(Y). This theorem is
useful as a test of the null hypothesis that the variances of two
variables measured on the same set of respondents are the same. The
null hypothesis of V(X) = V(Y) implies (X+Y)(X–Y) = 0, where  is the
population correlation coefficient. One can then compute r(X+Y)(X–Y)

and test whether it significantly differs from zero to test the null
hypothesis of the equality of two variances computed from the same
set of respondents.

Given a set of variables, their covariances can be
summarized by a covariance matrix. For instance, the covariance
matrix for X, Y, and Z
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C(X,X)    C(Y,X)   C(Z,X)
C(X,Y)    C(Y,Y)   C(Z,Y)
C(X,Z)    C(Y,Z)   C(Z,Z)

The main descending diagonal of a covariance matrix is the set of
autocovariances or variances and the matrix is symmetric with respect
to that diagonal. A covariance matrix of standardized variables is a 
correlation matrix. 

Covariance algebra is indeed useful for discovering
statistically necessary relationships. However, the main use of it here
is with structural equations. We see in the next chapter that if
variables are standardized, covariance algebra can be short-circuited
by path analysis. Nonetheless, on covariance algebra rests the
analysis of linear equations.
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3
P R I N C I P L E S  O F  

M O D E L I N G
Although most social and behavioral scientists either 

explicitly or implicitly use a causal language, they lack a common,
systematic approach to causal analysis. Psychologists in particular
have relied on a language that grew out of randomized experimental
design. The key notions of independent and dependent variables from
experimental design are potentially misleading in a nonexperimental
analysis. What follows is an exposition of a set of terms which
econometricians and socilogists have found useful in nonexperimental
causal inference. Although to some the terms may be foreign and 
awkward at first, the reader will find them very useful in 
conceptualizing the problems in later chapters.

S P E C I F I C A T I O N

Structural equation models require a blend of mathematics
and theory. Although there are many interesting issues in the
mathematics of models, the most difficult questions are those that
translate theory into equations. This process of translation is called
specification. Theory specifies the form of equations. As Blalock 
(1969) has pointed out, most theories in the social sciences are not 
strong enough to elaborate the exact form of equations, and so the 
causal modeler must make several theoretical assumptions or
specifications. Although every specification can be stated in equation
form, the specification should have some justification drawn from

theory. As stated in Chapter 1 each effect is specified as the sum of its
causes, an assumption to be returned to in Chapter 13.

However, specifications need not be based only on substantive
theory. There are two other sources of specification: measurement
theory and experimental design. The theory of test measurement has 
been well developed, for example, Guilford (1954), and is useful in
specifying structural equations. For instance, classical test theory
posits that errors of measurement are uncorrelated with the true score.
Measurement theory is often helpful in formulating structural models.

Researchers unfamiliar with the logic of experimental design are
often unaware that the design of the research can yield additional 
specifications. For instance, factorial design and random assignment to 
treatment conditions yield independent causes that are uncorrelated with
the unmeasured causes of the effect. Likewise, longitudinal designs may
bring with them the specification that certain parameters do not change
over time. Successful structural modelers exploit all three types of 
specifications: substantive theory, measurement theory, and experimental 
design. Traditionally psychologists focus on experimental design,
psychometricians on measurement theory, and econometricians on
substantive theory. Rather than choosing one's specification by one's
discipline, specifications should be chosen to fit the problem.

What the causal modeler fears more than anything else is 
specification error: One of the assumptions of the model is incorrect.
Most models contain misspecification. However, it is not sufficient to
criticize a model just because it contains a specification error. One
must show that it seriously biases estimates of the parameters of the
model. It may be that the whole model or parts of it are very robust
even with a specification error. A hypothesized specification error 
must be examined carefully to see exactly how it affects the model.

S T R U C T U R A L  M O D E L S

Structural models have two basic elements, variables and
parameters. Variables, as the name suggests, vary across the persons
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for whom the causal law applies. One person has an intelligence test 
score of 100, another of 110, still another of 80. These variables are 
the raw materials of theories. In this text variables are symbolized by 
capital letters, for example, I for intelligence and A for achievement. 
Parameters do not vary across persons, but they describe the whole
population. Mean and variance are examples of two parameters. With
structural models, parameters are structural parameters, and each 
structural parameter is multiplied by a variable. The sum of these 
parameter-variable combinations equals the effect variable, and the
resultant equation is called a structural equation. Structural
parameters are symbolized by lower-case letters, a, b, c, … z. A more
standard manner of denoting parameters is to use b or and subscript
the cause and effect with the subscript for the effect written first. For
instance, if X causes Y, bYX or YX is the structural parameter. If all the
variables are standardized, the structural parameters are called path
coefficients and ordinarily are designated by lower case ps and 
subscripted in the same way as the bs and s. For instance, pji is the
path from i to j where i is the cause and j the effect. The subscripting
of causal coefficients can be rather clumsy; moreover, the use of the 
bs implies that the causal parameters are regression coefficients. They
are in fact theoretical regression coefficients, but in practice it is often 
the case that multiple regression analysis does not provide unbiased
estimates of causal parameters.

To illustrate a structural equation, income (I) is thought to be
the sum of the status of occupation (S) and the amount of education
(E); so for person i:

Ii = aSi + bEi  [3.1]

All variables are subscripted by person because they vary across 
persons. Also throughout the text unless otherwise noted all variables
are expressed in mean deviation form. For Equation 3.1, I is income
minus the group mean. For all future equations the person subscript is
dropped and presumed. The lower-case letters in Equation 3.1,

parameters a and b, are the causal parameters and their interpretation
is straightforward.  If the variable S were increased by one unit and if 
E were kept constant, I would be increased by a units. Of course, if a
were negative and S were increased by one unit, I would be decreased.

Equation 3.1 is an example of a structural equation. By 
convention the effect is written on the left side of the equation and is
sometimes called the left-hand variable; the causes are written on the
right side and are sometimes called right-hand variables. A more 
common vocabulary taken from econometrics is to refer to variables
that are only causes as exogenous variables and to the effects as 
endogenous variables. The causes are sometimes called the 
independent variables, and the effects are sometimes called the
dependent variables. However, this terminology was developed for
randomized experimental research in which the independent variable
is always independent because it is experimentally manipulated. In the
non-experimental case, the terms independent and dependent variable
would seem inappropriate. In this text the terms cause or exogenous
variable and effect or endogenous variable are used instead of 
independent and dependent variable.

Structural equations differ from other equations because
structural equality represents not only a mathematical relationship, but
also a theoretical relationship between cause and effect. For instance,
the equation 

–aSi = bEi – Ii

is mathematically equivalent to Equation 3.1, but it makes no 
structural sense. 

In structural equation modeling, there is normally a system of 
equations. For instance, one might add to Equation 3.1 the following
equation

E = cF + dV   [3.2]
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where E is education, F is father's social class, and V represents all 
other causes of education. Again all variables are expressed in mean 
deviation form. Note that E is a cause in Equation 3.1 and an effect in 
Equation 3.2, and is called an endogenous variable. Variables F and S
in these two equations are said to be exogenous variables because they
are only cause other variables, while the variable I is endogenous. The 
set of structural equations is called the causal or structural model.

There are two types of structural models: hierarchical and
nonhierarchical. A nonhierarchical model has feedback loops, either
direct or indirect. An example of a direct feedback loop is the case 
in which X causes Y and Y causes X. An indirect loop occurs when
one of the causal links of the feedback loop is indirect, for example,
X causes Y and Y causes Z which causes X. As an example of a
nonhierarchical model from economics, a model of supply and
demand is nonhierarchical because supply causes demand and 
demand causes supply.

A hierarchical model has no feedback loops. Formally a
model is hierarchical if the set of structural equations can be ordered
in such a way that an effect in any equation does not appear as a cause 
in any earlier equation. If the equations cannot be so ordered the
model is said to be nonhierarchical. For instance, the following set of
equations is nonhierarchical:

X = aY + bU
Y = cZ + dV
Z = eX + fW 

because Y causes X and X causes Z which causes Y. The structural 
model is then nonhierarchical. In this text the central concern is with 
hierarchical models, although nonhierarchical models are discussed in
Chapter 6. 

To summarize, a structural model consists of a set of 
equations. The effect or endogenous variable is on the left side, and on 
the right side is the sum of the causes each causal variable multiplied

by a causal parameter. If a variable is never an effect, it is called an 
exogenous variable. If there are no feedback loops, the model is said
to be hierarchical.

P A T H  A N A L Y S I S

Often the variables in models have zero mean and unit
variance which is called standardization; although this greatly
simplifies the algebra, it does imply some loss of generality. First,
standardization brings about the loss of the original metric, which 
sometimes interferes with interpretation, but in many cases the
original metric is arbitrary anyway.  Second, occasionally
specifications or assumptions are made that involve the original
metric. For instance, Wiley and Wiley (1970) suggested that
unstandardized error variances may be stable over time. Such models
can be handled with standardization but only very awkwardly. Third,
the unstandardized metric is more valid when comparing parameters
across populations. Fortunately it is generally a simple matter to 
transform the standardized parameters into unstandardized parameters.
The costs of standardization are discussed further in Chapter 13.
Unless otherwise stated the reader should presume that all variables
are standardized. 

Throughout this book a heuristic is used for standardized-
hierarchical-linear models: path analysis. Path analysis was first 
developed by the biologist Sewall Wright (1921) and introduced into
the social sciences by the sociologist Otis Dudley Duncan (1966). The
working tools of path analysis are the path diagram, the first law, and
the tracing rule.

The following set of structural equations can be summarized
pictorially in the path diagram in Figure 3.1:

X3 = aX1 + bX2

X4 = cX1 + dX2 + eX3



3 4 C O R R E L A T I O N  A N D  C A U S A L I T Y Chapter  3 P R I N C I P L E S  O F  M O D E L I N G 3 5

he rules for translating equations into a path diagram are to draw an 
arrow from each cause to effect and between two exogenous variables
draw a curved line with arrowheads at each end. The path diagram
contains all the information of a system of equations, but for

Figure 3.1. Example of a Path Model

many models the diagram is easier to comprehend. Most of us feel a 
little more comfortable examining the picture than the set of 
equations. Because the diagram contains the set of equations, it is 
possible to write the equations from the path diagram alone.

In Figure 3.1 the two variables X1 and X2 are exogenous
variables and may be correlated, which is represented by a curved line 
with arrows at both ends. The correlation between two exogenous
variables has no causal explanation, that is, the model does not specify
what structural relationship brings about the correlation. The
researcher may know of no causal model, or may know of many
alternative causal models, or may feel the causal model is in the 
domain of another discipline.

It is rare, indeed, that theory specifies all the causes of a
variable, although such a case is discussed in Chapter 9. Therefore, 
usually another cause must be added that represents all the unspecified 
causes of the endogenous variable. This residual term is often called 
the disturbance, the term used in this text, or error or stochastic term.
The disturbance represents the effect of causes that are not specified. 
Some of these unknown causes may be potentially specifiable while

others may be essentially unknowable. The disturbance is an 
unmeasured variable and is usually denoted by the letter U, V, or W.
In path analysis the disturbance has a causal coefficient. In 
contemporary models, the coefficient is set to one. The equations for
the model in Figure 3.1 adding disturbance terms are as follows:

X3 = aX1 + bX2 + fU 
X4 = cX1 + dX2 + eX3 + gV

The path diagram for the model is contained in Figure 3.2.
Disturbances can be thought of as exogenous variables and so curved
lines could have been drawn between U and V and from each to both
X1 and X2. It has been assumed, however, that the disturbances are
uncorrelated with each other and with the exogenous variables. 

Figure 3.2. Path model with disturbance

Omitted curved lines imply that the correlation between
exogenous variables is zero. The specification of uncorrelated
disturbances is often made, and as with any specification it should 
be theoretically valid and reasonable. In path analysis, there is a
path times each disturbance. 

Not all the variables of a structural model are measured. For 
instance, the disturbance is not measured. However, even some of the
other variables may not be measured. For instance, the factor analysis
model discussed in Chapter 7 postulates such unmeasured variables.
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32 = b + a 12T H E  F I R S T  L A W

41 = c + d 12 + e 13

42 = d + c 12 + e 23Given a standardized structural model the correlation between 
any two variables can be derived by the following rule, called the first 
law of path analysis:

43 = e + c 13 + d 23

34 = a l4 + b 24 + f U4

Note that there are two expressions for 34 because either X3 or X4 can 
be taken as an endogenous variable. The two equations can be shown
to be algebraically equivalent. The reader might be puzzled about why
f U4 is included in the equation for 34. Although UV = 0, it does not
follow that U4 = 0 but it does follow that 3V = 0. (This can be seen
more clearly once the reader learns the tracing rule.) 

rYZ = pYXirXiZ

where pYXi is the path or causal parameter from variable Xi to Y, pXiZ is 
the correlation between Xi and Z, and the set of Xi variables are all the
causes of the variable Y. The first law can be shown to follow from
covariance algebra. To apply the first law the variable Y must be
endogenous. If both variables are exogenous, the correlation cannot be
broken down and there is no need to apply the first law. To restate the 
first law verbally: To find the correlation between the variables Y and 
Z where Y is endogenous, sum the products of each structural 
parameter for every variable that causes Y with the correlation of each
of these variables with the variable Z. A simple procedure to employ
is to write all the path coefficients of the endogenous variable
including the disturbance. Next to each path write the correlation of
the exogenous variable of that path with the variable Z. Multiply each 
path and correlation and sum the products. For example, the 
correlation between X1 and X3 for the model in Figure 3.2 is

The first law can also be applied to the correlation of a
variable with its disturbance:

3U = a 1U + b 2U + f UU

which reduces to 

3U = f 

and similarly

4U = g
31 = a 11 + b 12 + f 1U

If the disturbance is uncorrelated with the exogenous variables, the 
path from the disturbance to its endogenous variable equals the 
correlation of the disturbance with that variable. This equivalence will
be useful in later sections.

Because 11 equals 1 and because no correlation between U and X1 is
assumed (there is no curved line between the two variables), the 
preceding equation reduces to 

31 = a + b 12 T H E  T R A C I N G  R U L E

Path diagrams and the first law hold for nonhierarchical 
models as well as hierarchical models. But the tracing rule does not

The reader should work through the remaining correlations for the
model in Figure 3.2:
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apply, at least in any simple fashion, to nonhierarchical models. The 
tracing rule is a simple, nonmathematical rule: The correlation
between Xi and Xj equals the sum of the product of all the paths 
obtained from each of the possible tracings between i and j. The set of
tracings includes all the possible routes from Xi to Xj given that (a) the 
same variable is not entered twice and (b) a variable is not entered
through an arrowhead and left through an arrowhead. Again using 
Figure 3.2 one obtains

Substitute the value obtained from the first law for 13

41 = c + d 12 + ea + eb 12

which is identical to the value obtained by the tracing rule. The results 
obtained by the tracing rule can always be reproduced by using the 
results from the first law. In general, the first law should be preferred 
because it ordinarily yields a result that is simpler than the tracing 
rule. Moreover, there is more chance of making an error with the 
tracing rule because one may not be sure if all possible tracings have
been made. The tracing rule is nonetheless useful, particularly with
models with unobserved variables.

31 = a + b 12

There are two possible tracings: first, a direct path from X1 to
X3 and a tracing from X1 to X2 to X3. Note that the correlations
between exogenous variables are treated no differently. A tracing is
not allowable from X1 to X4 to X3 because X4 is entered through an
arrowhead and left through an arrowhead. The solution for the 
correlation of X1 with X3 yields an identical expression for both the 
tracing rule and the first law. They yield identical results only when
all the causes of the endogenous variables are exogenous. The
remaining correlations for Figure 3.2 are

It may be helpful to work through another example. A 
researcher is interested in the causal model for verbal (X4) and 
mathematical achievement (X5). Theory tells her that parental
socioeconomic status (X1), intelligence (X2), and achievement
motivation (X3) cause the two achievement variables. She also
assumes that there are other common causes of the two achievement 
variables. The structural equations are:

 X4 = aX1 + bX2 + cX3 + dU
32 = b + a 12 X5 = eX1 + fX2 + gX3 + hV
41 = c + d 12 + ea + eb 12

42 = d + ae 12 + c 12 + eb with the side conditions
43 = e + ac + ad 12 + bc 12 + bd 
3U = f 1U = 2U = 3U = 1V = 2V = 3V = 0
4V = g UV  0 

The assumption of omitted causes of X4 and X5 is embodied by the
correlation of the disturbances. The path diagram is in Figure 3.3, and
using either the first law or tracing rule the correlations of the 
variables are: 

There seem to be different solutions from the tracing rule and
the first law for correlations involving X4. To show the results are the 
same, though apparently different, examine the solution for 41

obtained from the first law:

41 = c + d 12 + e 13 41 = a + b 12 +c 13
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42 = a 12 + b +c 23

43 = a 13 + b 23 + c 
51 = e + f 12 + g 13

52 = e 12 + f + g 23

53 = e 13 + f 23 + g
4U = d
5V = h
4V = d UV

5U = h UV

Using the first law either Figure 3.3 Model with correlated disturbances

54 = e 14 + f 24 + g 34 + h V4 Using the first law 

33 = a 13 + b 23 + c 3Uor equivalently

45 = a 15 + b 25 + c 35 + d U5 Because it is known that 33 must equal 1, it follows that the preceding
equation equals 1. 

To use the tracing rule to find 33 simply draw another X3 as 
was done in Figure 3.4. Now find all the possible tracings yielding

and the tracing rule 

45 = ae + bf + cg + af 12 + be 12 + ag 13 + ec 13

33 = a2 + b2 + 2ab 12 + c2 [3.3]+ bg 23 +fc 23 + dh UV

A third solution for 33 is to solve for the variance of aX1 + 
bX2 + cU which is known to be one because of standardization. This
would be an expression identical to Equation 3.3, a fact that is later
useful in estimating the path from the disturbance to the endogenous
variable.

As can be seen for 45, the expressions can be complicated, but if the 
simple rules are followed it all becomes routine. 

It should be noted that the laws of path analysis hold for all
correlations in a causal model, including the correlation of a variable 
with itself. Consider, for instance, the following equation:

The reader now knows how to solve for correlations of a 
given standardized, hierarchical, linear model. A major goal of 
structural modeling is not to find such correlations, but rather to find 
the values of the causal parameters. The path coefficients of a given 
model are solved for by a four-stage process: 

X3 = aX1 + bX2 + cU 

where
1U = 2U = 0



4 2 C O R R E L A T I O N  A N D  C A U S A L I T Y Chapter  3 P R I N C I P L E S  O F  M O D E L I N G 4 3

1. Measure as many variables of the model as possible.
2. Compute the correlations between the measured variables.
3. Using the first law or the tracing rule, derive the formulas

for correlations. 
4. Substituting in the correlations computed from data, solve

for the path coefficients.

The first two steps are simple enough for anyone who has gathered
data previously. The reader has just learned how to do the third step,
and with some practice the reader will find that it is simple to do. The
trouble comes with the last step; as is seen in the next section it may
not even be possible to solve for the parameters from the correlations.
In practice, this four-step procedure can be bypassed through the use 
of a structural equation modeling program. Still these programs in 
essence use this four-step procedure.

Figure 3.4 Path diagram with the effect written twice

I D E N T I F I C A T I O N

Determining whether estimation of parameters of the model is 
possible brings one to the issue of identification. Although

identification may seem to be a strange term to use when speaking of
a set of equations, it is the term that econometricians have chosen.
Identification has nothing to do with the number of observations
(there must be at least as many observations as parameters plus two),
but rather with the number of correlations between the measured
variables. A necessary but not sufficient condition to be able to
identify and, therefore, estimate the causal parameters of a set of 
structural equations is that the number of correlations between the
measured variables be greater than or equal to the number of causal
parameters. This necessary condition is called the minimum condition
of identification. Given that the two are equal, it may be possible that
the model is just-identified or saturated; that is, there is one and only
one estimate for each causal parameter. If there are more correlations
than parameters, the structural model is said to be overidentified; that 
is, there is more than one way of estimating a causal parameter in the
system. For instance, the logic of the F test in one-way analysis of 
variance is that there are two estimates of error variance under the null
hypothesis: variability within and between groups. The error variance
is then overidentified. A set of equations is said to be underidentified
if there are more parameters than correlations. If a parameter were not 
identified, an infinite number of values would satisfy the equations.

As was stated earlier, knowing that the correlation of a
variable with itself equals unity yields a solution for the path 
coefficient of the disturbance if the values of the other parameters are 
known. For instance, in Equation 3.3 the path coefficient for the
disturbance equals

   c2 = 1 – a2 – b2 – 2ab 12  [3.4]

Given that the metric of the disturbance is arbitrary, by convention
one takes the positive square root of Equation 3.4. Parameter c is a
constrained parameter; that is, its value is determined by the other 
parameters of the model. The implication of this for the identification
issue is that one need not worry about the identification of the paths
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from the disturbances to endogenous variables, but one need
consider only the identification of the other parameters of the 
model. When the disturbance is uncorrelated with the exogenous
variables and given that 

Y = pYXiXi + pYUU

the solution for path from U to Y is 

YU = (l – pYi iY)1/2

Procedurally, how does one assess the status of identification?
First one determines the number of correlations between the observed
or measured variables. If n variables are measured, the number of
correlations is n(n – 1)/2. Then count the number of parameters
making sure to include (a) all the path coefficients, (b) all correlations
between exogenous variables, (c) all correlations between
disturbances but not to include the path coefficients of the
disturbances. For instance, for the model in Figure 3.3, if X1 through
X5 are measured, there are 10 correlations (5 x 4/2 = 10) and 10 causal
parameters: six path coefficients, a, b, c, g, e, and f; three correlations
between exogenous variables, 12, 13, and 23; and one correlation 
between disturbances, UV. The model may be just-identified (it is, in 
fact). I say “may” because one parameter might be overidentified and 
all the remaining parameters might be underidentified. Remember that
having the number of correlations equal to the number of parameters
is only a minimum condition for identification.

The model in Figure 3.3 would be underidentified if X3 were 
not measured because there still are ten parameters but only six 
correlations. The model would be overidentified if it were assumed
that the disturbances were uncorrelated because there would be nine 
parameters and ten correlations.

If a model is overidentified, there are two estimates of a causal
parameter or some function of causal parameters; that is, one can express

a causal parameter as two or more different functions of the correlations.
If the functions of correlations are set equal to each other, there is an
equation that says two sets of correlations equal each other. The resultant
equality is called an overidentifying restriction on the model. Often a
subset of overidentifying restrictions implies one or more of the other
overidentifying restrictions. The smallest set of restrictions that implies
the remaining ones yields the number of independent restrictions on the 
model. The number of this smallest set is referred to as the degrees of
freedom of the model. If a model is truly overidentified, the number of 
free parameters plus the number of independent overidentifying
restrictions is equal to the number of correlations. Overidentifying
restrictions can be viewed as a constraint on the structure of a correlation
matrix. Thus, the number of free correlations is effectively reduced by 
the number of overidentifying restrictions. One must then subtract the 
number of independent restrictions from the number of correlations to 
determine if the minimum condition is met. These restrictions play an
important role in structural modeling because they can be used to test the
validity of the model.

Any overidentifying restriction can be stated as a null 
hypothesis and then tested. Rarely does an overidentifying restriction
exactly hold in the sample, but if the model is valid it should hold
within the limits of sampling error. Overidentifying restrictions also
increase the efficiency of parameter estimation (Goldberger, 1973). If
there are two estimates of the same parameter, those estimates can be
pooled to obtain a new estimate whose variance is less than or equal to 
the variance of either original parameter estimate.  One of the key
themes of this book is the importance of these over-identifying
restrictions.

A  J U S T - I D E N T I F I E D  M O D E L

Before proceeding any further with the concept of
identification, consider an example. The equation for the path diagram
in Figure 3.5 is
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1 – 12
2

X3 = aX1 +bX2 + cU
And by analogy, the solution for b is The correlations are 

 – 23 12 13 b = [3.9]31 = a + b 12 [3.5]
1 – 12

2

32 = b + a 12 [3.6]

As was seen in Equation 3.4, c2 = 1 – a2 – b2 – 2ab 12. By knowing
the model was just-identified one knows, at least, that it may be
possible to find solutions for a, b, and c.  The reader may have noticed 
something interesting about Equations 3.8 and 3.9. The solution for
parameter a is simply the beta weight or standardized regression
coefficient of X3 on X1 controlling for X2, whereas b is the beta weight
of X3 on X2 controlling for X1. Compare Equations 3.8 and 3.9 with the
formulas on page 192 in McNemar (1969). The reader may breathe a 
sigh of relief because one will not need to solve a different set of 
simultaneous equations for every causal model. As shall be seen,
regression coefficients, partial correlations, factor loadings, and 
canonical coefficients estimate causal parameters of different models.
After progressing through the book, the reader should be able to tell
what statistical technique estimates the parameters for a given path
model, which should give the reader more insight to the causal
interpretation of these statistical techniques. 

Figure 3.5 A just-identified model

Adding 12 there are three correlations (3 x 2/2) and three
parameters, a, b, and 12, and the model is possibly just-identified or
saturated. Solutions for a and b exist because there are two linear 
equations with two unknowns.  Multiplying 12 times Equation 3.6
yields

A N  O V E R I D E N T I F I E D  M O D E L

23 12 = b 12 + a 12
2   [3.7]

For the model in Figure 3.6 variables X1 through X4 are
measured while the disturbances and F are unmeasured. The
disturbances of X1 are correlated with X2 and those of X3 with X4. (As 
an exercise write out the structural equations for the model in Figure
3.6.) There are six correlations (4 x 3/2) and six free parameters: four
path coefficients, a, b, c, and d; and two correlations between

Subtracting Equation 3.7 from Equation 3.5 yields

13 – 12 23 = a – a 12
2

We now solve for parameter a yielding

13 – 12 23a = [3.8]
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because both 13 24 and 14 23 equal abcd. Recall that an 
overidentifying restriction is a constraint on the correlation
(covariance) matrix of the measured variables. The overidentifying
restriction, even if true, should only perfectly hold in the population.
Given the overidentifying restriction plus the six parameters there is 
not enough information to estimate the parameters of the model,
because the overidentifying restriction reduces the number of free 
correlations to five, which is less than the number of free parameters.
Even though none of the parameters of the model are estimated, the 
model can still be tested by taking the overidentifying restriction as a 
null hypothesis. Such is also the case for cross-lagged panel
correlation, which is discussed in Chapter 12. 

U N D E R I D E N T I F I C A T I O N
Figure 3.6 Model with an overidentifying restriction

Should one give up if the model is underidentified? As has 
been already stated, even though as a whole the model may be
underidentified (a) various parameters of the model may still be just-
identified, (b) some parameter may even be overidentified, or (c) as in
Figure 3.6 no parameters are identified, but there may be an 
overidentifying restriction on the model. But, alas, in many cases none
of the preceding three conditions hold. To achieve identification or
even overidentification various strategies can be employed. One 
strategy is to measure more variables. This is useful when an 
exogenous variable is correlated with the disturbance or when an 
exogenous variable is measured with error. Unfortunately, adding
more variables and more equations can at times only make matters 
worse. Another strategy to bring about identification is to reduce the 
number of parameters. There are three common means to do this. 
First, one can assume that certain parameters are zero. As has been 
seen and as shall continue to be seen, one often assumes that the 
disturbance is uncorrelated with the exogenous variables. One may
assume that certain paths are zero as in Chapter 5 with the method that
econometricians call "instrumental variable" estimation. The second

disturbances, i and j. The model is possibly just-identified. The 
correlations obtained by the tracing rule are 

12 = ab + eif 
13 = ac
14 = ad 
23 = bc
24 = bd 
34 = cd + ghj 

Try as you can, you will never be able to express the parameters in 
terms of the correlations. Even though there are six correlations and
six free parameters satisfying the minimum condition of
identifiability, none of the parameters are identified. This is due to the 
overidentifying restriction of 

13 24 = 14 23
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method to reduce the number of parameters is to set two of them equal
to each other, thereby decreasing the number of free parameters by 
one. For instance path coefficients are set equal as in the case of cross-
lagged panel correlation in Chapter 12, or in the case of disturbances
set equal across equations, or correlations between disturbances are 
set equal for the multitrait-multimethod matrix in Chapter 8. The third
and last strategy is to make a proportionality constraint.

Given four parameters, a through d, one might assume a/b = 
c/d. Thus only three parameters are free because if three are known
the fourth can be solved for. For instance, if a, b, and c are known, d
equals bc/a. There are other procedures available for reducing the
number of parameters but the three preceding are most common.

All these strategies are viable only if they can be justified by
substantive theory. Making new specifications just to be able to
identify the parameters of a causal model is perhaps the worst sin of
causal modelers. Obviously, identification is necessary for causal
modeling, but one must not sloppily add constraints just to achieve
identification.

Duncan (1976) has suggested yet another approach to under
identification. He suggests fixing one parameter, or as many as 
needed, to a reasonable value and solving for the remaining
parameters. Then by changing the original parameter again, another
set of parameter estimates are obtained. This is done repeatedly, until
a range of possible values are obtained. Often it will happen that the
obtained range of values is, under this procedure, rather limited.
Occasionally, there are no reasonable solutions; for instance, a
correlation between disturbances is larger than one or a parameter's
solution is imaginary (the square root of a negative value). The lack of
a reasonable solution would indicate some sort of specification error. 

E M P I R I C A L  U N D E R I D E N T I F I C A T I O N

Even though a system of equations may be identified in 
principle, in practice there may be no solution for a parameter. It may

happen that when the correlations or covariances are substituted into
the expression that should estimate the parameter, the denominator of 
that expression is zero or very near zero. Because division by zero is
algebraically undefined, there is no solution. The case in which the 
denominator of an expression that estimates a parameter is equal or 
nearly equal to zero, is called in this text empirical
underidentification. As is seen in the next chapter multicollinearity is
an example of empirical underidentification.

After one has determined that a set of equations is identified
in principle and obtained estimates of each parameter, one should 
carefully examine the denominator of each estimate and note the
condition under which it equals zero; this condition defines empirical
under identification.

Although the estimate is defined when the denominator is 
nonzero, if the denominator is very close to zero the estimate is
practically useless because its standard error may be huge. Empirical
underidentification is defined by zero or near-zero denominators in
the estimates of structural parameters. There is the problem of how to 
define "near zero." When working from a correlation matrix with 
denominators less than .1, the estimates are often so unstable as to be
worthless. Empirical underidentification results in very unstable
parameter estimates and very large standard errors. For some models
with empirical underidentification, the computer program never 
arrives at a satisfactory solution (i.e., fails to converge).  Kenny,
Kashy, and Bolger (2000) compare empirical underidentification to a
black hole, which is defined in Einstein's relativity theory by an 
equation with a denominator of zero. 

A  S I N G L E  U N M E A S U R E D  V A R I A B L E

One need not measure all the variables in a model besides 
disturbances to achieve identification. Consider the following model

X1 = aF + eU1
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X2 = bF + fU2 S T A T I S T I C A L  E S T I M A T I O N ,  I N F E R E N C E  A N D  T E S T I N G
X3 = cF + gU3

The discussion has been mainly restricted to the population by
assuming that the population values of correlation coefficients are 
known. Rarely if ever are these correlations known and in practice the 
researcher must use sample estimates. Given only sample data, statistical 
methods must be used to estimate parameters. Ideally, the estimates
should be sufficient, unbiased, consistent, and efficient. [See Hays
(1963) for definitions.] Fortunately, most multivariate statistical methods
can be adapted to estimation of the parameters of structural models.

with the following side conditions

UjF = 0 (j = 1,2,3)
UiUj = 0 (i  j)

(As an exercise draw a path diagram for the preceding set of 
equations.) The model is just-identified with X1, X2, and X3 measured
and F being unmeasured. There are three correlations and three free
parameters, a, b, and c. The correlations are 

   If the equations are simple enough or the researcher ingenious
enough, it may be possible to solve for the structural parameters from the 
set of equations that are obtained from the tracing rule or the first law.
Such a solution is commonly called a path analytic solution. Often one 
can just substitute the sample estimates of correlations into the path
analytic solution values. This ordinarily gives good estimates if the
model is just-identified. However, if the parameter is overidentified there
will be multiple path analytic solutions. For such cases traditional
statistical methods are to be preferred. 

12 = ab 
13 = ac
23 = bc

The parameters are then 

12 13 Statistical methods are also needed to find standard errors of
parameter estimates, and to test whether a given parameter is zero or
whether two parameters are equal. Statistical methods are, in addition, 
used in testing overidentifying restrictions. To make these significance 
tests, ordinarily additional specifications must be made which usually
concern the distribution of a variable or the disturbance.

 a2 =
23

12 23
b2 =

13

13 23    c2 = The fit of the model can be determined. In essence, the 
discrepancy between the observed covariances and the model
predicted covariances are compared. In this way, the overall fit of the 
model can be determined.

12

This is a single-factor model where a, b, and c are factor loadings (cf.
Duncan, 1972; Harmon, 1967). This model is more extensively
discussed in Chapter 7. 

R E D U C E D  F O R M

With some models it is simpler not to deal with the parameters
themselves but to work with the reduced form coefficients. To solve
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X3 = aX1 +bX2for the reduced form coefficients the structural equations are 
expressed solely in terms of the exogenous variables. As an example,
given the following set of equations

its variance is defined as 

V(X3) = a2V(X1) + b2V(X2) + 2abC(X1,X2) [3.12]
X2 = aX1 + bU    [3.10]
X3 = cX1 + dX2 + eV    [3.11] using the variance definition and sum rule of the previous chapter.

Examining Equation 3.12 note that there are three ways to affect 
variance of the endogenous variable X3:within Equation 3.11 one can substitute for X2 what it equals in 

Equation 3.10 or 
1. Change the causal parameters a and b.
2. Change the variance of the exogenous variables.X3 = cX1 +d(aX1 +bU) + eV 
3. Change the covariance between casual variables. X3 = (c + da)X1 + dbU + eV 

The reduced form coefficient for X1 is not a single path
coefficient but a function of coefficients (c + da). At times it is
easier to solve for the reduced form coefficients and then solve for
the path coefficients. Furthermore, as is seen in the next chapter,
reduced form is useful for solving for indirect paths from one 
variable to an endogenous variable (Alwin & Hauser, 1975; Baron 
& Kenny, 1985; Finney, 1972), i.e., mediation.

Mathematically, one is not free to alter these parameters in any
way because a number of side conditions must be met. For instance, the 
absolute value of any correlation must be less than or equal to one, as
must the absolute values of the partial correlations of 12.3, 13.2, and 

23.1.
   If the variance of X1 is altered, the covariance between X1

and X2 may as well be affected. If it is assumed that the change in 
variance equally affects the component correlated with X2 and the 
component uncorrelated, then the altered covariance is equal to the
original covariance times the square root of the factor by which the
variance was changed.

T I N K E R I N G  W I T H  E Q U A T I O N S

Sometimes for social-policy considerations the researcher
wants to know the effect of altering structural equations. For instance,
this was a central concern of Jencks et al. (1972) in the Inequality
volume. They continually ask questions such as, "If the father's
occupational status no longer affected the amount of the child's
education, by how much would the variance of child's education be 
reduced?" or "Would reducing inequality in one domain significantly
reduce in equality in another domain?" For a structural equation many 
parameters affect the variance of the endogenous variable. Given the
unstandardized structural equation of 

If there is a set of structural equations, special care must be 
taken when a variable is altered that is an effect in one equation and is 
a cause in another equation. If its variance is changed one must
specify exactly how the structural equation of the endogenous variable
is altered. Different changes in its equation, even if the resultant
variances are the same, have different consequences for the variances
of the other endogenous variables.

Finally, one should not assume that, by reducing the variance 
of an exogenous variable, one automatically decreases the variance of 
the endogenous variable. Though rather uncommon, it is possible for 
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the variance to increase. Similarly an increase in the variance of an 
exogenous variable may result in a decrease in the variance of the 
endogenous variable.

C O N C L U S I O N

A great amount of material has been covered. The reader 
should know how to express correlations or covariances in terms of 
causal parameters and how to draw a path diagram from a set of 
equations and vice versa. The reader should also know what is meant 
by the following terms: endogenous and exogenous variable, 
standardized-hierarchical-linear structural model, specification, 
identification, specification error, overidentifying restriction, and 
reduced-form coefficients. The remainder of the book is the 
application of these concepts to different structural models. The steps 
of structural modeling are: 

1.   From theory elaborate a model. 
2.   Choose a measurement and design model and respecify the 

structural model to conform to design and measurement 
specifications.

3.   Determine the status of identification of the model. 
4. If identified, determine the correlations (covariances) 

between the measured variables and from the correlations 
(covariances) estimate the parameters of the model and test 
the fit of the model.     

In the next chapter it is shown that multiple regression can be 
used to estimate the causal parameters for certain models when 
measured variables cause measured variables. 
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4
Given errors of prediction,

G = b1F + b2I + E       [4.1]

M O D E L S  W I T H  
O B S E R V E D  V A R I A B L E S  

A S  C A U S E S

where E is lack of fit, or residual term. All variables but E are
standardized. At issue in predicting G is the choice of the coefficients
b1 and b2, or, as they are commonly called, regression coefficients. The
coefficients are chosen to maximize the correlation of the quantity b1F
+ b2I with G. It can be shown that maximizing this correlation is the 
same as minimizing the sum of squared residuals. Minimizing sums of
squares is accomplished by the method of least squares, from which it 
follows that the correlation of any predictor variable with the residual 
term must be zero. Using the first law to correlate each of the 
predictors with grades, the resulting equations are: 

To many readers multiple regression is synonymous with path 
analysis. Although it is true that most empirical applications of path 
analysis use multiple regression analysis to estimate causal parameters,
many models require the use of more sophisticated techniques to 
estimate their parameters. This chapter elaborates the assumptions, or
specifications, that must be made to interpret ordinary multiple
regression coefficients as path coefficients. More complicated
techniques are discussed in later chapters. The chapter is divided into
three sections. The first section briefly explains the elements of
multiple regression analysis. The second section details how regression
coefficients can be interpreted as causal parameters. The third section 
considers a number of technical issues. 

rGF = b1 + b2rFI

and
rGI = b1rFI + b2

Since there are two linear equations in two unknowns, the unknowns b1

and b2 can be solved for: 

rGF  rFIrGIb1 = ————— [4.2]
 1 rFI

2
M U L T I P L E  R E G R E S S I O N

rGI  rFIrGFb2 = ————— [4.3]
Regression analysis begins with a set of predictor variables, 

say father's occupation (F) and intelligence (I), and a criterion, say 
school grades (G). What the researcher is interested in is the "best"
linear combination of the predictor variables that predicts the criterion.
For the grade example such a linear prediction equation is 

 1 rFI
2

(Compare with Equations 3.8 and 3.9 of the previous chapter.) Note
that each regression coefficient is simply a function of both the 
correlations among the predictor variables and the correlations of the
predictors with the criterion. As the number of predictor variables 
increases, the equations can be solved in the same way, although not 
surprisingly the regression coefficients are equal to a more complicated

b1F + b2I
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function of the correlations. Fortunately, virtually every statistical 
package can estimated regression equations. 

Kerchoff (1974, p. 46) reports the correlations between a
number of variables for 767 twelfth-grade males. In Table 4.1 some of
these correlations are reproduced. Of particular interest now are the 
correlations between F, I, and G:

rFI = .250 
rGF = .248 
rGI = .572 

Table 4.1.  Correlations Taken from Kerchoffa,b

Solving for b1 and b2 by Equations 4.2 and 4.3, respectively, yields

    .248  ( 250)( 572)b1 =  ———————— = .112 
  1  .2502

    .572  (.250)(.248)
b2 =  ———————— = .544 

  1  .2502

The interpretation of the regression weights in the standardized 
case or, as they are more commonly called, beta weights, is 
straightforward. If someone is one standard deviation above the mean
in father's occupation and at the mean in intelligence, he is on the 

average .112 of a standard deviation above the mean in school grades.
Similarly, someone at the mean in father's occupation and one standard
deviation above in intelligence is .544 of a standard deviation above 
the mean in school grades.

Often a researcher is interested in how well the regression
equation predicts the criterion. One measure is to obtain the variance of 
the predicted scores. The variance of the predicted score is defined as

     = C(b1F+b2I,b1F+b2I)
     = C(b1F+b2I,G E)

Because C(F,E) = C(I,E) = 0 given least squares, it follows that 

 = b1
2 + b2

2 + 2b1b2rFI      [4.4]

which holds for the standardized case. Another measure of fit is the 
multiple correlation which is the correlation of the predicted score of 
G, or b1F + b2I, with G. The multiple correlation, or RG(FI)

2 can be
shown to equal

 b1rFG + b2rIG

because C(G,b1F+b2I) = b1rGF + b2rGI, V(G) = 1, and V(b1F+b2I) equals
Equation 4.4. Note that the variance of the predicted scores, Equation 
4.4, is simply the multiple correlation squared. Solving for the multiple
correlation of our example yields

 [(.112)(.248) + (.544)(.572)]1/2 = .582 

The variance of the residuals is simply 1 R2 because G is standardized
and the predicted G is uncorrelated with the residuals. 

In general, the multiple correlation is the square root of the
sum of the products of each regression coefficient and the 
corresponding correlation of the predictor with the criterion. The 
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   [(R2
2 Rl

2)(N k – 1)]1/2variance of the errors is simply one minus the multiple correlation 
squared.     t(N k 1) =  ——————————   [4.5]

     (1 R2
2)1/2

Very often researchers are interested in more than predicting
the criterion: They want the "best" statistical estimates of the betas and 
they want to test hypotheses about the regression equation. For 
estimates of the betas to be unbiased, consistent, and efficient, the 
following must be assumed:

where N is the total number of sampling units, k is the number of 
predictors in the full equation, and t is Student's t distribution. The 
number of degrees of freedom is N  k  1. To test whether there is an 
effect of father's occupation, first omit it from the equation and R1 is 
simply the correlation of I with G, or .572. Since N = 767, there are 
764 degrees of freedom and earlier R2 was found to be .582.
Substituting these values into Equation 4.5 one obtains

1. Independence: Each observation should be sampled
independently from a population. Independence means that 
the errors, the Es, are statistically independent; that is, the
covariances of errors are zero. The sampling unit should be
the same as the unit in the analysis; otherwise this 
assumption will be violated. Independence is also violated
if the data are repeated measurements on a single unit since
scores tend to be proximally autocorrelated, that is, data 
closer together in time and space are more highly correlated
than data further apart. 

      [(.5822  .5722)764]1/2

t(764) = ————————— = 3.65
     (1  .5822)1/2

which is statistically significant at the .05 level. Similarly, the test that
the effect of intelligence is nil is

2. Homoscedasticity: The variance of the errors should not be
a function of any of the predictor variables. If the residuals 
are heteroscedastic, occasionally the dependent variable can 
be transformed to preserve homoscedasticity.

      [(.5822  .2482)764]1/2

t(764) = ————————— = 17.90 
     (1  .5822)1/2

which is also statistically significant. 
To test hypotheses concerning the regression equation, the 

assumption must be added that the errors are normally distributed. 
These assumptions of independence, homoscedasticity, and normality 
can be empirically tested (Bock, 1975). While violations of the 
assumptions of homoscedasticity and normality do not seriously distort
the level of statistical significance, violation of the independence
assumption does. 

If two or more predictors are removed from the regression
equation, a similar procedure is followed. Compute R1 omitting the 
variables that one wishes to exclude and R2 for the full equation. It can
then be shown that under the null hypothesis of zero coefficients, the
following is distributed as 

[(R 2 R 2)(N k – 1)]2 lF(m,N k 1) =  —————————      [4.6]To test whether a given beta weight is not zero, compute the 
multiple correlation without the variable (R1) and with the variable (R2)
in the equation. Then under the null hypothesis that the coefficient is 
zero the following is distributed as 

m(1 R2
2)

where m equals the number of excluded variables and F is Fisher's F
distribution. The F of Equation 4.6 has m degrees of freedom in the
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numerator and N k  1 in the denominator. To test the effect of 
removing both father's occupation and intelligence, the R1 value is zero 
since there are no predictor variables. Substituting into Equation 4.6 
one obtains 

C A U S A L  I N T E R P R E T A T I O N  O F  R E G R E S S I O N
C O E F F I C I E N T S

Researchers are often interested not only in predicting grades 
but also in explaining what causes grades. Is it permissible to interpret
the regression coefficients obtained from the regression analysis as
causal parameters? The answer is, as it is in the case of most important
questions, it depends. Regression coefficients can be interpreted as
causal coefficients if certain assumptions are met. These assumptions
are the same as those of multiple regression: In this case the 
justification is not to maximize prediction or to perform significance
tests, but because the assumptions are specified by theory. The
assumption of independence can usually be assured by the sampling
design of the research. Homoscedasticity and normality of errors are
usually not discussed in most social science theories (although they are 
in some biological theories), but as stated earlier, these are robust
assumptions which may only be "approximately" met. Often a 
transformation of the measure into a more meaningful metric will aid 
in meeting these two assumptions.

      [(.5822  .0002)(764)]F(2,764) = ——————————  = 195.67 
2(1  .5822)

which is statistically significant. Testing whether all the beta weights 
are zero is identical to testing whether the multiple correlation is zero. 

A beta weight with only one predictor is identical to a 
correlation coefficient. A beta weight with two or more predictors is 
not a correlation and can even be larger than one. For instance,

X3 = .75X1 + 1.25X2

where r12 = .6 is a perfectly valid regression equation. (As an exercise
show r12 = 0 and r23 = .8.) Although beta weights larger than one are
not impossible, they are empirically improbable. One should be
suspicious when one obtains weights larger than one. As a result of least squares, the residuals are uncorrelated with

the predictor variables. In structural modeling, this result requires that 
the disturbance be uncorrelated with the causes of the endogenous 
variables. As shall be seen, the assumption of uncorrelated errors
implies that: 

Beta weights or path coefficients can be easily restated in an 
unstandardized metric. For instance, given

X3   = aX1  + bX2  + cU

where the prime notation expresses standardization, one can re-express
a and b in an unstandardized metric: The unstandardized coefficient of 
X1 is a[V(X3)/V(X1)]1/2, and of X2, b[V(X3)/V(X2)]1/2. Thus, to 
destandardize a coefficient, multiply it by the standard deviation of the 
effect variable and divide it by the standard deviation of the causal 
variable. To standardize an unstandardized coefficient, reverse the
operation: Multiply it by the standard deviation of the causal variable
and divide it by the standard deviation of the endogenous variable. 

1. The endogenous variable must not cause any of the 
variables that cause it; that is, there is no reverse causation. 

2. The causal variables must be measured without error and 
with perfect validity.

3. None of the unmeasured causes must cause any of the 
causal variables; that is, there are no common causes, or
third variables.
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Obviously, lack of reverse causation, perfect measurement,
and lack of common causes are rather stringent assumptions. Reverse
causation can be ruled out by theory or logic; or example, variables 
measured at one point in time do not cause variables measured earlier 
in time. If reverse causation cannot be ruled out, however, a 
nonhierarchical model must be specified the parameters of which
cannot be estimated by an ordinary regression analysis (see Chapter 6).
Perfect measurement is assured for some variables such as race and 
sex, close approximations exist for some variables such as intelligence,
but most motivational, attitudinal, and behavioral measures are not 
close to being measured perfectly. The common cause problem can be
solved by measuring the third variables (although these variables must
be perfectly measured), but it is still logically impossible to 
demonstrate that all third variables have been excluded if the multiple
correlation is less than one. The next chapter presents partial solutions 
to the problems of unreliability and unmeasured third variables. 

A final assumption for the application of regression analysis to 
structural models when the variables are measured cross-sectionally is
that a state of equilibrium has been reached. Thus if X1 is assumed to
cause X2 with a lag of k units, and if X1 and X2 are contemporaneously
measured at time t, equilibrium exists if X1 = X2; that is, X1 did not 
change between times t k and t.

The path coefficients are, then, estimated by the beta weights,
and the causal coefficient for the disturbance of the endogenous 
variable simply equals (l R2)1/2, where R2 is the squared multiple
correlation of the regression equation. In some treatments of path
analysis, the disturbance has no path coefficient. For this case the
variance of the disturbance is set at 1 R2, Here the variance of the 
disturbance is fixed at one and its path coefficient is estimated, thereby
making all of the variables of the model standardized. Actually, (1
R2)1/2 is a biased estimate of the disturbance path since R2 is also
biased. A less biased estimate of the multiple correlation is R2(N – k
l)/(N  1). One could then use this corrected R2 to estimate the 
disturbance path. For ease of computation here the uncorrected

estimate is used. However, if sample size is small, the corrected R2

should be used.

Figure 4.1  Example of a structural model taken from Kerchoff.

To illustrate the use of multiple regression to estimate causal
parameters, return to the three variables. A simple model is

I = aF + bU [4.7]
G = cF + dI + eV [4.8]

That is, father's occupation (F) causes intelligence (I), and father's
occupation and intelligence both cause school grades (G). It is
assumed UF = VF = VI = 0; that is, the disturbances are uncorrelated
with the causal variables, which in turn implies UV = 0. (As an 
exercise, prove why UV = 0.) The path diagram for Equations 4.7 and
4.8 is in Figure 4.1.

The path from F to I can be estimated by the regression of I on
F because the disturbance of I is uncorrelated with F. The univariate
beta weight is simply the correlation coefficient. To see this, solve for 
rFI, by either the first law or the tracing rule, to obtain a, the path from
I to F. Parameter a then is estimated by .250. To test whether such a 
value could be explained by sampling error, use Equation 4.5
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       [.2502765]1/2
The distinction between direct and indirect causes is an 

important one in social science. When a causal link has been
demonstrated either experimentally or nonexperimentally, usually
some inquiring person will investigate the variables that mediate that 
causal linkage; that is, an attempt will be made to show that X causes Y
through Z and that once Z has been controlled, the relationship between 
X and Y vanishes. There are usually a host of mediating variables, and 
through such a process variables in social science become refined and 
theory expands. One could argue that all causal linkages are indirect, or 
mediated, thereby making a true direct link an impossibility. A causal 
linkage, therefore, is said to be direct only with respect to other
variables specified in the system under consideration. Certain classes 
of variables are not entered into structural equations generally because
they are not topics of study in that field. For instance, it is likely that 
physiological variables mediate the psychological, and physical laws
mediate certain chemical laws. Researchers do not strive to find
absolute linkages, but rather look for linkages relative to their interests
and discipline.

t(765) =  —————— = 7.14
 (.9375)1/2

Figure 4.1 Example of a structural model taken from Kerchoff. (Note 
R1 = 0 because no variables remain in the equation.) The path for the 
disturbance equals (l R2)1/2 where R is the multiple correlation. Since 
there is only one predictor, and R = .250, b = (1  .2502)2 = .968. To 
solve for c and d, regress G on F and I which was done earlier in this 
chapter. Thus, the estimate of c equals .112 and of d equals .544. Also
computed was the multiple correlation for that equation and obtained
was the value of .582. The estimate of e is then (1  .5822)1/2 = .813.
Earlier these beta weights were shown to be statistically significant. 

It is just that simple. If the disturbances are uncorrelated with causal
variables, then beta weights estimate path coefficients and (1 R2)1/2

estimates the path from the disturbance to the endogenous variable. Tests of 
hypotheses about the path coefficients can be obtained from ordinary least 
squares (standard multiple regression analysis) .

Note that in applying regression analysis to estimate structural 
parameters, one estimates a single regression equation. The use of stepwise
regression has no place in structural modeling. With stepwise regression one 
ordinarily does not know which variables are important but in structural 
modeling, theory has already specified the important variables. 

Returning to Figure 4.1, I is related to G in two ways: by a 
direct causal linkage and by a spurious linkage through F since F
causes I and G. A spurious relationship means that the association
between two variables is a result of both being caused by a third
variable. Although all indirect causes need not be entered into the
structural equation, spurious variables must be. For instance, since the
linkage of I and G through F in Figure 4.1 does not reflect the causal
effect of I on G, the variable F must be measured and controlled. Care
must be taken to specify from theory these spurious causes. 

C A U S A L  L I N K A G E S

For the model in Figure 4.1, F causes G both directly and
indirectly. This can be seen by examining rGF using the tracing rule:

Although it makes no substantive sense in this example to say
that I causes F, even if it were so, the path coefficients of the effect of I
and F on G (c and d) would not change. Similarly, if no model for the 
relationship between the exogenous variables is posited and a curved
line is drawn between them, the estimates of c and d again remain the 
same. This result follows from the earlier rule that multiple regression
correctly estimates structural coefficients if the disturbances are

rGF = c + ad

There is a direct linkage, path c, and an indirect linkage, F causes I,
and, in turn, I causes G. The variable I mediates a link or intervenes
between F and G. The mathematics of indirect paths are discussed later
in this chapter. 
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uncorrelated with the specified causes. Nothing need be said about the 
causal relationships among the causal variables. Even if the structural
model among the causal variables contains specification error, 
estimates of the paths to the endogenous variables will not be affected 
by this error. 

P A R T I A L  C O R R E L A T I O N

Consider a different causal model for our three variables: 
Figure 4.2  Correlated disturbances.

I = aF + bU
Because a, b, c, and d are known, one can solve for e from Equation 
4.9:

G = cF + dV

rIG acwhere e = rUV  0 and rUF = rVF = 0. As with the model in Figure 4.1,
this model assumes F causes I and G. But in this case the disturbances
U and V are correlated because various common causes have been
omitted. Because there are three free parameters, a, c, and e, and three
correlations, the parameters may be just-identified or saturated. From 
the path diagram in Figure 4.2, the three correlations obtained by the 
tracing rule are: 

 =  ————
bd

rIG rFIrFG =  ——————————       [4.10]
[(1 rFI)2 (1 rFG)2]1/2

Solving through obtains .544 as an estimate of e. Some readers may
recognize Equation 4.10 as the partial correlation of I and G with F
partialled out, or as it is symbolized rIG.F. A partial correlation can be 
tested against the null hypothesis that it equals zero by the following
formula:

   rFI = a
   rFG = c

rIG = ac + bde      [4.9]

Path coefficients a and c are directly estimated by the correlations. 
Parameters b and d can be solved from the multiple correlations

rp(N k – 2)]1/2

t(N k 2) =  ———————  [4.11]
  (1 rp

2)1/2

b = (l—rFI
2)1/2 = .968 

where rp is the partial correlation and k is the number of variables 
partialled. (The preceding formula is no different from the standard test 
of a correlation.) Testing the estimate of e yields a t(764) = 17.92. If
one goes back to compare the test of significance with the test of d in 
Figure 4.1, one notes that both yield identical values within rounding
error. This is no accident since they are equivalent. Blalock (1964) had 

 d = (l rFG
2)1/2 = .969 
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where UF = FV = UV = 0. The correlations can be obtained by
applying the tracing rule to the path diagram in Figure 4.3. They are 

originally suggested using partial correlations to test assumptions about
path coefficients. A better approach is to use multiple regression which 
besides providing significance tests also estimates the structural
coefficients. Although partial correlations and regression coefficients
may be related, the choice of which to compute depends on the 
substantive meaning the researcher wishes to attach to a coefficient. A
partial correlation is the correlation between the unspecified causes of 
two endogenous variables, while a regression coefficient is the path
from a causal variable to an endogenous variable. 

  rFI = a
  rFG = c
  rGI = ac + bd

The solution for both a and c is directly given again. The estimate b is
(1 rFI

2)1/2, or .968. From the correlation between G and I one can 
solve for d:At present, for the correlation between disturbances to be

identified, it must be assumed that neither endogenous variable causes 
the other. For instance, a path drawn from I to G in Figure 4.2 would
create an underidentified model since there are four free parameters
auld only three correlations. Thus, to estimate the correlation between
disturbances, the assumption must be made that neither endogenous
variable causes the other, that is, neither variable appears in the
equation of the other. 

r acGId =  ————
b

r r rGI FI FG   = ——————
        [(1 rFI)2]1/2

which is the semipartial correlation, or part correlation, between G and 
I controlling for F, or as it is symbolized rG(I.F). A test of the
semipartial is given byMany texts give the formula for higher-order partials and 

computer programs will compute them. If you are caught without a
computer, remember that the partial is the correlation between
residuals from two regression equations using the same predictor 
variables. One need only compute the covariance between residuals
and their variances. The actual residuals need not be computed, but 
only their theoretical variances and covariance must be. 

r (N m – 1)]1/2
st(N m 1) =  ———————       [4.12]

      (1 R2)1/2

where rs is the semipartial, m is the number of causes of the variable 
that is caused by the disturbance (e.g., G in Figure 4.3), and R2 is the
multiple correlation of that variable. This R2 can be simply computed
by first computing R2 with the causal disturbance omitted and then 
adding to it the squared semipartial. For instance, for Figure 4.3 d is 
estimated by the value of .527, R2 is then .2482 + .5272 = .339, and the 
test of statistical significance is

S E M I P A R T I A L  C O R R E L A T I O N

There is yet another model for the three variables. For this 
model the disturbance is a cause of two endogenous variables:

.527(764)1/2
I = aF + bU t(764) =  ——————

 (1  .339)1/2
G = cF + dU + eV 

Again this is the same as was obtained for the test of significance of d
in Figure 4.1 and of e in Figure 4.2. However, the interpretation is 
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different. The semipartial is the effect of a disturbance of one
endogenous variable on another endogenous variable. At present, to
identify this path it must be assumed that neither of the endogenous
variables causes the other. Note that the semipartial is a nonsymmetric
measure of association. Ordinarily r1(2.3) will not equal r2(l.3). The
semipartial is useful in the computation of regression coefficients in
stepwise regression. We should not confuse this usefulness with its 
causal interpretation. The semipartial has not and probably should not
have much role in structural analysis.

Figure 4.3 Path from a disturbance to two endogenous variables.

E X A M P L E

It has been shown that beta coefficients estimate path
coefficients if the unspecified causes are uncorrelated with the causal
variables, that partial correlations estimate the correlation of the 
disturbances of two endogenous variables if neither variable appears in 
the equation of the other, and that the semipartial estimates a path of a 
disturbance to another endogenous variable, again if neither 
endogenous variable appears in the equation of the other. Here these
principles are applied to determine the statistical methods for 
estimating causal parameters of the four models in Figure 4.4. All four 
models have in common the characteristic that they are just-identified.
Each model has four observed variables, and therefore six correlations;

and since each model has six free parameters, each model may be just-
identified. Those six parameters can be identified as follows: 

Model I: Parameters a, b, and c are simply estimated by the
correlations between the exogenous variables. To estimate d, e, and f
regress X4 on X1, X2, and X3, and the resulting beta weights are
estimates of path coefficients. Parameter g is estimated by (1 R2)1/2,
where R is the multiple correlation of X4 with dX1 + eX2 + fX3.

Model II: Parameter a is estimated by regressing X2 on X1.
Parameters b and c are estimated by regressing X3 on X1 and X2, and d,
e, and f by regressing X4 on X1, X2, and X3. The estimates of d, e, and f
are the same for Models I and II. The difference between the two
models is that Model I makes no statement about the causal 
relationships between X1, X2, and X3, while Model II does. The 
disturbances of g, h, and i can be estimated by (l R2)1/2, where R is 
the multiple correlation for each equation. 

Model III: To estimate parameter a regress X2 on X1; b, regress
X3 on X1; and c, regress X4 on X1. Since there is only one predictor
variable in each equation, the estimated causal coefficient equals the
correlation of cause and effect. Parameters h, i, and j can be estimated
by partial correlations since X2, X3, and X4 do not cause each other: h = 
r23.1, i = r24.1, and j = r34.1. The disturbances can be estimated by (1 
R2)1/2.

Model IV: Parameter a is simply estimated by r12. Parameters
c and d can be estimated by regressing X3 on X1 and X2, and b and e by 
regressing X4 on X1 and X2. Since X3 does not cause X4 or vice versa, h
is simply the semipartial correlation of X3 with X4 controlling for X1

and X2 or  as it is symbolized r3(4.l2). The paths for the residuals are
estimated in the usual way. Remember to include U as a cause of X4 in 
the multiple correlation for X4.

The beta weights of each of the preceding four models can be 
tested against the null hypothesis that they are zero by applying the t test
given by Equation 4.5, the partial correlations in Model III by the t test
given by Equation 4.11, and the semipartial in Model IV by Equation 4.12. 
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Figure 4.4  Just-identified regression models (X1, X2, X3, and X4 are 
measured).

After estimating the coefficients and testing them against zero,
one begins what is perhaps the most interesting part of causal analysis. If
certain beta coefficients are not significantly different from zero, the
researcher should question the utility of a path there. But as in any
significance test there may be errors of inference. There may actually be
a path but either the sample size is too small or the causal variable is too
highly correlated with the other causal variables. (This second problem
is called multicollinearity, a problem examined later in this chapter.) But
given high power, a zero path should make the researcher question the
validity of a causal linkage, at least for the population at hand. 

The researcher should also examine the size (high, medium, or
low) and the direction (positive or negative) of the paths. If they are 
anomalous, then the researcher should question the specification of the 

model. For instance, if one were to find that the path from actual
similarity to attraction is negative, one should suspect that something is 
wrong with the model. Unfortunately, it may be necessary to estimate
many different causal models and find the model that makes the best
sense. Obviously, inference is stronger if only one model is stated a 
priori (without looking at the data) and data confirm that model than if
a model is fitted to the data. Causal modeling is meant to be a 
confirmatory method (Tukey, 1969) but we often find ourselves using
it in an exploratory mode.

Even when causal modeling is perfectly applied, it can only
confirm or disconfirm that c given model fits the correlations; it never 
proves the model. An infinite number of models can fit any set of 
correlations. Ideally the researcher designs the study in such a way that
two or more theoretically opposing causal models have divergent
implications for the correlations. To increase the validity of a causal
model, it is useful to add to the structural equations a variable that one 
theory says is a cause and another theory says is not. If the first theory 
is correct, then the relevant path should be nonzero, while for the other
theory it would be zero. Unfortunately, researchers are reluctant to 
spend their time measuring variables that they do not believe to be 
important. But a model can be strengthened if certain variables show
the desired zero paths and other variables the desired nonzero paths. 
This gives the model both convergent and discriminant validity (see 
Chapter 13); that is, theory is confirmed in terms of both what should
and what should not happen.

To illustrate this point, assume that a researcher did not believe 
that there was a path from X2 to X3 for Model II in Figure 4.4. The
researcher should still estimate the path, and test whether it is zero. 
Along the same lines, in Model IV, if the researcher did not believe
that there was a path from U to X4, the researcher should still estimate
the path by r3(4.l2) and test whether it significantly differs from zero.
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T E C H N I C A L  I S S U E S

O V E R I D E N T I F I C A T I O N

Returning to Figure 4.4, for Model II, if the path labeled c is 
deleted, the model is overidentified. There is one less parameter than 
correlation. The ear]y path analysts originally suggested a seemingly
sensible strategy for overidentification. Examine the model in Figure 
4.5. The model is overidentified since there are three correlations and 
only two free parameters. As with many overidentified models, it is 
possible to obtain two estimates of all the parameters of the model: a = 
r12 and a = r13r23, and b = r23 and b = r13/r12. Setting both the estimates
equal and restating in terms of population parameters yields the 
overidentifying restriction of

Figure 4.5  Causal chain.

Note that for the preceding to equal zero, Equation 4.13 must hold.
Thus, he overidentifying restriction is tested by the prediction of the 
zero path. A price is paid for this strategy. The variance of the
estimate of b is increased, but at least the researcher knows that b is 
not biased if X1 causes X3. We pay for less bias by decreased
efficiency.

13 12 23 = 0     [4.13]

Because there are two estimates of a parameter, how should the two
estimates be pooled? A simple solution would be to add the two
together and divide by two. Goldberger (1970) has shown that the 
statistically best solution is to use the least-squares solution and ignore 
any other solution. The least-squares solution is more efficient than a
pooled solution. Thus, if the theory is correct, one should estimate the 
path coefficients by regression analysis yielding r12 as an estimate of a
and r23 as an estimate of b. I would not argue for exactly this solution.
It is possible that there is a specification error of a path from X1 to X3. If

It is my opinion that for models for which regression is
appropriate, the model should always be just-identified; that is, as
many parameters as correlations should be estimated. Theory will
specify which parameters will be zero and nonzero. The researcher
also has a choice of what connection to have among the endogenous
variables. For instance, for Model IV in Figure 4.4, if there were no
path from U to X specified, there would be a number of alternatives
for adding another parameter. One could have (a) path from X3 to X4,
(b) a path from X4 to X3, (c) a path from U to X4, (d) a path from V to 
X3, or (e) correlated disturbances between U and V. Whatever
additional parameter one chooses to estimate, the null hypothesis of a 
zero value tests the same overidentifying restriction and the same t
statistic is obtained.

there is such a path, the estimate of the path from X2 to X3 will be 
distorted through this specification error. It might be wiser to regress
X3 on both X1 and X2 and to expect the path from X1 to X3 to be
nonsignificant. The estimate of that path would be

r r r13 12 23—————
1 r12

2
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S P E C I F I C A T I O N  E R R O R

Too often researchers examine the simple, or raw, correlation
coefficient as an indication of causal effects. The naive logic is that if 
X causes Y, then X and Y should be correlated, and if X does not cause
Y, they should be uncorrelated. Neither statement is true. After 
controlling for other causal variables, a strong relationship can vanish 
and a zero relationship can become strong. To illustrate both of these
effects, imagine a researcher who believes that three variables, X1, X2,
and X3, cause X4. The researcher's implicit causal model is

X4= aX1+ bX2+ cX3+ dU

with the assumption that U is uncorrelated with X1, X2, and X3. Suppose 
the correlations of three causes with X4 are 

r14 = .00 
r24 = .45 
r34 = .45 

Given these correlations, the researcher immediately jumps to the
conclusion that X2 and X3 are relatively strong causes of X4 while X1

has no effect. We, however, would know better. A correlation between
a hypothetical cause and effect is a function of not only the causal
effect, but also the correlation of the cause with the other causes. This
can be seen by applying the first law: 

r14 = a + br12 + cr13

r24 = ar12 + b + cr13

r34 = ar13 + br23 + c

Knowing that r12 = .3, r13 = .5, and r23 = .6 allows one to solve for a,
b, and c by multiple regression. The resultant values are c = .3, b = .0, 
and c = .6. So, although X1 is uncorrelated with X4, X1 still has an effect

on X4! (The variable X1 is sometimes called a suppressor variable
[Lord & Novick, 1968, pp. 271-272].) Also, although X2 is correlated
with X4, its causal effect is zero! Clearly one must go beyond the 
simple raw correlation to make causal interpretations.

Table 4.2. Path Coefficients with One Omitted Variable

What happens to the estimates of causal parameters if the 
researcher omits one of the causal variables? If either X1 or X3 are
omitted, the other causal variables' path coefficients are biased since 
the variables are correlated with disturbances, and thus the model
contains specification error. In Table 4.2 are the estimates of path 
coefficients with one causal variable omitted. If X2 is omitted, the
estimates of the path coefficients are unchanged since X1 and X3 remain 
uncorrelated with the disturbances. As was stated earlier, including
variables that have no causal effects in no way biases the estimates of 
path coefficients. In fact, it adds increased validity to the model by 
making an explicit prediction of a zero path. Returning to Table 4.2, if
the model contains specification error by omitting either X1 or X3, the 
causal coefficients become misleading. For example, when X3 is
omitted, the path from X1 to X4 is .148, when it should be .3. This bias 
is due to X1 being correlated with the disturbance since X3, which
causes X4, is contained in the disturbance and is correlated with X1.

To see more formally the effect of an omitted variable,
examine the path diagram in Figure 4.6. If variable X3 is omitted then
the estimate of d is 



8 2 C O R R E L A T I O N  A N D  C A U S A L I T Y Chapter  4 O B S E R V E D  V A R I A B L E S  A S  C A U S E S 8 3

r r r d + er12 + fr r (e + dr  + fr )14 12 24 13 12 12 23  —————  =   ———————————————
1 r12

2 1 r12
2

d (1 r 2) er  + f(r r r )12 12 13 12 23   =   —————————————
1 r12

2

   = d + f 31.2

Thus there is no bias in estimating the effect of a causal variable if
either the omitted variable does not cause the endogenous variable or 
the regression of the omitted variable on the causal variable controlling 
for the remaining causal variables is zero.

An example of the necessity of controlling for variables can be
taken from Fine (1976). He compared the ability of psychics and
nonpsychics to predict the future. He took 59 predictions of psychics 
from the National Enquirer and 61 predictions from nonpsychics. He 
then had observers rate how likely the predictions were to occur. A 
year later he had a different set of observers judge whether the events 
had occurred during the previous year. There are then three variables:
psychic-nonpsychic (P), likelihood of outcome (L), and actual outcome
(A). The psychic-nonpsychic variable is a dummy variable in which
one is assigned for psychic and zero for nonpsychic. The sample size is 
120, the total number of predictions. 

Figure 4.6 The omitted variable problem.

yields an estimate a to be .095, b to be .530, and c to be .816. Thus,
once one has controlled for the likelihood of the outcome, the 
difference between psychics and nonpsychics is reduced substantially.
The test of a is 

    [.335  .327)(117)]1/2

t(117) =  —————————
     .6651/2

      = 1.14The correlations among the three variables are 

and of brPL = .440
rPA = .329

        [.335  .108)(117)]1/2
rLA = .572 t(117) =  —————————

     .6651/2

    = 6.31 The simple correlation of being a psychic with actual outcome is 
highly statistically significant, t(118) = 3.78, indicating psychics did 
poorer than nonpsychics. Estimating the following structural equation: and thus the effect of being a psychic is not significant. Even though

being a psychic correlates negatively with the outcome, it correlates 
about as negatively as it should, given that psychics make predictions 
that are unlikely and unlikely predictions do not usually come true. 

A = aP + bL + cU
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Multicollinearity is literally built into a set of structural
equations. If X1 causes X2 and X2 causes X3, it is all but inevitable that
X1 and X2 are correlated. If X1 is a strong cause of X2, it may be
difficult, if not impossible, to disentangle the causal effects of X1 and
X2 on X3 with a small sample. For example, in Figure 4.5, if a equaled
.87 and b equaled .20, one would need close to 783 units to have a 80%
chance of finding the estimate of a statistically significant at the .05
level. However, if a were zero and b were .20, one would need only
193 units to have 80% power (cf. Cohen, 1969, p. 99). Thus, causal 
effects among the causal variables tend to reduce power through
multicollinearity.

M U L T I C O L L I N E A R I T Y

Multiple regression estimates the effect of a predictor variable
on a criterion taking into account both the correlations between the 
predictor variable and the other predictor variables and the effects of 
the other predictor variables. As is explained in Chapter 10, for
classical experimental design the predictors, or independent variables, 
are uncorrelated when equal numbers of subjects are assigned to each
cell. If the independent variables are uncorrelated, a simpler, more
elegant computational strategy can be employed: the analysis of
variance. However, the strategy of partitioning of variance makes little
or no sense in the case when the independent variables are correlated
(Duncan, 1970, 1975). As the causal variables become more and more
intercorrelated, the standard errors of path coefficients increase. This 
increased uncertainty in regression coefficients due to intercorrelated
predictor variables is called multicollinearity. Increased standard errors 
means lower power. Gordon (1968) provides an excellent review of 
some of the obvious and not so obvious effects of multicollinearity.
Much has been made of the "problem of multicollinearity," but I prefer 
to see it not so much a problem as a cost that is paid by not employing
an experimental factorial design with equal cell size (see Chapter 10).
It may be a cost that is well worth paying to increase external validity 
(Campbell & Stanley, 1963).

Multicollinearity also enters structural analysis when two or
more measures of the same cause are employed. Imagine that

X2 = .3X1 + .954U

where r1U = 0. Suppose the researcher does not measure X1 but has two
errorful measures of X1:

X3 = .9X1 + .436E
X4 = .9X1 + .436F

where IE = IF = EU = FU = 0, and EF = 0. The path model for the 
three equations is in Figure 4.7. The correlations between the measured
variables are 34 = .81, 23 = .27, and 14 = .27. Now suppose the 
researcher estimates the following equation: 

Before discussing the effects of multicollinearity, its
measurement should be first reviewed. Most measures of
multicollinearity center around the multiple correlation of a predictor 
variable with the other predictors. A helpful fact not usually mentioned
in most multivariate texts is that the diagonal elements of the inverse of 
the correlation matrix are 1/(1 Ri

2), where Ri is the multiple
correlation of variable i with the other predictor variables. Some
computer programs output tolerance which is usually defined as 1
Ri

2, where Ri is defined as previously (Harris, 1975, p. 283). As Ri

increases, multicollinearity becomes more of an issue. 

X2 = aX3 + bX4 + cV

The estimates for a and b are both .149 and the multiple correlation is 
.284 which approaches .3. The surprising fact is that whereas the 
theoretical .27 correlation of either X3 and X4 with X2 needs only 54
units to be significant about 50% of the time, the theoretical beta 
weight of .149 needs 474 units to be significant about 50% of the time, 
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again using the .05 level of significance. This is a case in which two is 
not better than one. Adding another measure of a cause increases the 
multiple correlation but it tends both to make beta weights smaller and
to make the standard errors of the beta weights larger. 

As this example illustrates, special care should be taken not to 
include in the regression equation more than one measure of the same
construct. I do not mean to imply that a construct should not have more
than one measure. Quite the opposite, the multiple indicator strategy is
often useful, as is demonstrated in Chapter 8. But the researcher should
be suspicious of highly correlated causal variables in a regression
equation, since it may well be that they are multiple indicators of the 
same cause. It is not sufficient for the researcher simply to define two
variables as measures of different constructs. If the two variables
correlate as highly as the average of their reliabilities, then the 
measures have no discriminant validity (Campbell & Fiske, 1959). It is 
not enough to say that measures tap different constructs; it should be
demonstrated empirically.

Figure 4.7 Two indicators of an exogenous variable.

Much to our despair and happiness, we rarely obtain 
correlations or multiple correlations of one; but we can bring about
perfect multicollinearity by not being careful. First, as the number of 
predictors approaches the number of units, multicollinearity increases.
Having more predictors than subjects ensures perfect multicollinearity.
Second, careless creation of linear composites can result in perfect 
multicollinearity. Say, for instance, a researcher is interested in the 
effects of power in heterosexual relationships. The researcher obtains a
measure of the resources of the male and the resources of the female.
Power in the relationship is then operationalized as the difference
between the male's and female's resources. The researcher regresses the
involvement of one partner on the two resource variables and power. 
To the researcher's surprise the computer program blows up and no 
estimates are possible. This is due to a linear dependency in the 
regression analysis. Knowing any two of the measures perfectly
predicts the third. 

Multicollinearity becomes an insuperable problem when the 
correlation between two causal variables is unity. To see this, examine 
the following structural equation: 

X3 = aX1 + bX2 + cU

where r1U = r2U = 0. By the first law the correlations are 

r13 = a + br12

r23 = ar12 + b

Ordinarily the researcher would solve for a and b, but if r12 = 1, then 
r13 = r23 = a + b. There is a single equation left in two unknowns for 
which there is no solution. This is an example of empirical
underidentification. Probably the best procedure for the researcher to follow is to 

regress involvement on the two resource variables. The test of the 
effect of power is that the regression coefficients for the resource
measures are significantly different.
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E Q U A L I T Y  O F  R E G R E S S I O N  C O E F F I C I E N T S
     [(.5822  .5192)764]1/2

t(764) =  —————————In the previous section it was mentioned that to test the effect 
of power in heterosexual relationships it should be tested whether the
coefficient for male's resources equaled the coefficient for female's
resources. It has not, however, been shown how to test the equality of
two coefficients within the same equation. The test is relatively 
simple. Imagine for Equation 4.8 that it is assumed that c equals d.
This would imply

      (1  .5822)1/2

= 8.95 

which is highly significant. A researcher should carefully consider 
whether the assumption of the equality of regression coefficients refers
to the standardized or unstandardized coefficient. Ordinarily it refers to
the unstandardized coefficient (Cudeck, 1989). The question of 
standardization is revisited in the last chapter of this book.

G = c(F +I) + eV Tests of the equality of the same coefficients in the same 
equation computed from two samples is given in Snedecor and
Cochran (1967). More complicated tests of the equality of coefficients 
is given in Werts, Rock, Linn, and Jöreskog (1976).

Thus, to test whether two coefficients are equal the researcher
compares the R2 of an equation with both causal variables in the 
equation with the R2 of the sum of the two in the equation. If the 
parameters are equal, nothing should be gained by estimating separate
parameters.

M E A S U R I N G  I N D I R E C T E F F E C T S

For the particular example Earlier it was stated that a causal variable can have a direct and
an indirect effect. For instance, for the path model in Figure 4.8 of the 
Kerchoff data in Table 4.1, intelligence is a direct and an indirect cause 
of occupational aspiration. The total effect equals the direct effect plus
the sum of the indirect effects. The direct effect is given by the path 
coefficient. Some early path analysts stated that the total effect is
simply the correlation between the effect and the causal variable.
However, a little reflection shows that the correlation between
variables reflects more than direct and indirect effects.

      V(F+I) = V(F) + V(I) + 2C(F,I)
    = 1 + 1 + 2(.25) 
    = 2.5 

and

C(F+I,G) = C(F,G) + C(I,G)
       = .572 + .248 If the causal variable is exogenous, then part of its correlation

with the endogenous variable may be due to its correlation with the
other exogenous variables and the effects of these exogenous
variables. To see this let us examine the correlation of intelligence (I)
with grades (G):

       = .820 

This makes rF+I,G = .820/(2.5)l/2 = .519. Because the quantity (F + I) is 
the only predictor of G, the path from F + I to G is also .519 as is the 
multiple correlation. Recall that the multiple correlation with both F
and I in the equation is .582. The test of whether computing both c and 
d separately significantly increases R2 by Equation 4.5 is 

rIG = pGI + pGSrIS + pGErIE + rGFrIF
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  = .374I  .124S + .221E + .167F + .328U  + .718Vwhere “p” symbolizes a path coefficient.  Note that there is a direct
effect of intelligence on grades but there are other equivocal effects
due to the correlation of intelligence with the other exogenous
variables. Since there is no causal model for the exogenous variables,
one does not know whether the remaining part of the correlation of I
with G is due to spuriousness, I and G having common causes, or
indirect effects. However, for this particular example, indirect effects
are rather implausible; for example, it is implausible to argue that son's 
IQ causes father's education.

If the causal variable is not exogenous, then part of the 
correlation between it and the variable that it causes is due to 
spuriousness. For instance, one reason why grades and educational 
expectation are correlated is the fact that they share the common causes
of I, S, E, and F. Spuriousness often explains a considerable portion of 
the correlation between two variables. 

Figure 4.8  Model taken from Kerchoff.

It is then totally illegitimate to find the indirect effects by
subtracting the direct effect from the correlation between cause and 
effect. A highly general method is given by Alwin and Hauser (1975) 
and it involves the use of reduced form. Let us first translate Figure 4.8
into a set of equations: 

(One could combine the two disturbance terms to form a single 
disturbance.) To find the indirect effect take the coefficient from the
reduced form and subtract off the direct effect to find the indirect
effect. So the indirect effects are .214 for intelligence, .012 for 
number of siblings, .048 for father's education, and .016 for father's 
occupation.

   G = .526I  .030S + .119E + .040F + .807U     [4.14] One need not compute the reduced form coefficients by 
substituting equations; one could have simply regressed X on I, S, E,
and F to obtain the reduced-form coefficients. When the number of 
variables is large, this regression procedure is advisable to minimize
both computational and rounding errors. However, reduced form is not
necessarily needed to find indirect effects. The tracing rule can be used
to find the indirect effects. For instance, there is a single indirect effect
from I to X through G and it equals (.526)(.406) = .214. To find the
indirect effect of G on A, note that it can only go through X. The 
indirect effect is then (.406)(.588) = .239.

   X = .160I  .112S + .173E + .151F + .406G + .718V     [4.15]
 A = .047I  .014S  .048E + .094F + .143G +.588X + .731W   [4.16]

First note that there are no indirect effects of G; there are only direct 
effects. To find the indirect effects of the four exogenous variables on 
X take Equation 4.15 and substitute Equation 4.14 for G:

      X  = .160I  .112S + .173E + .151F + .406(.526I  .030S
 + .119E  + .040F + .807U) + .718V

  = (.160 + (.406)(.526))I + ( .112 + (.406)( .030))S To find the indirect effect of I, S, E, and F on A solve for the
reduced form. First, substitute Equation 4.14 into G of Equation 4.16: + (.173 + (.406)(.119))E + (.151 + (.406)(.040))F

   + (.406)(.807)U  + .718V
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       A = .047I  .014S  .048E + .094F  + .143(.526I  .030S
               + .119E  + .040F + .807U) + .588X + .731W
           = ( .047 + (.143)(.526))I + ( .014 + (.143)( .030))S  
                + ( .048E+ (.143)(.119))E + (.094 + (.143)( 040))F
                + (.143)(.807)U  + .588X  + .731W
           = .028I  .018S  .031E + .100F + .115U + .588X  + .731W

Now we substitute the reduced form equation for X into the preceding 
equation:

       = .028I   .018S  .031E + .100F + .115U + .588(.374I
            .124S + .221E + .167F + .328U  + .718V) +.731W
       = (.023 + (.588)(.374))I + ( .018 + (.588)( .124))S   
              + ( .031 + ( 588)( 221))E + (.100 + (.588)(.167))F
              + (.110) + (.588)(.328))U + .588(.718)V + .731W
       = .248I  .091S + .099E + .198F + .308U  + .422V
            + .731W                                                                               [4.17] 

To compute the indirect effect, subtract the direct effects given 
in Equation 4.16 from the total effects of Equation 4.17. They are then 
.295 for I, .077 for S, .147 for E, and .104 for F. As a check compute 
the indirect effects of I on A by the tracing rule. There are three indirect 
effects: (a) through G, (b) through X and (c) through G then X. These 
three different values are (.526)(.143) = .075, (.160)(.588) = .094, and                  
(.526)(.406)(.588) = .126, respectively. These three values sum to .295, 
the same value that was obtained from the reduced form method. 

If the reduced form coefficients are computed by hand, there is 
a straightforward way to check the computations. One checks to see if 
the reduced form equation has a variance of one. This is done here for 
the reduced form equation of A. Since the disturbances are uncorrelated 
with each other, the variance of the sum of the disturbances is 

                   V(.308V + .422U + .731W) = .3082 + .4222 + .7312

                                                               =. 807                           

To find the variance of the remainder of the equation, simply 
compute the multiple correlation squared of the reduced form equation: 

      pAIrAI + pASrAS + pAErAE + pAFrAF  = (.248)(.335) + ( .091)( .153)
                                                                + (.099)(.303) + (.198)(.331) 
                                                           = .193 

Because the causal variables are uncorrelated with the disturbance, the 
variance of variable A equals .807 + .193 = 1; thus the reduced form 
coefficients check out. 

C O N C L U S I O N

Multiple regression analysis is the backbone of structural 
modeling. Beta weights estimate path coefficients if the causes and the 
effect variables are measured and the disturbance is uncorrelated with 
the causal variables. Partial correlation estimates the correlation 
between disturbances when neither endogenous variable causes the 
other. In the next chapter the problem of the disturbance correlated 
with an causal variable is considered. 
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5
M E A S U R E M E N T  E R R O R  

I N  T H E  C A U S A L  
V A R I A B L E S  A N D  

T H I R D  V A R I A B L E S
In the previous chapter it is assumed that the causal variables

in a structural equation are measured without error and are un-
correlated with the disturbance. In this chapter violations of these two
assumptions are considered. It is demonstrated that an estimation
procedure called two-stage least squares can be used to estimate such
models in some very special circumstances.

The first part of this chapter carefully explores the assumptions
of classical measurement theory and recasts them into a path analytic
formulation. The second section analytically demonstrates the effect of 
measurement error in structural equations. The third section illustrates 
how by adding instrumental variables, measurement error in an causal
variable can be allowed. The fourth section considers a general
estimation procedure for models with instrumental variables called 
two-stage least squares. The final section outlines the instrumental
variable approach to correcting for bias due to unmeasured third
variables that cause both the endogenous and causal variables. 

M E A S U R E M E N T  E R R O R

What sets aside psychometrics from other statistical
approaches is the almost excessive concern about measurement error. 
Traditionally, measurement error had received only cursory coverage

in econometrics. This has since changed and the errors in variable
problem, measurement error, has been recently given much more
attention. However, psychometrics from its inception has highlighted
the problem of measurement error. What follows is a discussion of 
psychometric models of measurement error using path analysis.

The classical model states that an individual's measured score 
equals the true score plus error of measurement

X = T + E     [5.1]

where X is measured score, T is true score, and E is error of 
measurement. It is usually also assumed that the mean of E is zero and 
the C(T,E) equals zero. The reliability of measure X is defined as

  V(T) [5.2]
  V(X)

that is, the ratio of true variance in the measure to the total variance.
Reliability then can be thought of as the percent of variance of the
measure that is due to the true score. In this text the usual symbol for
reliability of measure X is rXX because as is later shown, reliability can
be viewed as an a correlation of a variable with itself. If the reliability
is known, it is often useful to compute the error variance. It equals

      V(E) = V(X) V(T)

(1 V(T))= V(X)
(1  V(X))

     = V(X)(l rYY)       [5.3]

The correlation of X with T simply equals 

        C(X,T)rXT =
 [V(X)V(T)]1/2
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      V(T)    = 
        [V(X)V(T)]1/2

        [V(T)]1/2

    = 
        [V(X)]1/2

=  rXX
1/2 [5.4]

Thus the square root of the reliability equals the correlation of the 
measured score with the true score. The square root of a measure's
reliability is the upper limit for the correlation of the measure with any 
other measure when the errors of measurement of a variable are
uncorrelated with all other variables.

Figure 5.1 Path model for the classical measurement model.

In Figure 5.2, two variables, TX and TY, are assumed to be 
correlated. However, neither variable is measured directly but each
with error. The measure X is the errorful indicator of TX and Y of TY.
The errors of measurement, EX and EY, are assumed to be
uncorrelated with the true scores and with each other. By the tracing
rule it follows that

Returning to Equation 5.1 it is clear that the variables are not 
standardized. Note that if V(X) = 1, then neither T nor E can be 
standardized since V(T) + V(E) = 1. Thus the classical model cannot be 
directly cast into a path analysis framework. To do so the measurement
model must be reformulated as 

rXY = abrTXTYX = aT + bE       [5.5]

Therefore the correlation between true X and true Y equals where X, T, and E are all now standardized variables. In Figure 5.1, 
there is a path diagram for Equation 5.5. From the path diagram it 
follows that a2 + b2 = 1 and, therefore, b = (1 a2)1/2. It also follows
that rTX = a and rXX = a2. Thus with standardized variables, the 
reliability is simply the square of the path from true score to the 
measure. The path for the error equals the square root of the quantity
one minus the reliability.

     rXYrTXTY   =
(rXXrYY)1/2

since a2 = rXX and b2 = rYY. The preceding formula is the classical
correction for attenuation formula. It states that the correlation between 
true scores equals the correlation between the measured variables
divided by the geometric mean of the reliabilities of the measures. The 
correlation between the measured variables is said to be attenuated, and 
to be equal to the true correlation times some number that is less than
or equal to one. The effect, then, of measurement error is to make

There are then two different ways to formulate the
measurement model of a single variable: the classical approach of
Equation 5.1 and the path analytic approach of Equation 5.5. The text
focuses on the path-analytic approach, but it is often compared to the 
classical approach.
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correlations between measures underestimate the absolute value of the 
true correlation.

Figure 5.3  Multiple measures model.

Figure 5.2  Correction for attenuation. Classical test theory distinguishes between three different 
types of measures: parallel, tau equivalent, and congeneric. In this text 
variables are ordinarily considered in mean deviation form and so only
the assumptions made about the equivalence of variances need be 
considered. Let two measures, X1 and X2, have true scores whose 
correlation is one such that

Because correlations are biased by measurement error, it 
should be obvious that ignoring measurement error in variables may
seriously distort estimates of structural parameters. Later in this
chapter, bias in structural parameters is discussed. Various classical
approaches to the estimation of measurement error are considered now. 

Typically, estimation of reliability proceeds through the use of 
other measures. We are all probably familiar with the use of alternative
forms or test-retest to estimate reliability. In some sense the logic of 
these procedures can be seen by examining the path diagram in Figure
5.3. True score TX causes both X1 and X2. Their errors of measurement 
are mutually uncorrelated and uncorrelated with the true score. It is
also specified that X1 and X2 are equally reliable (rX1X1 = rX2X2 = a2).
Note that it then follows that given uncorrelated errors of measurement
the correlation between two equally reliable indicators of the same
construct estimates the reliability of the measures. In fact such a 
correlation is sometimes given as the very definition of reliability. 

X1 = T + E1

X2 = kT + E2

where C(E1,E2) = C(E1,T) = C(E2,T) = 0. Measures X1 and X2 are said
to be parallel if k = 1 and V(E1) = V(E2). It then follows that parallel 
measures have equal variances and equal covariances; that is, if X1, X2,
and X3 are parallel measures, it follows that V(X1) = V(X2) = V(X3) and 
C(X1,X2) = C(X1,X3) = C(X2,X3) = V(T).
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M E A S U R E M E N T  E R R O R  I N  S T R U C T U R A L E Q U A T I O N STests X1 and X2 are said to be tau equivalent if k = 1. Unlike 
parallel measures, tau equivalent measures may have unequal error 
variances. However, the covariance between tau-equivalent measures
is constant; that is, if X1, X2, and X3 are tau equivalent then C(X1,X2) =
C(X1,X2) = C(X2,X3) = V(T).

The effect of measurement error on the path coefficients is
different for the endogenous and causal variable. First error in the 
endogenous variable is considered and then error in the causal variable 
is examined. Assume two causal variables, Z and X, cause YT:Congeneric measures are the most general. Error variances 

may be unequal and the parameter k need not equal one. The only
constraint on the covariances is that they are single-factored, which is 
extensively discussed in Chapter 7. Different methods of estimating
reliability make different assumptions about the measures. For
instance, the simple correlation between two measures (assuming
uncorrelated errors of measurement) estimates the reliability of only
parallel measures. A test-retest correlation also estimates the reliability
of parallel measures given no true change. Cronbach's alpha estimates
the reliability of the sum of the measures only if the measures are
tau-equivalent or parallel. If the measures are congeneric then it
underestimates the reliability of the sum.

YT = aZ + bX + cU

where the disturbance U is assumed to be uncorrelated with Z and X.
Both Z and X are measured without error, but YT is fallibly measured
by Y:

Y = YT + E

where the covariances of E with YT, Z, X, and U are zero. If Y, YT, and 
E are standardized then the equation for Y is

Standardizing measures may alter their character. Parallel 
measures remain parallel after standardization since their variances are
equal. However, standardization turns tau-equivalent measures into
congeneric measures. Ordinarily congeneric measures remain
congeneric after standardization with the interesting exception that
they become parallel if the original measures were all equally reliable. 

Y = dYT + eE

where d2 is the reliability of Y. The unstandardized regression
coefficients bYZ.X and bYX.Z yield a and b, respectively. They are 
unbiased because measurement error in Y is absorbed into its 
disturbance. However, if the variables are standardized the beta
weights equal ad and bd. Because d is less than or equal to one, these
beta weights will be less than or equal to the absolute value of the true 
structural coefficient. To summarize, under the classical specification, 
error of measurement in the endogenous variable does not bias the 
unstandardized coefficient but it does attenuate the standardized 
coefficient. To correct the beta weight for attenuation one should
divide it by the square root of the reliability of the endogenous
variable. Note that if the true beta weight is zero no bias results. 

Both parallel and tau-equivalent specifications imply that
the true score is in the units of measurement of the measured
variable. For both cases the true score has a structural coefficient of
one. These assumptions then are harmonious with the previously
designated classical model of Equation 5.1. Congeneric measures 
are consistent with the path analytic assumptions of Equation 5.5 
since with congeneric measures the true score need not be in the 
metric of the measure.

Unfortunately measurement error in the causal variable is not 
nearly so simple. Consider first the following structural equation
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Y = aX1 + bU

where rUXT = 0. The variable Y is measured without error and the
structural equation for X is

X = cXT + dE

where E is uncorrelated with both XT and U. It is assumed that all 
variables are standardized which makes c2 the reliability of X. The path
from X to Y is then ac. Thus there is attenuation since the true path is a.
Even if one assumes the classical specification, the path from X1 to Y is 
attenuated by c, the square root of the reliability of X. Consider now
two causal variables, XT and Z and an endogenous variable Y. As in
Figure 5.4, X1 is measured with error by X. Assuming all the variables
in the figure are standardized, the correlations are 

rXY = d(a + fb)
rXZ = df
rYZ = b + af

the "path coefficient" from X to Y is then 

   r r rXY YZ XZ
YX.Z =

1 rXZ
2

da + dbf  (df)(b + af)
 = 

1 d2f2

da(1  f2)    = 
1 d2f2   [5.6]

It can be shown that d(l f2)/(1 d2f2) equals XT)X.Z  or dZ
2/d where

dZ
2 equals the reliability of X after Z has been partialled out. If f2 is 

greater than zero, then dZ
2/d is less than d. Thus the bias in Equation

5.6 is an attenuation bias. Its size depends mainly on the reliability of
X. The beta coefficient of Y on Z controlling for X equals 

af  (df)[d(a +bf)]
YZ.X  = b +

1 d2f2

   af (1 d2)= b +
1 d2f2

Figure 5.4  Errorful exogenous variable.

Thus, the beta weight estimates the true path plus a biasing term. That
term equals zero if any of the following three conditions hold: 

1.  The path from XT to Y is zero (a = 0), 
2.  the reliability of X is one (d2 = 1), or
3.  the correlation of XT with Z is zero (f = 0).

Because XT is measured with error, one cannot successfully partial out
its effects. This can be more clearly seen if X is perfectly unreliable. It
then makes no sense to say that we control for XT by X. If XT and Z are
correlated, then Z will be correlated with the disturbance of Y that
contains YT.
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The direction of the bias is not known in practice. If, however, 
both a and f are positive, the direction of bias is positive. Thus the bias
tends to overestimate the path coefficients of the perfectly measured
variables, given that the effect of XT is positive and its correlation with
Z is also positive. 

If two or more causal variables are measured with error, the 
effects of measurement error are difficult to predict. There are two 
sources of bias: First, there is attenuation bias due to error in the causal
variable. Second, added to the attenuated estimate of the coefficient is
a term whose size is influenced by the unreliability of the other causal
variables. It can occur that these two sources of bias cancel each other,
but it is unwise to hope for such an outcome.

One must always carefully consider the problem of
measurement error in the causal variable. It should not be assumed that
its effect will only attenuate estimates of coefficients; it can make the 
estimate of a truly zero coefficient nonzero or it can yield a coefficient
with the opposite sign as the true coefficient. However, a careful 
analysis may reveal that bias is negligible if 

1. Reliability is high.
2. The paths from the true scores to the endogenous variable

are small.
3. The causal variables have low intercorrelations with each 

other.

Besides ignoring the problem there are three analytic strategies 
to the unreliable causal variable issue. The first is to correct the 
correlations for attenuation due to measurement error and then to use
these disattenuated correlations to estimate causal parameters.
Although this method provides consistent estimates of parameters, it 
has a shortcoming. It divorces reliability estimation from causal
modeling. It has been shown that the measurement process can be
expressed in terms of a causal model and therefore all the parameters
including reliabilities should be considered as part of one model. This 

is not the case when one simply disattenuates the correlations.
Moreover the resulting parameter estimates cannot be tested for 
statistical significance in the usual way.

The second strategy for handling error in the causal variables 
is to have parallel forms or multiple indicators of the same construct, 
which is pursued in Chapters 7 through 9. This strategy introduces
unmeasured variables to the model. The third strategy is the method of
instrumental variables, which is considered in the next section of this
chapter.

I N S T R U M E N T A L  V A R I A B L E S

Consider the path diagram in Figure 5.5. If there were a path 
from Y to Z with X, Y, and Z measured, the model would be
underidentified since there are four free parameters and only three
correlations. The instrumental variable strategy is to buy the 
identification of the reliability coefficient by assuming a path from an
causal variable is zero. In Figure 5.5 there are only three free
parameters since there is no path from Y to Z. Note that given that rYZ = 
arXTY and rXTY = rXY/b, it follows that

a   rYZ
  =

b    rXZ

Moreover, by the tracing rule rXZ = ab. It then follows that

r  rXZ XYb2 =
      rYZ

and

r  rXZ YZa2 =
   rXY
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Because b is usually taken to be positive, the sign of a is determined by 
rXZ or rYZ/rXY, both of which should have the same sign. 

Figure 5.6  Breakdown of instrumental variable estimation.

Instrumental variable estimation can disastrously break down 
if the model is misspecified. Consider the set of correlations taken
from unpublished data of L. Brush in Table 5.1. The model specified in
Figure 5.6 is given for illustrative purposes only and was not specified

Figure 5.5 Instrumental variable illustration.

If one takes the classical specification of test score theory (X = 
XT + E), then 

  C(Y,Z)a =
  C(X,Y)

and

     r  rXXZ Z    rXX =
  rYZ

Clearly to be able to estimate a both rXY and b2 should not be small;
otherwise, empirical underidentification results. 

Table 5.1  Correlations of Sex, Ability, and Expectations for Success in 
Mathematics.

by Brush. Sex S does not affect expectations E, but rather its effect is
mediated through anxiety X and ability A. The anxiety variable is
assumed to be measured with error. Using the first law of path analysis

rES = arSXT + brSA

    rEA = arAXT + b
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It can be shown that Because
rAXT = rAX/c and rSXT = rSX/c,

ar  br13 14 r15 =  +
   e  f  rES = arSX/c + brSA

  rEA = arAX/c + b ar  br23 24 r25 =  +
   e  fThe solution for a/c is 
cr    dr13 14 r16 =  +a   r r rES SA EA=    e  f

c         rSX rAXrSA
cr    dr23 24 r26 =  +and    e  f

       r r r rSX EA AX ESb =
  rSX rAXrSA

The estimate for a/c is 11.40 and for b is 8.60 using the estimated
correlations in Table 5.1. Such results, though not impossible, are 
highly implausible. If one proceeds to solve for a, rAXT, and d further 
implausible values arise. These highly anomalous values are possible if 
instrumental variable estimation is carelessly applied. 

Instrumental variable estimation can yield informative
estimates as in the next example taken from Jöreskog (1973). Children
were measured at fifth (X1 and X2), seventh (X3 and X4), and ninth
grade (X5, and X6). Of interest are tests of mathematical ability (X1, X3,
and X5) and science knowledge (X2, X4, and X6). The correlation matrix
is contained in Table 5.2 and the model in Figure 5.7. The two seventh
grade measures (X3 and X4) are assumed to be measured with error. 
The wave 1 measures are taken to be instruments and the wave 3
measures as the endogenous variables. Clearly there is measurement
error in these variables also, but errors in the endogenous variables
only attenuate estimates and error in the instruments only reduces the 
efficiency of estimation. However, it must be assumed that such errors
are mutually uncorrelated.

Figure 5.7  Mathematics and science ability example.

The solutions are then 

    a     r r r r15 24 14 25 = 
  e     r13r24 r23r14

 b r r r 3r13 25 2 15 = 
f  r13r24 r23r14
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c r r r r Table 5.2  Mathematics and Science Ability Measured at Fifth, Seventh, and 
Ninth Gradesa,b

16 24 14 26 = 
  e     r13r24 r23r14

d r r r2 r13 26 3 16 = 
f  r13r24 r23r14

Substituting in the correlations from Table 5.2 yields

a/e: 1.071
b/f:  108
c/e: .144
d/f: 1.112

The two negative estimates seem somewhat anomalous but perhaps
proficiency in one area interferes with ability in other areas. Compare
the ordinary multiple regression estimates with the preceding and note 
how markedly different they are: 

It also follows that 

ae = r35 r34b/f
bf = r45 r34a/e

a: .575 ce = r36 r34d/f
b: .265 df = r46 r34c/e
c: .294 yielding
d: .532 

ae: .840 
Since there are two estimates of e2 and f2, a simple pooling strategy is 
taken by using an arithmetic average. The estimate of p3'4' is then 
.71/((.804)(.786))1/2 = .893. The estimates of g and h are

bf: .088
ce: .119
df: .842 

g = (l a2 b2  2abr3 4 )1/2 = .508It then follows that 
h = (l c2 d2  2cdr3 4 )1/2 = .522a: .948 

b: .097
and rUV is c : . 131 

d: .968 
r56 adr3 4 bcr3 4 ac bde2: .784, .824 = .463

f2:  .814, .757 gh



1 1 2 C O R R E L A T I O N  A N D  C A U S A L I T Y Chapter  5 E R R O R  A N D  T H I R D  V A R I A B L E S 1 1 3

The instrumental variable estimates yield a set of generally plausible 
and informative values. 

T W O - S T A G E  L E A S T - S Q U A R E S  E S T I M A T I O N

The classical method of estimating parameters from models
with instrumental variables is called two-stage least squares and is 
commonly referred to as 2SLS. This section first explains the
estimation procedure and then discusses the assumptions necessary for
such an estimation procedure. 

Denote the endogenous variable as Z and its disturbance as U.
The set of n variables which are assumed to be measured with error are 
called X; the set of p instruments are called I and the set of q causal
variables measured without error are called Y. The structural equation 
then is 

Z = iaiXi' + kbkYk + U

where the prime designates Xi true. Considered will be two alternative
specifications of the measurement model. First the classical model
where

Xi = Xi' + Ei

with V(Xi')/V(Xi) = ci
2. The path analytic specification is 

Xi = ciXi' + (1 – ci
2)1/2Ei

where V(Xi) = V(Xi') = V(Ei). Note this second specification does not
assume that the X variables are standardized but only that measured
variance equals true variance. For both specifications the reliability of
Xi is ci

2.
As its name suggests two-stage least squares involves two 

different multiple regression runs. The first stage involves regressing

each Xi on I and Y. This will involve n separate regression equations. 
From each regression, one can estimate the predicted Xi or Xi* given I
and Y. Note that if Xi is standardized, the Xi* will not ordinarily have
unit variance. The results of this first stage of estimation can be 
thought of as an attempt to estimate the true scores of the Xi. Since it 
will be seen that the measurement error in Xi is uncorrelated with I and
Y, the Xi* contain only true score variance. 

Now that the X variables have been purified the second stage 
can begin. The endogenous variable Z is now regressed on Xi* and Y.
The interpretation of the coefficients for the Y variables is
straightforward. They are the estimates of bk, the structural coefficients
for Yk. The interpretation of the coefficients for the X* depends on the
test theory model that is chosen. If the classical model is chosen, then
they are simply the structural coefficients for the true scores. If the path
analytic model is chosen another stage of estimation remains. It can be 
shown that second-stage estimates equal ai/ci. It also can be shown that

C(X ,Z) C(X ,X )a /c C(X ,X )bi i i m m m k i k kaici  = 
  V(Xi)

Because all the preceding terms on the left-hand side can be estimated
from the data (recall that am/cm are the second-stage estimates for Xm),
one can solve for an estimate aici. Then with estimates of ai/ci and aici,
one can solve for ai and ci

2. Note that the estimates of ci
2 should, in 

principle, be less than one. Also for ai not to be imaginary, the solution
for aici and ai/ci should both have the same sign. 

To estimate the reliability of Xi given the classical test theory 
specification compute

     C(Xi,Z) C(Xi,X )a C(X ,X )bi m m k i k k  ci
2  = 

aiV(Xi)

where ai, am, and bi are the second-stage coefficients.
The second-stage coefficients cannot be tested for significance

in the usual way. Currently, 2SLS is not used very often, but rather a 
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structural equation modeling program is used to estimate these models.
Additionally, estimated X and Y variables may be highly colinear since
the Y variables were used to estimate X. The power of the tests of 
significance may then be rather low. 

If there are more instruments than variables needing 
instruments (p > n), the model is overidentified. One advantage of 
two-stage least squares is that overidentified models present no special
problem. For complicated models, however, it is not a simple matter to 
test the overidentifying restriction. One strategy is as follows: Regress 
each I on X* and Y; compute for each Ij the residual; and denote them
as Q. Although there were originally n instrumental variables, only p
minus n of the Q variables are independent. Now compute the first p
n principal components of Q. Now include these p n components in 
the second-stage regression equation. The test of the overidentifying
restrictions is simply whether these principal components' coefficients
are zero. 

To apply instrumental variable estimation the following
assumptions must hold: 

1. The errors of measurement in the X variables must be 
uncorrelated with each other and the other variables in the 
model.

2. The instruments must not directly cause the endogenous
variable.

3. The instruments must be uncorrelated with the disturbance in the 
endogenous variable.

4. The number of variables needing instruments must be less than 
or equal to the number of instruments. 

The first assumption is a classical test theory specification. The second 
assumption creates the zero paths which bring about identification. In a 
sense this is the key assumption. The instrument can cause Z but its 
effect must be mediated by X' or Y. The third assumption is the usual

uncorrelated disturbance assumption. The fourth assumption is 
self-explanatory.

To avoid empirical underidentification one must assume that 
the I and X' variables share variance independent of the Y variables.
For instance, X' may cause I or vice versa, or some third variable 
besides Y may cause them. If there were little or no independent 
association between X' and I, the X* variables would be virtually
entirely explained by the Y variables. Then on the second stage the X
and Y variables will be sufficiently colinear to preclude reliable 
estimation.

Secondly, the estimates of instrumental variable regression
will be empirically underidentified if weights for the I variables on two
or more X variables are proportional. For instance, if the first-stage
equations for X1 and X2 were 

X1
* = .2I1 + .3I2

X2
* = .4I1 + .6I2

then the correlation between the two would be 1.0, resulting in perfect 
multicolinearity between X1

* and X2
* in the second stage. If the 

coefficients of the I variables for Xj
* are linearly or are nearly linearly

dependent with those of any other set of other X variables, empirical
underidentification results. 

One advantage of a two-stage least-squares solution is that it 
can estimate the parameters of an overidentified model. For some 
simple models the test of the overidentifying restrictions is rather 
straightforward. Imagine the case in which X1 causes X4 and X1 is 
measured with error and both X2 and X1 can be used as instruments of
X1. Because both r24/r12, and r34/r13 estimate the same parameter, there
is the following overidentifying restriction: 

24 13 34 12 = 0 
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which is called a vanishing tetrad; its significance test is discussed in 
Chapter 7. 

Although Duncan (1975, p. 98) has argued that the test of the 
over-identifying restriction in this instance is of little practical value,
such a test of the overidentifying restriction should be performed. Take 
first the case in which the overidentifying restriction is met; that is, the
correlations satisfy the overidentifying restriction within the limits of 
sampling error. Duncan claims that this is of little value since it is a test
of the null hypothesis. One should not, according to Duncan, accept
that the overidentifying restriction holds, but rather one cannot accept
that it does not hold. I do not accept this conclusion. We often find 
ourselves testing the null hypothesis. In this case, the test of the null 
hypothesis tells us whether we can safely conclude that either the 
instrument does not cause the causal variable or is correlated with the 
disturbance. Since many of us have difficulty of thinking of good
instrumental variables, the overidentifying restriction should be helpful
in that it allows us to test our assumptions. As with any significance
test, sample size should be large and power high. If one stringently 
objects to testing the null hypothesis, one could set up a reasonable 
alternative hypothesis and treat it as the null hypothesis.

Duncan is just as forceful in arguing against the usefulness
of an overidentifying restriction not being met. For instance, in the
case preceding, if the overidentification is not met one does not 
know whether X2 or X3, or both, are bad instruments. If an
overidentifying restriction is not met, it rarely localizes the source
of specification error.

However, not meeting the overidentifying restriction clearly
tells us that something is amiss. It forces us to rethink and respecify the
model. If the model is just identified, we are always lulled into the 
feeling that the model is correctly specified. Overidentification affords
us with many opportunities to be humbled. It does not bring truth or 
certainty, but like any good empirical test, it offers the possibility of
confirmation or rejection of theory. If the model is overidentified the 

researcher should make every effort to test the overidentifying
restrictions.

U N M E A S U R E D  T H I R D  V A R I A B L E

Instrumental variable estimation can also be applied to the case
in which an causal variable is correlated with the disturbance of the 
endogenous variable. This would happen if there were an unmeasured 
third variable that caused both the causal and endogenous variables.
There must be as many instrumental variables as there are causal
variables that are correlated with the disturbance. Again the 
instrumental variables by definition cannot cause the endogenous 
variable or be correlated with the disturbance. There are two important
differences for this case from the case in which the causal variable is
measured with error. First, the instrument should not be caused by the
variable that needs an instrument. If it is caused, then the instrument 
would most probably be correlated with the disturbance of the 
endogenous variable. Second, when the path-analytic specification is
assumed there is no need to go through a further step to solve for the 
structural parameters.

Consider the model in Figure 5.8. The variables are taken from
Table 4.1 of the previous chapter. The variable X is educational 
aspirations, E is father's education, G is grades, F is father's 
occupation, and I is intelligence. Both E and G are assumed to be
correlated with the disturbance in X and F and I are instruments. To 
solve for a and b one could employ two-stage least squares. However, 
one can also solve for the relevant parameters by path analysis. The
two relevant equations are 

rXF = arFE + brFG

rXI = arIE + brIG

The solution then is 
   r r r rFX IG IX FG a =
  rFErIG rIErFG
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   r r rFXrIX FE IE b =  rFErIG rIErFG

Figure 5.8  Kerchoff example with two exogenous variables
 correlated with the disturbance.

Substituting in the correlations in Table 4.1 a value of .403 is obtained
for a and .660 for b. The solution for c is

V(cU) = V(X aE bG)
c2 = 1 + a2 + b2 + 2abrEG  2arEX  2brGX

which yields .607 for c2 and .779 for c. The correlations of the causal
variable with the disturbance can be solved from the correlation of the 
causal variable with the endogenous variable

rEX = a + brEG + crEU

rGX = arEG + b + crGU

which yields a value of .194 for rEU and .233 for rGU. These negative
values seem implausible.

It is instructive to derive the overidentifying restriction that 
tests whether EU = 0. If EU were zero, then both F and I could be used
as instruments for G. There is then an excess of one instrument. The 
estimate of b, if only F is used as an instrument, is 

XFX FE E

FG EG FE

and the estimate of b, if only I is used as an instrument, is 

EIX IE X

IG EG IE

Because both should estimate b, the following overidentifying
restriction holds:

  ( FX FE XE)( IG EG IE) = ( IX IE XE)( FG EG FE)

which implies that 

FX.E IG.E IX.E FG.E = 0 

which is a vanishing tetrad (see Chapter 7) of partial correlations. 
This chapter has discussed a number of topics: The theory

of measurement error, error in causal variables, and causal variable
with disturbance correlations. Chapters 7, 8, and 9 return to the 
problem of measurement error. In the next chapter it is
demonstrated that instrumental variable estimation can be applied to 
nonhierarchical models. 
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6
R E C I P R O C A L
C A U S A T I O N

All the models discussed in the previous two chapters have not 
allowed feedback. Those models did not allow for a variable to both
cause and be caused by another variable. In this chapter attention is
directed toward nonhierarchical or feedback models, which the
econometricians call simultaneity. The chapter is divided into three
sections. The first section outlines general considerations of
nonhierarchical models. The second section discusses estimation. The
third and final section presents a nonhierarchical model for halo effect. 

Figure 6.1  A simple feedback model.

To derive the correlation between X1 and X2, take the 
covariance between Equations 6.1 and 6.2 to obtain

     r12 = acr12 + bcr1U + adr2V       [6.3]

G E N E R A L  C O N S I D E R A T I O N S To solve for r1U and r2V take the covariance of X1 with 
Equation 6.1 and X2 with 6.2 to obtain

The simplest nonhierarchical model is
1 = ar12 + br1U

X1 = aX2 + bU      [6.1] and
1 = cr12 + dr2V

X2 = cX1 + dV   [6.2] Rearranging yields
br1U  =  1 = ar12

where rUV = 0, as in the path diagram in Figure 6.1. It is later shown
that the disturbances of each equation are correlated with the causal 
variable in the equation, that is, r2U  0 and r1V  0. Because each
variable causes the other, it is not possible to use multiple regression 
to estimate the path coefficients. There is another obvious problem
with the model in Figure 6.1. There are two free parameters, a and c,
and only one correlation if only X1 and X2 are measured. The model
then is underidentified .

and
dr2V  = 1 cr12

Substituting these values for br1U and dr2V into Equation 6.3 yields

r12 = acr12 + c(l ar12) + a(l cr12)

Simplifying gives the result of 
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   a + c which equals .790.    r12 =  1 + ac Since the change in X2 echoed back to change X1, the X1 score
changes by more than the initial 1. The total change in the person's
score on X1 isTo achieve identification one might assume that a = c and then

solve for a:
1 + (.6)(.4) + (.6)2(.4)2 +…+ (.6)i(.4)i +…

2a   r12 =
 1 + a2 or

       .6
Rearranging yields   1 – (.6)(.4)

r12a2 – 2a + r12 = 0 which equals 1.32. In general, with Equations 6.1 and 6.2 if a person's 
score on X1 is changed by g units, the total change in X2 is cg/(l ac)
and in X1 is g/(1 ac). Since it was stated in Chapter 1 that causation is 
ordinarily assumed to occur with a time lag, a model with feedback
would create effects that would last forever. Of course the effect may
very well dampen out very quickly, but in theory the effect never stops. 

Applying the quadratic theorem results in 

2 ± (4 – 4r 2)1/2
12 a =

 2r12

Because of this "eternal" effect of feedback it is critical to 
examine systems of variables that are in equilibrium, that is, where a 
causal effect is not just beginning but has generally dampened out.
Heise (1975, p. 227) nicely illustrates how mistaken conclusions can 
be made when the system of variables is not in equilibrium.

1 ± (1 – r1
2)1/2

2 a =
r12

As an example, if r12 = .5 then a and c would both equal .286 or 3.732.
(Recall from Chapter 4 that standardized regression coefficients can be 
greater than one.) 

M O D I F I E D  T R A C I N G  R U L E  

E Q U I L I B R I U M  A S S U M P T I O N Feedback models create very special issues for the analyst. For 
instance, although the first law still holds, with feedback models the 
tracing rule does not hold in a simple way. The tracing rule can be 
modified so that it may hold for feedback models. The discussion must
be divided into two parts. First discussed is the case of determining r12

where X1 causes X2 and X2 and X1 are involved in a feedback
relationship. The key here is that X1 and X2 are not in a feedback 
relationship.

For the model in Figure 6.1, assume that a = .4 and c = .6. It
then follows that r12 = .806. If the score of a person on X1 is increased
from zero to one, the person's score on X2 is changed by .6. But this in
turn affects the X1 score, since X2 causes X1. The score on X1 is now
increased by (.6)(.4) = .24. This in turn affects X2 ad infinitum. The 
total change in X2 is 

.6 + .6(.6)(.4) + .6(.6)2(.4)2 +…+ .6(.6)i(.4)i +…
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a + fb   r12 = 
  1 – bc

f + ac   r13 = 
  1 – bc

Thus, to apply the modified tracing rule for the correlation between a 
variable and a second variable that is involved in a feedback
relationship with a third variable, simply apply the tracing rule learned 
in Chapter 3. This quantity is then divided by 1 gh, where g is the
path from one of the feedback variables to the other and h is the second 
feedback path. 

Figure 6.2  An exogenous variable in a nonhierarchical system.

Examining the path diagram in Figure 6.2, one might be
tempted to apply the tracing rule and say r12 equals a. Examine,
however, the tracings from X1 to X2. There is first a path directly from
X1 to X2 but there is also a path from X1 to X2 to X3 and back again to
X2. This would seem to violate the tracing rule since that rule does
not allow tracing through the same variable twice. One can, however,
argue that because due to feedback the values of X2 change, the
"same" variable is not traced through. Whatever the rationale there
are the following paths: a + abc + a(bc)2 + a(bc)3 and so on. It then
follows that

The second part of the modified rule concerns a correlation 
between X1 and X2, where X1 is in a feedback relationship and X2 is 
directly or indirectly caused by XI. The feedback relationship that X1 is 
in may or may not involve X2 but X1 does cause X2. First find the 
reduced form of the variable in the feedback relationship, that is, the 
equation without feedback incorporated into it. Then redraw the path
diagram for the reduced form and apply the tracing rule. (This 
procedure also works for the previous part.) As an example, to 
determine r23 in Figure 6.2, write the equation for X2, aX1 + bX3 + dU,
and for X3, cX2 + eV. Substituting the equation for X3 into the X2

equation yields
ar12 = a (bc)i = 

1 – bc

X2 = aX1 + b(cX2+ eV) + dUThus in a sense the tracing rule still applies but there are an infinite 
number of tracings. 

which reduces to The correlation r13 in Figure 6.2 can be computed in a similar
fashion:

 a d be acr13 = ac (bc)i = X2 = X1 + U + V
 1 – bc 1 – bc 1 – bc 1 – bc

If a path is added from X1 to X3 and is labeled f, it would then follow
that
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The solution for c is straightforward: 

     r13   c =
r12

Because c is known, one can solve for b from the p23 equation to find

      r r r113 23 2b = 
r23r13 r12

and a in terms of b and c

a = r12(1 bc)

Figure 6.3 Reduced from path diagram.
To test whether a is zero, one tests whether 12 = 0; to test if b is zero,

13.2 = 0; and to test c we see if 13 = 0. It should be noted that the 
model in Figure 6.2 is not identified if rUV  0. 

Now to compute r23 redraw the path diagram as in Figure 6.3. The
correlation between X2 and X3 then is c + be2/(1 bc). Note that a 
different but equivalent answer would have been obtained had the 
reduced form of X3 been solved for. Although the tracing rule is valid
when so modified, generally it is much simpler to apply the first law. I 
state the rule only because it may occasionally be helpful. 

   To estimate d take the covariance of X2 with the equation for 
X2 to obtain 1 = ar12 + br23 + dr21 Since r21 = d/(l bc) by the use of the
modified tracing rule, it follows that 

      d1 = ar12 + br12 +Returning to the model in Figure 6.2, it happens to be
identified. As has been shown 

    1 bc

Now solve for d to obtaina r12 = 
 1 bc d = ((l ar12 br23)(l bc))1/2

ac r13 = A simpler and more direct solution for d is to take the variance of 1 bc

dU = X2 – aX1 bX3and with some algebraic work it can be shown that 

b + c which is  r23 = 
 1 + bc

b2 + 2abr13  2ar12  2br23
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and similarly r13 equals The solution for d is then the square root of the preceding
expression. By a similar procedure one can obtain e as 

i + eg
1 + egi(l + c2  2cr23)1/2

and r23 equals or one can derive e by taking the covariance of X3 with its structural 
equation g + ie

1 + egi
e = ((l cp23)(1  bc))1/2

Although the model is just-identified with three free parameters
and three correlations, there is no simple solution to the
equations.

Needless to say the two solutions for both d and e are algebraically
equivalent.

I N D I R E C T  F E E D B A C K

Consider the model in Figure 6.4. There is an indirect feedback
loop: X1 causes X3 which in turn causes X2, and X2 causes X1. The 
equations are 

X1 = eX2 + fU
X2 = gX3 + hW

 X3 = gX1 + jS

Substituting the equation of X3 into the equation of X2 yields

  X2 = giX1 + gjS + hW       [6.5] Figure 6.4  Indirect feedback.

Note that there now is a formal equivalence between the two equations
6.4 and 6.5 and the two equations 6.1 and 6.2; that is, let e = a, f = b, gi
= c, and gjS + hW = dV. The correlation then between X1 and X2 is 

E S T I M A T I O N

Most of the preceding discussion would not be found in the
consideration of feedback models in other texts. Those texts
concentrate on the topic in this section: the use of two-stage least
squares to estimate parameters for models with feedback. 

e + gi
1 + egi
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Figure 6.5 Two-stage least-squares example.

Consider the model in Figure 6.5. Variables X3 and X4 are 
involved in a feedback relationship. Variables X1 and X2 are purely
exogenous with X1 causing X3 and X2 causing X4. The disturbances
of X3 and X4 have been allowed to be correlated. Naively, one
might think that one could simply regress X3 on both X1 and X4 and 
regress X4 on X2 and X3 to obtain estimates of the path coefficients.
They do not ordinarily provide unbiased estimates of the 
parameters since X4 is correlated with the disturbance of X3 and X3

is correlated with the disturbance of X4. Using the modified
tracing rule these correlations are

 ed + frUVr4U =
 1 cd

and

  fc + erUVr3V =
   1 cd

Note the correlation still exists even if rUV = 0. Since the disturbance is 
correlated with a cause, simple multiple regression breaks down. 
However, as was seen in the last chapter, in the case of an exogenous
variable correlated with a disturbance, identification is still possible
given certain zero paths. In Figure 6.5 estimation may be possible since 
there is no path from X2 to X3 and from X1 to X4. Using the terminology

of the previous chapter, X2 can be used as an instrument for the X3

equation and X1 for the X4 equation. For the X3 equation the first law 
yields

r13 = a + cr14

r23 = ar12 + cr24

Solve for a and c to obtain

    r r r2 r12 24 3 14 a =
r24 r12r14

and

     r r r123 12 3  c =
r24 r12r14

   To estimate b and d for the X4 equation a parallel procedure 
is followed. Using the first law one obtains

r14 = br12 + dr13

The solutions for b and d are then 

     r r r r24 13 23 14 b =
r13 r12r23

and

     r r r14 23 12 d =
r13 r12r23

     To find e first note that 

eU = X3 aX1 cX4
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Taking the variance of eU yields

e2 = 1 + a2 + c2  2ap13  2cp34 + 2acp14

To solve for e simply take the square root. By a similar set of steps it 
can be shown that 

f2 = 1 + b2 + d2  2bp24  2dp34 + 2bdp23

To find rUV simply take the covariance of eU with fV to obtain 

r34(1 + cd) + bcr24 + abr12 + adr13 c d ar14 br23

To solve for r1V simply divide by ef.
Ordinarily two-stage least squares is computationally more

efficient than the preceding procedure. Also, as was noted in the
previous chapter, overidentified models present no difficulty for
two-stage least square estimation.

To apply two-stage least squares to an equation for Xi with a 
set of m exogenous variables and k variables which are directly or
indirectly caused by Xi, at least k of the exogenous variables must

   1.  Not directly cause Xi.
2.  Not be correlated with the disturbance of Xi.

These k exogenous variables are called the set of instruments. To
avoid empirical underidentification, the regression of each of the k
endogenous variables on the instruments must first yield moderate
to high multiple correlations and the predicted variables of the
second stage must not be highly correlated among each other. The
reader should refer to Chapter 5 for a more detailed discussion of 
these conditions. 

To apply two-stage least squares, one exogenous variable 
must be omitted from the equation of each variable in a feedback loop.

This variable can be called the instrument. However, the same variable
cannot be omitted from both equations. To understand this, examine
the path diagram in Figure 6.6 which is taken from Duncan (1975, p.
84). It would seem that X2 could be used as an instrument for both the 
X3 and X4 equation. However, it cannot be since the model in Figure 
6.6 is underidentified. Although there are six free parameters and six 
correlations, there is a hidden pair of overidentifying restrictions. To 
find them use the modified tracing rule for feedback models:

     a + bc r13 = 1 cd

     b + ad r14 = 1 cd

a + bc r23 =  r12 1 cd

b + ad r24 = r12   1 cd

Figure 6.6  Duncan example.

The following overidentifying restrictions then hold:

23 12 13 = 0
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and
24 12 14 = 0 

These overidentifying restrictions simply state that X2 shares no 
variance with X3 or X4 except through X1. Given these overidentifying
restrictions, none of the parameters of the model can be estimated. 

Duncan has noted that the "estimate" of c is 

r r r23 12 13

r24 r12 r24

and of d is 

r r r24 12 14

r23 r12 r13

He then points out the curious fact these two estimates are reciprocals
of each other. However, neither of these two values are mathematical
estimates. Note that, given the overidentifying restriction, the 
denominators of each expression are zero which makes the formulas
mathematical nonsense. Thus neither of the "estimates" are really
estimates. The "estimates" of a and b are 

   r r r r13 24 2 14a =
     r24 r12 r14

   r r r1 r23 14 3 24 b =
      r23 r12 r13

Again note that both of the denominators are zero. 

A  N O N H I E R A R C H I C A L  M O D E L  F O R  H A L O  E F F E C T

Instead of an empirical example of nonhierarchical models, a
conceptual example is presented in this section. Within the topic of person
perception in social psychology, it is well known that the ratings Gf traits

and behaviors tend to be biased by the halo effect (Berman & Kenny, 
1976). Observers who believe that two traits go together will in fact see 
the traits as going together whether they in fact do or not.

There are many possible types of models that one could posit for
halo. What follows is one such model. Imagine that two traits, friendly and
intelligent, have been rated by two raters for a number of ratees.

Designate F as the true friendliness of the ratees and I as the
true intelligence. Then let F1 and I1 be the ratings of the two traits by 
rater 1 and F2 and I2 by rater 2. In Figure 6.7 these six variables are 
theoretically related in a path diagram. It is first assumed that the
ratings of F are indeed caused by F and similarly I causes I1 and I2.
What brings about halo is that F1 and I1 are assumed to be involved in 
a feedback relationship. So also are F2 and I2. Thus the ratings of the 
two traits mutually influence each other. To simplify the model, F and 
I are uncorrelated and various equalities of parameters have been
assumed in Figure 6.7. 

Figure 6.7 Halo effect model.

Various authors (Campbell & Fiske, 1959; Stanley, 1961)
have stated or implied that the different rater-different trait
correlation is free from halo. Thus if the two traits are uncorrelated
(rFI = 0 as in Figure 6.7) then the different rater-different trait
correlations should be zero, rF1I2 = rF2I1 = 0. This might be true for
some models of halo but it is not true for the model in Figure 6.7. 
Note that both rF1I2 and rF2I1 equal

a2c + b2d
cd1 –
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7
S I N G L E  U N M E A S U R E D  

V A R I A B L E S
In this chapter unmeasured exogenous variables are

considered and a factor analysis vocabulary is used as well as a
regression analysis vocabulary. Many of the important variables in
causal models cannot be directly observed but can be measured only
with error. Measured variables are often imperfect glimpses of an
underlying reality, and unmeasured variables must be added to the
structural model. There are four sections to this chapter. The first
section introduces the factor analysis model and discusses the
problem of identification. The second section takes up the question of
estimation, and the third considers specification error. The final 
section discusses the measurement of factors.

F A C T O R  M O D E L S

I D E N T I F I C A T I O N

Our initial concern is with the factor model and not with the 
estimation of parameters of the model or, as it is usually called, factor
analysis. In a factor model the measured variables are assumed to be a 
linear function of a set of unmeasured variables. These unmeasured,
latent variables are called factors. Traditionally, one distinguishes three 
different types of factors: common, specific, and error. A common
factor is an unmeasured variable that appears in the equation of two or 
more measured variables. A specific factor appears in a single equation 
and represents true variance that is not common to the other variables. 
An error factor is simply the errors of measurement of a single 

variable. Procedurally it is difficult to distinguish between specific and
error factors, and so they are usually lumped together to form the
unique factor.

There are two different types of parameters in factor models:
factor loadings and factor correlations. A factor loading is the 
regression coefficient of a measured variable on a factor. If both the
factor and measured variable are standardized, the loading is a beta
weight. The factor loadings are multiplied by the factors and summed
to equal the measured variable. The variable is said to load on a factor.
In special cases the factor loading can equal the correlation of the 
variable with the factor. 

The factors themselves may be intercorrelated. The
correlations are called factor correlations. Traditionally, the unique
factors are uncorrelated with the common factors and with each
other. As is demonstrated in this chapter, the unique factors may be
correlated. If the common factors are uncorrelated with each other,
the solution is said to be orthogonal, and if correlated, it is said to
be oblique.

The variance of each measured variable can be partitioned
into three components: common, specific, and error. The common
variance, called the communality, is the squared multiple correlation
of the common factors with the measured variables, and its usual
symbol is h2. If the common factors are orthogonal (that is, 
uncorrelated), then the communality simply equals the sum of 
squared common factor loadings. The communality plus the specific
variance equals the reliability of a variable and the remaining
variance is due to error. The specific and error variance may be 
lumped together to form the unique variance.

In this chapter, we see that with causal models the usual 
bugaboos of both choosing communalities and choosing a rotation
scheme are avoided. Additionally, it is shown that the common factors 
take the role of exogenous variables, the unique factors of 
disturbances, the factor loadings of path coefficients, and the factor 
correlations of correlations between exogenous variables. 
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O N E  F A C T O R ,  T W O  I N D I C A T O R S

Single-factor models presume that the measured variables are
all indicators of a latent construct. Using the vocabulary of test theory
introduced in Chapter 5, the measures are a set of congeneric tests. 
Measures that correlate more highly with the latent construct have 
proportionately less unique variance and can be used to name the 
construct. In the limiting case a correlation of one implies the measure
and the construct are one in the same.

Figure 7.1  Single-factor model, two indicators.

In Figure 7.1 there is a causal model in which X1 and X2 are 
caused by F; U causes X1, and V causes X2, where both U and V are
disturbances which are called errors of measurement in latent variable
models. If X1 and X2 are measured, all the measures are endogenous
variables, all the causes are unmeasured, and the relationship between
X1 and X2 is spurious. Disturbances in latent variable models are 
referred to measurement errors and are often symbolized by E. What is 
the status of identification of the model in Figure 7.1? There is only a
single correlation, r12, but there are two free causal parameters, a and b.
As with models from the previous chapters, the paths from the 
disturbances are constrained since c = (l – a2)1/2 and d = (1 – b2)1/2.
(Alternatively, the disturbance paths are fixed to 1.0 and V(U) = 1 – a2

and V(V) = 1 – b2. Since there are more parameters than correlations, 
the model is underidentified. The parameters of the model cannot be 
estimated, but both a2 and b2 must be at least r12

2 To achieve 

identification it might be assumed that a = b. It would then follow that
a = b = r12

1/2 . However, if the value of r12 were negative, it would
contradict any assumption that a = b since a parameter would have to
be imaginary, the square root of minus one. 

The units of measurement of the factor are arbitrary. The 
approach taken here, which is consistent with the factor analysis
tradition, is to standardize the factor. An alternative approach is to use 
the units of one of the measures. In this case a loading of one measure
is set to one and the variance of the factor is free. 

O N E  F A C T O R ,  T H R E E  I N D I C A T O R S

The status of identification changes if there are three measured
variables that are caused by the latent variable, F. The measures X1, X2,
and X3 are sometimes called the indicators of the latent construct. Also
the correlation of an indicator with a factor is called an epistemic
correlation (Costner, 1979) and is the factor loading. As shown in 
Chapter 3, given

   X1 = aF + dU1

   X2 = bF + eU2

   X3 = cF+ fU3

FUi  = 0 (i = 1,2,3) 
UiUj = 0 (i j)

it follows from the tracing rule that r12 = ab, r13 = ac, and r23 = bc.
Because there are three parameters and three correlations, the model is
just-identified. The estimates are 

r r12 13a2 = ———r23

r r12 23b2 = ———
r13
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r r than one. Although correlations computed from data cannot be larger
than one, correlations constructed from data can be out of bounds. If a2

is larger than one, then the solution for d is imaginary. Estimates of 
parameters larger than one in factor analysis are examples of the
Heywood case (Harmon, 1967, p. 117). 

13 23c2 = ———r12

The disturbance paths are simply

   d = (l – a2)1/2

Using the sample data, it is possible to obtain an estimate of a
loading larger than one or imaginary, even if the model is correctly
specified. A method then is needed to test whether the anomalous 
estimate is due either to sampling error or to specification error. With a
little bit of algebraic manipulation it can be shown that both imaginary 
and loadings larger than one occur only in the sample if r12.3, r13.2, or
r23.l is negative. Thus a test that the anomaly is plausibly explained by
sampling error is that a negative partial correlation does not
significantly differ from zero. If it is significantly negative, then
specification error is indicated. 

   e = (l – b2)1/2

   f = (l – c2)1/2

The direction of the scale of the factor is arbitrary. One can
then take either the positive or negative root of a2 or any of the other
parameters. As a rule one normally tries to make as many loadings as 
possible positive. Once the sign of one parameter has been set, the sign
of the others have been determined. For instance, if a is taken to be
positive and if r12 is negative and if r13 is positive, b must be negative 
and c positive. However, if a is taken to be negative, then b is now 
positive and c is negative. In either case, r23 must be negative, and if it
is not, some specification error is indicated. In general, it must hold
that r12r13r23 > 0 for there to be no contradiction about the direction of
the scale of the unmeasured variable. With three variables for there to
be no contradiction all or only one of the correlations should be 
positive. If r12r13r23 < 0, one of the factor loadings must be imaginary. 

O N E  F A C T O R ,  F O U R  I N D I C A T O R S

In Figure 7.2 there is one common factor, F, and four 
endogenous variables, X1 through X4.The disturbances or errors of 
measurement, U1 through U4, are assumed to be uncorrelated with F
and with each other. The model is over-identified in some way because
there are four free parameters and six correlations. Using the tracing
rule, the six correlations are 

Thus with three indicators the single factor model is identified.
However, if any of the loadings (a, b, or c) are zero, or near zero, the 
model is empirically underidentified. For instance, let a equal zero and
note that the estimates for b2 and c2 are undefined since r13 = r12 = 0.
Thus to identify empirically the loadings on a single factor, the 
loadings must be of moderate size. 

r12 = ab
r13 = ac
r14 = adIt is also mathematically possible that the value obtained for a2

or any loading to be larger than one. For a2 to be larger than one, it 
follows that |r12r13| > |r23|.  Although a value larger than one is 
mathematically possible, in the population it indicates a specification
error. Because a is the correlation of F with X1, it cannot be greater

r23 = bc
r24 = bd
r34 = cd



1 4 4 C O R R E L A T I O N  A N D  C A U S A L I T Y Chapter  7 S I N G L E  U N M E A S U R E D  V A R I A B L E S 1 4 5

Figure 7.2  Single-factor model, four indicators.

One way to solve for the parameters is to view this four-
variable model as a set of four different three-variable models; that is, 
separately analyze variables X1, X2, and X3, then analyze X1, X2, and X4,
then, X1, X3, and X4, and finally, X2, X3, and X4. Then separately solve
for the parameters from each of these three variable cases as was done
in the previous section. Working through this strategy yields the 
following solutions for each parameter:

r12r13 r12r14 r13r14a2 = ———  =  ——— = ———r23 r24 r34

r12r23 r12r24 r23r24b2 = ———  =  ——— = ———r13 r14 r34

r13r23 r13r34 r23r34c2 = ———  =  ——— = ———r12 r14 r24

r14r24 r14r34 r24r34d2 = ———  =  ——— = ———r12 r13 r23

There is an interesting pattern in the subscripts of the
preceding formulas. Although it makes no sense algebraically, cancel 
the subscripts of the correlations. For instance, for the first expression 
for a2, the 2 and 3 cancel leaving two l’s. In every case two subscripts

of the endogenous variable remain. Using "subscript algebra," all that 
remains is the subscript squared which provides a perfect analog to the 
parameter estimate which is also squared. I do not recommend 
subscript algebra as a replacement for careful analysis, but it can serve 
as a useful mnemonic and check. 

The disturbance or measurement error paths can be simply
estimated by

e = (l – a2)1/2

f = (l – b2)1/2

g = (l – c2)1/2

h = (l – d2)1/2

Because there are multiple estimates for each parameter,
overidentifying restrictions can be solved for. All the preceding 
equalities of the parameter solutions imply only the three following 
overidentifying restrictions:

12 34 – 13 24 = 0 
12 34 – 14 23 = 0 
13 24– 14 23 = 0 

because 12 34 = 13 24 = 14 23 = abcd. It can be quickly seen that if
any of the two preceding restrictions holds, the third immediately
follows. There are then only two independent overidentifying
restrictions, which was already known because there are four free
parameters and six correlations. This excess of correlations yields two
independent over-identifying restrictions, that is, two constraints on the
correlation matrix. 

These overidentifying restrictions are called vanishing tetrads.
They are called vanishing tetrads because four variables are involved 
and the difference between pairs of products equals zero; that is, they
vanish. Note that the tetrads satisfy subscript algebra. For instance, 
rearranging Equation 7.1, the following holds 
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12 34  ———  = 1 
13 24

and the subscripts all cancel to yield one.

O N E  F A C T O R , N I N D I C A T O R S

In the general case, given n measures and a single factor
model, there are (n – l)(n – 2)/2 estimates of each parameter. Because
with every four variables there are three tetrads, the  total number of
tetrads are 

n(n – l)(n – 2)(n – 3)—————————
8

The total number of independent tetrads is the number of correlations, 
n(n –1)/2, minus the number of free parameters, n, which yields n(n – 
3)/2 restrictions on the correlations, which is sometimes referred to as 
the degrees of freedom of the model.

Vanishing tetrads are very common overidentifying
restrictions in models with unobserved variables. More often than not 
if there is an overidentifying restriction, it is a vanishing tetrad. 

T E S T  O F  A  V A N I S H I N G  T E T R A D

Deferred until this chapter is the significance test of a 
vanishing tetrad. Duncan (1972) resurrected a test for the vanishing
tetrad which was originally suggested by Spearman and Holzinger 
(1924). The test is not well known and yields a different value 
depending on the order of the products of the correlations. I have 
suggested a test for the vanishing tetrad (Kenny, 1974) that can be 
made by using a computer program available at most installations: 
canonical correlation. The use of canonical correlation analysis for 
models with unmeasured variables has been suggested by other authors 

(e.g., Hauser & Goldberger, 1971), but none had explicitly suggested
the canonical correlation as a test for the vanishing tetrad.

For those who may be unfamiliar with canonical correlation,
there are two sets of variables, say X1, X2, . . ., Xp, and a second set Y1,
Y2, … Yq. There are then p variables in set X and q in set Y. The
canonical correlation is the correlation between a linear combination
of set X with a linear combination of set Y where the weights for both 
X and Y are set to maximize that correlation. If both p and q are
greater than one, a second canonical correlation can be obtained such 
that the new linear combinations are orthogonal to the prior
combinations. The total number of canonical correlations is equal to
p or q, whichever is smaller.

Canonical correlation can be used to test a vanishing tetrad of 
13 24 – 14 23 = 0 (Equation 7.3). Let X1 and X2 be set "X" and X3 and 

X4 be set "Y." To determine how the four variables divide into the sets 
note that the tetrad does not involve r12 and r34. The simple rule is that
X1 and X2 form one set (r12) and X3 and X4 (r34) the second set. For the 
tetrad of Equation 7.1 the missing correlations are r14 and r23. Thus X1

and X4 form one set and X2 and X3 the second set. 
It can be shown that if r13r24 – r14r23 = 0, then the second 

canonical correlation will be zero. Thus the null hypothesis, Equation 
7.3, can be tested by the hypothesis that the second canonical 
correlation is zero. In the same way the remaining tetrads can be tested.
A significance test for this special case of p = q = 2 is given by 
Bartlett's 2 approximation (Tatsuoka, 1971, p. 189):

2 = – (N – 3.5) loge(l – r2
2)       [7.4]

where N is the sample size and r2 is the estimated second canonical 
correlation and the 2 has one degree of freedom.

In general the computation of canonical correlations is rather 
involved, but a handy solution is relatively simple when both p and q
are two. Solve the following quadratic equation for 2
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    a 4 + b 2 + c = 0        [7.5] hundred eighteen terminal cancer patients were asked to state the 
strength of their concerns about a number of issues. The four concerns
are concerns about friends (X1), concerns about existence (X2),
concerns about family (X3), and concerns about self (X4). The 
correlations between these four variables are contained in Table 7.1. A
path model for the four variables, contained in Figure 7.2, has the four
specific concerns caused by some unmeasured general concern. 

where

a = (l – r12
2)(1 – r34

2)

     b = (r14 – r12r24)(r13r34 – r14) + (r23 – r13r12)(r24r34 – r23)
    + (r13 – r12r23)(r14r34 – r13) + (r24 – r14r12)(r23r34 – r24) A single factor model adequately fits the data because the three 

tetrads appear to vanish 
c = (r13r24 – r14r23)2

  (.242)(.719) – (.551)(.416) = –.055
Because Equation 7.5 is quadratic, there are two solutions for 2.
The second canonical correlation squared is set equal to the smaller
solution of Equation 7.5. If c equals zero, then the smaller solution
of 2 of Equation 7.5 is zero. Note that c exactly equals the square
of a tetrad.

  (.242)(.719) – (.577)(.311) = –.005
  (.551)(.416) – (.577)(.311) = .050

The fact that the three preceding tetrads do not perfectly vanish can
be explained by sampling error because the 2 for the tetrads are 1.00,
0.01, and 1.42, respectively. None of the 2 values even approaches
statistical significance. Remember if the 2 is not significant, the
tetrad vanishes and a single-factor model is indicated.

As an illustration, consider the correlations from Duncan
(1972, p. 53): r12 = .6508, r13 = .7304, r14 = .7548, r23 = .7100, r24 = 
.6999, and r34 = .6642, where the sample size is 730. A test of the 
hypothesis that r13r24 – r14r23 = 0 yields a second canonical
correlation of .050 and 2(1) = 1.80, which is not statistically
significant at the .05 level. The solution of Equation 7.5 yields a = 
0.322, b = –0.247, and c = 0.0006.

Because a single-factor model fits the data, the next question
is, what are the path coefficients from the factor to each measure?
Earlier it was stated that these path coefficients are factor loadings. A 
comparison of four different methods of estimating the loadings
follows:

E S T I M A T I O N
1.  Pooled path analytic.
2.  Principal components.The preceding sections present only the path analytic estimates

of the path from the factor to this measure. As the reader is no doubt
aware, there are a myriad of possible estimates of factor loadings from 
different methods of factor analysis. Before discussing the mechanics
of estimating path coefficients, consider a data set to be used as an
illustration. The data are taken from unpublished data of B. Malt. One

3.  Principal factors. 
4.  Maximum likelihood.
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Table 7.1  Four Concerns of Terminal Cancer Patients: Correlations
below Diagonal and Residuals from the Maximum Likelihood
Solution above the Diagonala

The numerator involves all possible pairs of correlations with 
variable X1, and the denominator is the sum of all correlations not
involving X1. This procedure assumes that all the correlations are 
positive in sign. If some of the correlations are negative, it is
advisable to sum absolute values. In a similar fashion we can pool the
estimates for the other path coefficients. These pooled path analytic
estimates for the correlations in Table 7.1 are in Table 7.2. They fall
between the three path analytic values. It is interesting to note that the
loading for concerns about self, or X4, is almost equal to one. Thus,
the unmeasured underlying concern is very close to a concern about
the self.Earlier it was shown that there are three different formulas for

path analytic solutions when there are four measured variables. If one
substitutes in the sample estimates of the correlations, the estimates of 
the loadings for the correlations in Table 7.1 are

Table 7.2  Factor Loadings for the Correlations in Table 7.1 

a: .655, .579, .665
b: .370, .418, .424
c: .841, .829, .733 
d: .996, .868, .981

These different estimates of the same parameter are fairly
homogeneous the largest difference being only .128. This is not 
surprising because the overidentifying restrictions were met. When the 
tetrads vanish, the different estimates are exactly the same. Now the 
problem arises of how to combine these parameter estimates. One 
solution might be a simple arithmetic average. This is a flawed strategy
because it fails to weight the estimates by the size of the correlations.
An alternative strategy is recommended by Harmon (1967): Examining
the estimates of a2 note that they all equal the product of two
correlations divided by a third. Why not simply pool the numerators
and the denominators separately? Then to estimate a2 divide the pooled
numerator by the pooled denominator to obtain 

The second solution discussed is perhaps the best known: the 
method of principal components. The nonmathematical logic of this 
solution is as follows: Let us create a linear composite of the measured
variables, choosing the weights of this composite so that we maximize
the sum of squared correlations of the variables with the composite.
Because a squared correlation can be thought of as variance explained,
we choose the composite to maximize its ability to explain the variance
of the measured variables. Mathematically this sort of problem turns
out to be an eigenvector problem, which is computationally a bit messy
but tractable. The resultant correlation of the composite with each
measure is the factor loading. There is clear1y something backward
about a principal component solution, at least when one is doing causal
modeling. With principal components the factor is directly measurabler12r13 + r12r14 + r13r14—————————r23 + r24 + r34
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because it is defined as a weighted sum of the measured variables. In
causal modeling, each measured variable or any finite sum of them is
only an imperfect indicator of the factor. 

The factor loadings from principal components are in Table 7.2.
Although their relative ranking compares favorably to the pooled path
analytic solution, they are hardly the same solution. The most striking
fact about the principal component solution is that in three of the four
cases the factor loadings are larger than the pooled path analytic
solution. If we use the principal components solution to estimate the
correlations between the measured variables, we overestimate all six of
the correlations. The components solution does not attempt to fit the
correlations, but rather it attempts to maximize the sum of squared factor
loadings. Because this is the goal, a principal components solution does
not provide a very good estimate of path coefficients.

To obtain the true factor loadings the communalities should be
placed in the main diagonal of the correlation matrix before the
eigenvectors are computed. But because the factor loadings are needed
to compute the communalities, there is a chicken-egg problem. We
need the communalities to compute the factor loadings and we need the 
loadings to compute the communalities. One way around this problem
is to find the communalities by iteration. Start with some communality
estimates and then solve for the factor loadings by the method of 
principal factors. (A principal factors solution attempts to maximize 
the explanation of only the common variance, not all the variance as 
does principal components.) Taking these factor loadings we solve for
communalities, and with these new communalities we solve for the 
factor loadings. We continue until the factor loadings stabilize. To 
hasten the convergence, the initial communalities are the squared
multiple correlations of each variable with the other variables taken as 
the predictors. 

The iterated communality solution for the factor loadings is 
contained in Table 7.2. The values more closely resemble the pooled 
path analytic solution than the principal components solution. The 

solution does result in somewhat less variable loadings than the path 
analytic solution. 

The final solution discussed is maximum likelihood factor
analysis. Of the four solutions only maximum likelihood provides a
statistical estimate of factor loadings or path coefficients and only
maximum likelihood factor analysis provides significance tests of
goodness of fit of the model. A likelihood is the analog of probability
for continuous distributions. One can compute the likelihood of a set of 
estimates of factor loadings given the sample correlation matrix and
the assumption of multivariate normality. The method of maximum
likelihood chooses the most likely estimates. Like the previous method,
it is also an iterative solution. Although the mathematics of maximum
likelihood factor analysis may remain a "black box" for most of us, 
suffice it to say the computations have proved to be tractable only by
computer. The pioneering work was done by Lawley and Maxwell
(1963), and the major computational breakthrough was made by 
Jöreskog. There is little doubt that maximum likelihood factor analysis
will revolutionize factor analysis because it puts factor analysis
estimation on a firm statistical ground. 

Unlike most traditional methods of factor analysis, maximum
likelihood factor analysis can be employed in either a confirmatory or
an exploratory manner. Most methods of factor analysis can only be
employed in exploratory fashion; that is, little or no structure can be
imposed on the solution. In the case of a model with multiple factors 
the solution is not unique and can be rotated to an infinite number of 
alternative solutions. If the maximum likelihood solution is combined
with a confirmatory approach, the solution is unique and no rotation of
the solution is possible.

If a confirmatory approach is chosen, the model must be
identified. The researcher must impose enough constraints to make the 
parameter estimates unique. The two common types of constraints are 
fixing the parameters to a given value and forcing two parameter 
estimates to be equal. With maximum likelihood factor analysis one 
can fix factor loadings, factor variances, factor correlations, factor 
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unstandardized solution is desired, a variance-covariance should be the 
input to the factor analysis. If one has obtained the standardized 
solution, one can destandardize in the following way. For the above 
example assume for illustrative purposes V(X1) = 2, V(X2) = 3, V(X3) = 
2, and V(X4) = .5. If we fix the unstandardized loading of X1 on F as
one, it follows from the standardized solution that 

covariances, or communalities to a given value. Usually the fixed value 
is zero or one. For instance, a loading or a factor correlation is set to
zero or a loading or factor variance is set to one. Equality constraints
are also possible: Two loadings or factor correlations may be set equal
to each other. In this text maximum likelihood factor analysis is always
employed in a confirmatory manner. Thus maximum likelihood factor
analysis is at times referred to as confirmatory factor analysis.

  C(X1,F)In Table 7.2 is the maximum likelihood solution. It is closest to 
the iterated communality solution. Its estimated factor loadings are less 
variable than any of the other solutions. Maximum likelihood judges
the .242 correlation between X1 and X2 to be too small, which raises the 
estimate of the loadings for those two variables compared to the pooled 
path analytic and iterated communality solutions. In general, the 
solution with iterated communalities provides a solution very close to
the maximum likelihood solution. 

  r1F = —————— = .652 
      (V(X1)V(F))1/2

and from the unstandardized solution that

        C(X1,F)
      ———— = 1.000 

  (V(F))

Solving through for V(F) yieldsIn confirmatory factor analysis for overidentified models one 
can also test the fit of the model to the observed correlations. The test
is a 2 goodness of fit test with as many degrees of freedom as the 
number of independent overidentifying restrictions. If the 2 is not
significant then the model fits the data. Thus one is testing the null
hypothesis. The 2 test is an approximation that is valid only for large
samples. For the correlations in Table 7.1 the 2 is 1.94 and is not
significant, which indicates that a single-factor model satisfactorily fits
the data. One can view the 2 as the combined test of the vanishing
tetrads. In Table 7.1 above the main diagonal, we have the residuals 
from the maximum likelihood solution that is, the observed
correlations minus the predicted correlations. For a single-factor model
the predicted correlations between two variables is simply the product 
of the standardized factor loadings.  If one intends to compare loadings
across populations or over time, one ordinarily should estimate the 
unstandardized loadings. One would fix the loadings of one of the 
measures to some arbitrary nonzero value, usually one, and the 
remaining loadings and factor variance would then be free. Because an

V(F) = 2(.6522) = .850 

the loadings for the other variables can now be destandardized to yield

    V(X )1/2
2    r2F ———— = 0.811 

V(F)1/2

     V(X )1/2
3    r3F ———— = 1.233 

V(F)1/2

V(X )1/2
4     r4F ———— = 0.688 

V(F)1/2

Standardized loadings are often more interpretable, but the 
unstandardized loadings should, in principle, replicate better across
populations and occasions. 
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The test of tetrads 7.1, 7.2, and 7.3 yields 2 values of 0.99, 
0.64, and 2.58, respectively, none of which are statistically significant. 
The goodness of fit 2 for the maximum likelihood solution is 2.62 
which also is not significant. 

A second illustration is taken from the doctoral dissertation of
Hamilton (1975). One hundred ninety persons viewed an audio-visual
presentation of a military court martial. The case, adapted from a real
case (the names were changed to protect the guilty), concerned a 
soldier charged with the crime of killing four Korean civilians. After 
viewing the case, 190 observers were asked to state a verdict (X1),
choose a sentence (X2), rate the soldier's innocence (X3), and rate his
responsibility (X4). The intercorrelation matrix of the four variables is 
in Table 7.3. As might be expected, innocence correlates negatively
with the three other variables. If possible, it is useful to reflect or 
reverse the scale of certain variables to obtain all positive correlations.
This is not done here to show that negative factor loadings in no way
interfere with the analysis.

Table 7.4. Factor Loadings for the Correlations in Table 7.3

Table 7.3  Judgements of Person in Mock Trial:  Correlations below 
the Main Diagonal and Residuals above Diagonala,b

It should be repeated that in this chapter the specification has 
been made to give the factor unit variance. Such a specification is 
consistent with traditional factor analysis models, but it is inconsistent
with the common practice in the structural modeling literature. There 
the usual practice is to designate one of the indicator variables as a
marker. Its loading is then fixed to one and the remaining loadings are 
then free as well as the variance of the factor. Such a strategy is much
more valid if the researcher either intends to compare loadings over 
time. compare the loading of different populations, or desires to fix
error variances equal, that is, assumes the measures are tau equivalent.

In Table 7.4 are the four different sets of estimates of the path 
coefficients for the single-factor model. Again, only the principal 
components solution markedly differs from the three other solutions.
Again it tends to overestimate the loadings. The other three sets of
estimates are very similar, and again the iterated solution is closer to 
the maximum likelihood solution than the pooled path analytic
solution. Also the maximum likelihood solution is the least variable. In
Table 7.3 above the main diagonal we have the residuals. Except for
the sentence variable (X3), they are small.

C O N V E R G E N T  A N D  D I S C R I M I N A N T  V A L I D A T I O N

It is unfortunate that researchers rarely check for single
factoredness. To some degree this is a legacy due to Spearman's
two-factor theory of intelligence. Spearman argued that all cognitive
measures can be characterized by two factors. One is the g factor of
general intelligence, and the second factor is unique. Although called
the "two-factor theory of intelligence," a consequence of the theory is 
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that measures of cognitive skills should be single factored. Subsequent 
research showed that Spearman's theory did not hit the mark, and 
because then there has been an overabundance of emphasis on 
multiple-factor solutions. 

Table 7.5 Schwartz and Tessler Transplant Dataa

Tests of single factoredness can demonstrate discriminant
validity. Brewer, Campbell, and Crano (1970) argue that, before causal 
models of the type discussed in Chapter 4 are entertained, it should be 
demonstrated that the measures are not all indicators of the same
construct. Their argument is especially strong for the case in which all
the measures were obtained by the same method. There is a 
disappointing reluctance to follow the Brewer et al. suggestion. It 
seems that researchers are not willing to test a model that is
inconsistent with their hypotheses. One should, however, remember
that by its very nature a null hypothesis is inconsistent with the 
experimental hypothesis.

Consider the study by Schwartz and Tessler (1972) on the
relationship between attitudes and behavior. The dependent variable of 
their study is behavioral intention to donate an organ for transplant.
The independent variables are attitude, personal norms, and social

norms. Using multiple regression Schwartz and Tessler conclude
that personal norms are the major cause of behavioral intention
followed by attitude and, finally, social norms. Because all the 
measures are self-report, it is plausible that all the measures tap the 
same latent variable. It is not inconceivable that one's stated
attitude, behavioral intention, and report of personal and social
norms are all indicators of some under1ying disposition. One might
posit that the four measures are caused by a single factor. In Table 
7.5 are the 2 tests of goodness of fit of such a single-factor model
for six transplant operations. Because four parameters are estimated
(the factor loadings of the four variables) and because there are a
total of six correlations between the four variables, the 2 goodness
of fit tests has two degrees of freedom. For four of the six transplant
operations a single-factor model is consistent with the data, that is,
the 2 is not significant. In the giving of kidney and marrow to a 
stranger cases, the single-factor model is inconsistent with the
correlations. In all six instances the estimated factor loadings are
greatest for behavioral intention variable (.833 to .916) which
suggests that the under1ying factor reflects behavioral intentions
more closely than it does attitude or norms. There is some support
for Schwartz and Tessler's use of multiple regression but no 
overwhelming support. Discriminant validation is not clear1y
indicated.

S P E C I F I C A T I O N  E R R O R

Although all the models that have been elaborated have
nicely fit a single-factor model, unfortunately this does not always
happen. When the model does not fit the data, some sort of 
specification error is indicated. (Moreover even if the model fits, a
simpler model may fit better.) An additional specification of 
correlated disturbances (that is, correlated unique factors) can be
made to salvage a single-factor model. Correlated disturbances
imply that there is an additional source of covariance between two
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measures besides the factor. A researcher can specify as many
correlated disturbances as there are overidentifying restrictions, but
the researcher must be careful about which are made because
certain patterns of correlated disturbances may yield an
underidentified model. For instance, with four variables there are 
two independent overidentifying restrictions, and so two sets of
disturbances can be correlated. If the disturbances of X1 and X2 and 
also of X3 and X4 are correlated, the model is underidentified. As
shown in Chapter 3, an overidentifying restriction holds:

13 24 – 14 23 = 0 

The overidentifying restriction plus the six free parameters
is one more than the six correlations. Thus, if correlated
disturbances are added to the model, one must be careful about the
status of identification. In general, to identify an n-variable
single-factor model with correlated disturbances, there must be first
at least three variables whose disturbances are not intercorrelated
and, second, for every other variable, its disturbance must be 
uncorrelated with at least one other variable whose factor loading
can be estimated. Some patterns of correlated disturbances are also
illogical. For instance, if the disturbance of X1 is correlated with X2

and X3, more often than not one should have the disturbances of X2

and X3 be correlated. It makes almost no sense to have them
uncorrelated.

Figure 7.3  One indicator as a cause.

Recall that the overidentifying restriction of a single-factor
model is a vanishing tetrad. If the disturbances of any two variables are
allowed to be correlated, then the correlation between those two
variables cannot be used in any tetrad. Thus, if the disturbances of X1

and X2 are correlated, tetrads 7.1 and 7.2 do not necessarily hold. 
However, the fact that only tetrad 7.3 holds does not necessarily imply
that the disturbances of X1 and X2 are necessarily correlated. If the
disturbances of X3 and X4 are correlated, again only tetrad 7.3 holds. 
Thus, one cannot necessarily use the tetrads to determine exactly which 
disturbances are correlated. The data always are consistent with a
multitude of structural models.

Ideally the correlated disturbances can be specified by
theory. More often they are unanticipated and may be indicated by
large residuals. Of course, adding correlated disturbances after
examining residuals makes the data analysis more exploratory than
confirmatory. Moreover, examination of the residuals may be 
misleading (Costner & Schoenberg, 1973).

If correlated disturbances are specified, the model does not
necessarily always recover the sample variances. Thus, there are residuals
not only for the correlations (covariances) but also for the variances.

A final type of specification error cannot be tested. In Figure 
7.3 is a model somewhat different than the model in Figure 7.2. The 
variable X1 causes F whereas in Figure 7.2 F causes X1. There is, 
however, no way to distinguish the two models empirically. They both 
have the same overidentifying restrictions. One might then reinterpret
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the correlations in Table 7.1 as showing that concern about one's self 
causes some latent variable which in turn causes concerns about
family, friends, and life. 

H I E R A R C H I C A L  M O D E L  T E S T I N G

It is possible to compare models in confirmatory factor
analysis to judge whether the fit improves when more parameters
are added to the model or, alternatively, to judge whether the fit
worsens when parameters are deleted from the model. This
procedure of comparing models is similar to model comparison
methods in analysis of variance (Appelbaum & Cramer, 1974),
multiple regression, and log-linear models for contingency tables
(Fienberg, 1977). In Table 7.6 are a series of single-factor models.
Near the top of the tree note the entry, free loadings. This represents
a model in which the loadings for each variable are free to vary.
Below that entry is a model with equal loadings. This model is more
restrictive than the model above it, because a model with equal
loadings is a special case of a model with free loadings. Still more
restrictive is a model in which the loadings are all fixed equal to
some value, say zero. A model with fixed equal loadings is a special
case of a model with free equal loadings.

If there are two models, say A and B, and model A is more
restrictive than B, the test of the restrictions added to model A can
be obtained by subtracting the 2 for model B from the 2 for model
A. The difference between the 2 values is itself a 2 with degrees
of freedom equal to the difference in the degrees of freedom of the 
two 2 values. For example, to test the additional constraints of 
equal loadings over free loadings, one takes the smaller 2 and 
subtracts if from the larger. The degrees of freedom of this 2 are
the corresponding difference in degrees of freedom. If the
difference 2 is not significant, then one cannot reject the null 
hypothesis that the factor loadings are equal. Similar1y one can
compare a model with equal loadings to a model in which the

loadings are all fixed at zero. The comparison of the model with
free loadings versus a model with loadings equaling zero
simultaneously tests equal loadings and zero loadings.

Table 7.6  A Hierarchy of Models 

Each of the three models in Table 7.6 has a branch. For each
model a pair of disturbances has been correlated, the same pair for each
model. One can then test for the existence of correlated errors in three 
different ways: with free loadings, with equal loadings, and zero 
loadings. The resultant 2 values will each have one degree of freedom 
but will not necessarily be equal. The same parameter is being tested
but it is added to different models. One cannot then speak of a unique
test that a certain parameter equals zero. It can be discussed only in the 
context of model comparison. This is also true of other statistical 
methods. For example one can test whether a beta weight is zero in 
multiple regression only in the context of the other predictor variables.
The beta weight may be significant with one set and not with another.

Clear1y then it is not sufficient to estimate a single model and
be satisfied if it fits. Somewhat simpler models may fit the data better,
and possibly even more complex models may indicate important
specification errors 
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F A C T O R  M E A S U R E M E N T

Actually the goal of most users of factor analysis is not to test 
a factor model but to measure factors. A measured factor for a
participant is usually called a factor score. Very often a model can be 
estimated and tested without actually measuring the factors.
Unfortunately researchers suffer from the delusion that, unless one can
assign "real scores" to participants, the variable is not real. Just because
latent variables are not observable does not mean that they are not real. 
Much in the same way, atoms are not observable, but they are very 
real, nonetheless.

One approach to factor measurement is multiple regression.
Because the correlation between each of the indicators and the factor is 
known (the factor loadings in the single-factor case), multiple
regression can be used to predict factor scores. Thus, the multiple
regression prediction equation is used to estimate factor scores since
the true factor scores are not available. For a single-factor model the
regression weights are proportional to

bi  ———     [7.6]
    1 – bi

2

where bi is the loading of Xi on the factor. If any loading is near one
then Formula 7.6 will be very large. A simple rule is that if a loading is 
.975 or better, then simply take that variable as the factor score. If the 
loading is less than .975 then all the weights will be less than 20. 

Instead of using multiple regression weights to create the 
factor scores, one could simply add the variables, weighting them
equally. The use of equal weights is called unit weighting. Regardless 
of whether regression or unit weights are used, it is useful to derive the
correlation of any composite with the factor since the correlation
squared measures the reliability of the factor score. Let ai stand for the 
weight for variable Xi; then the composite is defined as iaiXi. For a 

composite of measured standardized variables, iaiXi, its covariance
with a standardized factor is 

iaibi      [7.7]

where bi is the correlation of the variable with the factor. Thus with 
unit weights the covariance is ibi because the ai are all one. In the 
single-factor case bi can be estimated by the factor loading of Xi. To
find the correlation of the factor with the composite, one must divide 
Formula 7.7 by the standard deviation of the sum or composite. The 
variance of the composite is i jaiajrij where aj is the weight for Xj, and 
so the correlation is

a bi i—————
( aiajrij)1/2

The squared correlation between the factor and composite is 
the reliability of the composite. One can then compare the reliability
estimates by using different methods of forming the composites. If the
weights are chosen by multiple regression, the reliability of the 
composite is at a maximum. Any other composite theoretically has 
lower reliability. However, the regression weighted composite does
capitalize on chance, and most certainly reliability estimates are 
inflated. Moreover, a unit weighting of variables often correlates .95 or
better with the regression weighted composite.

Cronbach's alpha is a commonly suggested measure of
reliability of linear composites. It tends to underestimate the reliability
of a composite as the factor loadings become more variable. It does 
have the advantage of computational ease. The formula for alpha using
unit weights of standardized scores is 

nMr= ——————    1 + (n – 1)Mr
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where n is the number of measures and Mr is average correlation 
between measures. The formula is sometimes called the generalized 
Spearman-Brown formula. 

As an illustration, the reliability of factor scores is estimated 
for the study by Hamilton in Table 7.3. First one regresses F, the 
factor, on X1 through X4. The correlations among the X variables are 
given in Table 7.3 and the correlations with the factor are the 
maximum likelihood factor loadings. Obtained is the following 
regression estimate of the factor score using Formula 7.6: 

3.155X1 – .632X2 + 1.682X3 – 1.225X4

The covariance of the preceding with F is 5.078 and its 
variance is 30.859. Thus the squared correlation of the composite with
F is .836 which is the reliability of the regression weighted composite. 
If we simply sum the measures by X1 + X2 + X3 – X4, the variance is 
9.598. The correlation of the simple sum with regression composite is 
.973. We have then gained little or nothing by doing the regression 
analysis. The reliability of the sum is .791, which is only slightly less 
than .836, and so little was sacrificed by unit weights. Finally 
Cronbach's alpha of the sum is 

                                             (4)(.4665)                                     = ——————                                                 
                                          1 + (3)(.4665)   

                                       = .778 

which closely approximates the .791 value. 
Before moving on to models with multiple unmeasured 

variables, which are discussed in the next chapter, some discussion 
about the meaningfulness of unmeasured variables is in order. Some 
researchers do not believe that factors have any meaning because the 
researcher does not know the score of each participant on the factor. 
Since the researcher can only derive factor scores, which do not 

perfectly correlate with factor, the factor remains a mysterious platonic 
ideal. Such a view suffers from an over-reliance on single 
operationalism; that is, the explanatory concepts in science are 
measured variables. A multiple operational approach would argue that 
explanatory concepts are rarely directly measured in the social 
sciences. Our measures of motivation, attitudes, intelligence, group 
cohesion, and ideology only imperfectly tap the constructs that have 
been posited. From this point of view measurement and unreliability go 
hand in hand. Thus to measure one must triangulate by using multiple 
operations. However, even the sum of the multiple operations does not 
define the construct. As is seen in the next two chapters very strong 
tests can be made of models with multiple operationalizations of 
multiple constructs. In none of the models is the construct measured, 
but rather the construct is simply posited to be imperfectly exemplified 
by its multiple operationalizations. Latent constructs are no less real 
than are measured variables unreal, since the factors more closely 
correspond to scientific concepts while measures are inherently noisy 
and provide only the shadows of social reality. 
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8
with each other and with the disturbances. There are a total of 10 free
parameters, the loadings on the factors, and a total of 10 correlations (5 
x 4/2). It would seem that the model is just-identified since there are as 
many parameters as correlations. Try as you can, you will never be
able to solve for the parameters. It happens that a rather complex
overidentifying restriction holds:

M U L T I P L E
U N M E A S U R E D

V A R I A B L E S
    [ 24 35 25 34] [ 12( 13 45 15 34) 14( 13 25 15 23)]
       [ 23 45 25 34] [ 12( 14 35 15 34) 13( 14 25 15 24)] = 0

The reader will be happy to be spared a proof of the preceding 
condition, first shown by Kelley (1935). Given the preceding 
overidentifying restriction, one correlation is lost and there is no
solution for the parameters of the model. Thus, even though the model 
contains an overidentifying restriction, not a single parameter is 
estimable. The problem cannot be solved by adding more variables.
Even if there were 100 variables each loading on the two factors, it 
would only increase the number of overidentifying restrictions and still 
the parameters would remain underidentified.

Most models with unmeasured variables usually have more
than one measured variable, each with multiple indicators. The 
presence of multiple unmeasured variables adds many new
complexities beyond a single unmeasured variable. The concern of this
chapter is with what has been called the measurement model. It is the 
model that maps the measures or indicators onto the factors or
unmeasured variables. The unmeasured variables may well be 
correlated, but in this chapter such correlations and covariance’s
remain unanalyzed. The following chapter concerns itself with a 
structural analysis of these correlations. 

This chapter is organized in three sections. The first section
extensively examines two factor models. Most of the important
material in this chapter can be found in this section. The second section
considers models with three or more factors. In the third and last
section the multitrait-multimethod matrix is analyzed.

T W O - C O N T R U C T  M U L T I P L E  I N D I C A T O R  M O D E L

I D E N T I F I C A T I O N

In Figure 8.1 is a structural model with two unmeasured 
variables, F and G, and five measured variables, X1 through X5. The 
unmeasured variables or factors are assumed to be uncorrelated both

Figure 8.1  Two-factor model with uncorrelated factors.
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To be able to identify and then estimate factor loadings for 
models with two or more factors, we must have constraints on the 
factor solution. In general, to estimate the factor loadings and factor
covariance matrix, first the minimum condition of identifiability must
be satisfied (that is, as many correlations as free parameters) and 
second p2 parameters must be fixed where p is the number of factors.
These p2 fixed parameters may be either factor loadings, correlations
(covariances) between factors, or the variances of the factors. These
parameters are usually fixed by setting their values to zero. For 
instance, a loading may be set to zero implying that the factor does not 
cause the particular measure, or a correlation (covariance) between two
factors may be set to zero. A second common method of fixing a 
parameter is to set it to the value of one. For factor variances this
implies that the factor is standardized, or for factor loadings a value of 
one puts the factor in the same units of measurement as the variable.
Other possible methods of fixing parameters are equality and
proportionality constraints. 

Even when p2 parameters are fixed the model may still not be 
identified since it is only a necessary but not sufficient condition for
identification. Recall that the condition also holds for single factor 
models. Since p2 = 1, there must be one constraint. It is usually either
that the variance of the factor is one or one factor loading is one.
Forcing the equality of two loadings is not by itself a sufficient
condition to identify the model. 

With two factor models there must be 22 = 4 constraints. If 
four constraints are not made or if they are not the right four, the model
is not identified. Since there is no unique solution, in factor analysis
parlance the solution can be rotated. Rotation and all its attendant
problems are brought about because most factor analysis methods do
not specify an identified model. The square root method of factor
analysis does presume an identified model (Harmon, 1967, pp.
101-103). It constrains the p factor variances to be one (p constraints), 
the factor correlations to be zero (p(p  1)/2 constraints), and for the 
loading matrix to be triangular, that is, all variables load on the first

factor, all but the first variable load on the second factor, and so on 
until only the last measure loads on the last factor (p(p  1)/2
constraints). Such a model may be identified with a total of p2

constraints. However, to satisfy the minimum condition of 
identifiability, a loading of each factor must be fixed. Although it may
be identified it rarely makes any structural sense. 

The approach taken in this chapter is to allow each measure
to load on only one factor. In most cases this will lead to identification, 
as well as allow the factors to be correlated. 

Figure 8.2  Two-factor multiple indicator model.

T H E  M O D E L

Consider a two-factor model with each factor having four 
indicators as in Figure 8.2. Four measures, X1 through X4, are
indicators of F and the other four, X5 through X8, are indicators of G.
The two factors are correlated, or oblique. (The modern convention is 
draw circles around the latent variables and boxes around the
measures.) In Figure 8.2 it is assumed that indicators of one construct 
are not caused by the other construct (so-called simple structure) and 
that the unique factors (disturbances or errors of measurement), are
uncorrelated with each other and with each of the two constructs. An
indicator then is defined as a measure that is caused by a single 
construct. Thus, in this case the indicators of G do not load on F and 
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the indicators of F do not load on G. The factor loading matrix is as 
follows:

F G
aX1    0 

X2 b    0 
X3 c         0 
X4 d    0 
X5 0 e
X6 0 f
X7 0 g
X8 0 h

As in the previous chapter, the correlation of the indicator 
with the construct is called the epistemic correlation or more
commonly the factor loading. In Table 8.1 the tracing rule has been 
used to derive the theoretical correlations for the model in Figure 8.2.
The correlations in the box of Table 8.1 are called the cross-
correlations. These correlations involve the correlations between 
indicators of different constructs. The correlations above the box are
correlations of the indicators of F, and beside the box are the
correlations of the indicators of G.

Table 8.1.  Theoretical Correlations for Figure 8.2

The minimum condition of identifiability has been established
for the model in Figure 8.2 since there are 28 correlations between 
measured variables, and only 9 free parameters, 8 factor loadings, and

1 factor correlation. Because 8 factor loadings have been constrained to
be zero and the variance of the factors to be 1, enough constraints have
been made to obtain a solution. Not only is the model identified, there
is also a plethora of overidentifying restrictions, 19 in all (28  9). If
the researcher chooses to set the units of the factor to that of a measure 
by fixing the measure's loading to one, then there are still 19 
overidentifying restrictions. In such a case the loading is no longer 
free, but the factor variance is free. 

E S T I M A T I O N

The traditional factor analytic solution to the model in Figure
8.2 would be a principal components solution with some form of 
oblique rotation. However, unless all the overidentifying restrictions 
are perfectly met, no rotation will force the loadings to be zero where 
they should be. Some readers may have been faced with the difficult
decision of how oblique should an oblimax rotation be. A Procustes
rotation (Gorsuch, 1974, pp. 166-168) might be tried, but it requires
not only the specification of the zero loadings but also exact values of
the nonzero loadings. Another factor analytic solution to the model in 
Figure 8.2 is the multiple group solution (Harmon, 1967; Gorsuch,
1974) which is rarely used. Like most factor analytic solutions, it too
suffers from the communality problem; that is, communalities must be 
specified in advance. A variant of the multiple group solution to the 
model in Figure 8.2 is cluster analysis (Tyron & Bailey, 1970).

The path analytic estimates which were originally proposed 
by Costner (1969) are straightforward. To estimate the epistemic
correlations simply pool all the estimates of each. An estimate of the
epistemic correlation for Xi can be shown to be (rijrik/rjk)1/2 where Xj is 
an indicator of the same construct as Xi whereas Xk need not be. Then
to pool the estimates of the squared epistemic correlation, sum the
absolute values of the numerators of all estimates and divide it by the
sum of the absolute values of the denominators. If there are a indicators
of construct F and b of G, there are a total (a  l)(b + a/2  1) estimates
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of the epistemic correlation or loading for each indicator of G and (b
l)(a + b/2  1) for each indication of F.  To estimate rFG pool all of its 
estimates. They are of the form

r rik jl    rFG
2 =  rijrlk

where i and j are indicators of F and l and k indicators of G. There are
a total of ab(a  l)(b  1)/2 possible estimates to be pooled. Again the 
numerators, and then the denominators, of each estimate are summed.

The estimate is the ratio of the pooled numerator to the pooled 
denominator. The only estimation procedure based on a statistical 
analysis is maximum likelihood factor analysis (Jöreskog, Gruvaeus, & 
van Thillo, 1970). A two-factor model is specified, with each variable
loading on a single factor. The two factors can be correlated. A
structural equation modeling program can allow correlated errors,
equal standardized or unstandardized loadings, zero-factor correlations,
or equal error variances. The overall fit of the model can be evaluated
and restricted models can be compared by 2 goodness of fit tests. All
the examples are estimated by employing maximum likelihood factor
analysis.

S P E C I F I C A T I O N  E R R O R

Instead of testing whether all the overidentifying restrictions 
hold for the model in Figure 8.2 simultaneously, it is useful to partition
the restrictions into tests of different constraints on the model.

One obvious set of restrictions to examine is the correlations
within a construct. The correlations within each construct should
evidence a single-factor structure. For factor F, since there are four
measures, there are two overidentifying restrictions. These are referred
to as the test of homogeneity within indicators of a construct. More 
compactly, the restrictions are called homogeneity within. As shown in 
the previous chapter, homogeneity within implies tetrads of the form

ij kl il jk= 0, where i, j, k, and l are all indicators of the same
construct.

Homogeneity between constructs can also be defined. An 
examination of the correlations in Table 8.1 between indicators of F
and G (the cross-correlations), evidences a number of overidentifying 
restrictions. The restrictions follow from the fact that the
cross-correlations can be used to estimate the ratio of epistemic
correlations. For instance, to estimate a/b one could examine

  a r r15 16 =   = 
  b r25 r26

which implies a vanishing tetrad of 

= 0 

In general, denoting i and j as indicators of F, and k and l as indicators 
of G, the following vanishing tetrad holds:

ik jl il jk = 0

The final set of restrictions is called the test of consistency of
the epistemic correlations. From the correlations within a construct, the 
epistemic correlations can be estimated. From the cross-correlations
the ratio of these epistemic correlations can also be estimated. These
two sets of estimates should be consistent. A test of consistency is 
again a vanishing tetrad because

 a r r 513 1= =b r23 r25

which implies

= 0 
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Because from the ratios a/b, b/c, and c/d all the remaining 
ratios can be obtained, there are then a total of three restrictions on the
consistency of the estimates of each construct. In general consistency
of F implies a tetrad of the form

ij kl ik jl = 0 

where i, j, and k are indicators of F and l an indicator of G.
If it is assumed that there are a indicators of construct F and

b of G, the total number of correlations is (a + b)(a + b  1)/2 and the
total number of free parameters in the model is a + b + l. Subtracting
the latter from the former yields (a + b)(a + b  3)/2  1, which is the
total number of overidentifying restrictions on the model. These
restriction can be divided into homogeneity and consistency
restrictions. There are a total of (a2 a)(a  2)(a  3)/8 tetrads testing
homogeneity within construct F of which only a(a  3)/2 are
independent. Similarly for construct G, there are (b2 b)(b  2)(b
3)/8 tetrads with b(b  3)/2 independent restrictions. For homogeneity
between constructs, there are a total of ab(a  l )(b  1)/4 tetrads of 
which (a  l)(b  l) are independent. For the consistency of F, there are 
a total of (a2 a)(a  2)b/2 tetrads, but only a 1 are independent
given homogeneity within construct F and homogeneity between
constructs F and G. Similarly for the consistency of construct G, there
are (b2 b)(b  2)a/2 tetrads of which only b  1 are independent. If
one adds up the total number of independent restrictions they equal (a
+ b)(a + b  3)/2  1, which is the number of overidentifying
restrictions on the entire model. 

To assess homogeneity within a construct one needs at least
four indicators of the construct. For homogeneity between, one needs 
only two indicators for both constructs. To test for consistency, one 
needs three indicators for the construct whose consistency is being
tested and only one indicator of another construct. 

To statistically evaluate the different constraints on the model,
the following procedure can be used. Certainly there are other 

procedures that are better, but this method is fairly straightforward and 
simple. To test for homogeneity within a construct, test for a single 
factor by using maximum likelihood factor analysis. If the indicators of 
the factor are not single-factored, test each of the tetrads using
canonical correlation. Hopefully, an examination of the tetrads that fail 
to vanish may point to the troublesome indicators. To test for 
homogeneity between, perform a canonical correlation analysis
treating the indicators of one construct as one set and the indicators of 
the other construct as the second set. The test that the second canonical
correlation is zero will test for homogeneity between constructs. If the 
test fails then the individual tetrads can be tested to point out the 
troublesome indicators. 

There is no simple test for consistency. A rather tedious 
strategy is to test all the tetrads. This should be done only after both the 
homogeneity between and within tests have been passed. 

If a given test fails, what sort of specification error is
indicated? If homogeneity within is not satisfied, it indicates that the 
disturbances of the measures are correlated or there may be a second
factor. If homogeneity between is not satisfied, most likely 
disturbances are correlated across constructs. For instance, two 
indicators may share method variance. 

The specification error for consistency is rather interesting. For
Figure 8.2 imagine there is a path from the construct G to X1 and thus
X1 would load on both F and G. In such a case homogeneity within and 
between would be satisfied as well as the consistency of the indicators 
of G, but the indicators of F would not evidence consistency. In 
particular, tetrads involving the correlations of X1 with an indicator of 
F and an indicator of G would not vanish. So in general, violations of
homogeneity within indicate correlated errors within indicators of a 
construct, violations of homogeneity between indicate disturbances
correlated across different constructs, and violations of consistency
indicate that certain measures load on both factors. Of course, if the
model is grossly misspecified such tests may not be particularly
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diagnostic. However, a model with a few specification errors can be 
improved by such an analysis. 

I D E N T I F I C A T I O N  R E V I S I T E D

The reader is probably wondering what is the minimum
number of indicators necessary for multiple indicator models. Since
obtaining indicators of constructs may be difficult, it would be helpful
to know the smallest number that are needed. Consider the model in
Figure 8.3. There are only two indicators of each of the two constructs, 
four variables in all. The model is, however, identified. For instance,
the parameter a2 equals: 

12 23 12 14a2 = =
23 24

Note, however, that the denominators of both the preceding formulas
depend on rFG: r23 = bcrFG and r24 = bdrFG. Thus, if rFG equals zero or
nearly equals zero, the model is empirically underidentified since the 
denominators are zero or near zero. Thus, assuming no correlated 
disturbances, it is possible to estimate loadings given that the construct 
correlates with other constructs in the model. Of course, as in 
single-factor models the standardized loadings must not be small or 
else the model is again empirically underidentified.

Figure 8.3 Two-factor model, each factor with two indicators.

Although two indicators are sufficient to allow for 
identification, it is desirable to have at least three indicators per 

construct. One reason is fairly obvious. The model may be identified in
principle, but underidentified empirically, that is, the constructs may
correlate low or the loadings may be too small. A second problem is 
specification error. The investigator may be unable to allow for 
correlated disturbances if there are only two indicators per construct.
Consider the model in Figure 8.5, which is discussed later in this
chapter. Note that the errors of X1 and X4, X2 and X5, and X3 and X6 are 
correlated. Such a model may be very plausible, if the X1 and X4 are the 
same variable measured at times 1 and 2, respectively, and X2 and X5

are again the same variable measured at two points in time as well as
X3 and X6. The model in Figure 8.5 is identified with three indicators at 
each time point; it would not be if there were only two indicators. 

Just as three indicators are better than two, so are four better 
than three. With only three indicators it is not possible to test for
homogeneity within a construct. With four such a test can be made and
possible correlated errors within indicators of a construct can be 
spotted. Having five indicators is only slightly better than having four. 
I suggest the following rule of thumb: Two might be fine, three is 
better, four is best, and anything more is gravy. To complicate matters
slightly in some very special circumstances, it is seen in the next
chapter that a construct need have only a single indicator. 

I L L U S T R A T I O N S

In Table 8.2 there are a set of correlations taken from data 
gathered by Brookover and reanalyzed by Calsyn and Kenny (1977). The
measures were taken from 556 white eighth-grade students and are:

X1—self-concept of ability
X2—perceived parental evaluation 
X3—perceived teacher evaluation
X4—perceived friends' evaluation 
X5—educational aspiration 
X6—college plans
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The degrees of freedom for this model are (6)(3/2)  1 = 8.
The overall 2(8) is 9.26, well within the limits of sampling error. In 
fact, as can be seen by looking above the diagonal in Table 8.4, the 
largest residual is only .026. The power of the goodness of fit test
should be high since the sample size and the correlations are large. To 
obtain a 2 test for the homogeneity of the indicators of A, a test of
single-factoredness of the four indicators of A is conducted. A 2 of
3.13 is obtained with (4)(1/2) = 2 degrees of freedom. This 2 is not 
significant and so single factoredness of the A indicators is indicated. 
Since there are only two indicators of the P factor, one cannot test for 
homogeneity within it. The test of homogeneity between constructs A
and P can be performed by testing whether the second canonical
correlation between indicators of A and of P is zero. The 2 equals 1.95
with 3 degrees of freedom which is clearly not significant. To test for 
consistency, tests of the 24 tetrads were performed. Since there are
multiple tests alpha (.05) was divided by 24, the number of tests. All
the tetrads vanished using this significance level. 

Table 8.2.  Correlations between Ability and Plans below
Diagonal Residuals above Diagonala,b

The three perceived measures were all the perceptions of the
student. In Figure 8.4 there is a model for the six variables. The four
measures of evaluation of the child are assumed to be indicators of 
self-perception of ability, A, and the two aspiration measures are called
plans, or P. Also in Figure 8.4 there are the parameter estimates of the
model using maximum likelihood factor analysis. The epistemic 
correlations are all high, as is the correlation between A and P. It is
instructive to note that none of the cross-correlations are as large as the
estimate of the true correlation between constructs because all the
cross-correlations are attenuated because of measurement error in the
indicators. It is instructive to compare alternative strategies of
estimating the correlation between A and P. If one randomly picked a 
single indicator of A and correlated it with a randomly chosen indicator
of P, the correlation between A and P would be estimated as .454. If 
one unit weighted (added up the standard scores) both sets of 
indicators, the correlation would be .571. If one computed a canonical 
correlation between the two sets of indicators, it would be .597. Even 
though the reliabilities of the indicators are moderate to large, all the 
estimates by standard procedures are appreciably lower than the .666 
value estimated by confirmatory factor analysis.

Figure 8.4  Multiple indicator model for the correlations in Table 8.2.

The second illustration is taken from a secondary analysis
conducted by Milburn (1978). One hundred and forty adult smokers
were asked questions on a four-point scale about smoking:

X1: unbearable to run out of cigarettes
X2: impossible to cut down 
X3: feel more relaxed after smoking
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The X4 to X6 measures are the same with the participants being 
measured one year later. All participants were smokers from a town in
northern California. In Table 8.3 are the correlations between items
and the standard deviation of each item. All the solutions reported
below are unstandardized since the loadings of X1 and X4 are forced to 
one, and the variance-covariance matrix serves as input. The variance 
of the time 1 and time 2 factor is then free to vary.

Table 8.3.  Correlations of Cigarette Smoking Items at Two Time
Points, X1 to X3- Time 1 and X4 to X6 Time 2. Residuals on and
above Diagonala,b

The first solution attempted forced the loadings of first, X2 and 
X5 and second, X3 and X6, to be equal. Thus the unstandardized
loadings were constrained to be stable over time. The 2 for the model
is 47.19 with 10 degrees of freedom. Clearly some part of the model is 
misspecified. Because the same items were used at both points in time
it is likely that the unique factors are correlated over time. To test this a
canonical correlation analysis was set up treating X1, X2, and X3 as one
group of variables and the remaining variables as the second set. The 
test of the 2(4) equals 29.72, which is highly significant. Thus 
correlated errors across constructs is indicated. 

The model was respecified allowing the disturbances of the
same measure to be correlated over time. The variance of the
disturbances was set at one. The resultant parameter estimates are
contained in Figure 8.5. The fit of the model is quite good: 2(7) = 

10.30. Residuals from the covariance matrix are reproduced in Table
8.3. Interestingly, the factor variance decreases over time being 0.406
at time 1 and 0.262 at time 2. Respondents seem to be becoming more
homogeneous over time. The autocorrelation of the factor is 
.251/((.406)(.262))1/2 = .770. 

Figure 8.5 Unstandardized model for the covariance matrix in Table 8.3

To test the equality of the loadings over time, a model was set
up that allowed the loadings to vary over time. However, to identify
the model, the loadings for X1 and X4 were kept at one. The 2 for this
model is 9.44 with 5 degrees of freedom. The test of equality
constraints is the difference of the general model from the restricted
model: 2(7) of 10.30 minus 2(5) of 9.44 or 2(2) of 0.86, which is not
statistically significant, indicating that the fit does not suffer by 
imposing the equality constraints.

T H R E E - O R - M O R E - C O N S T R U C T S  M U L T I P L E  
I N D I C A T O R  M O D E L

C O M P L I C A T I O N S

The addition of a third construct to multiple indicator models
adds only a few complications. As the number of constructs grows the 
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number of correlations (covariances) between the constructs increases
geometrically. The researcher may desire to specify a structural model 
for those relationships. Such models are discussed in the next chapter. 

Multiple indicator models with many constructs usually tend
to be highly overidentified. For instance, a model with four 
constructs, each with four indicators, with each indicator loading on
only one factor, and no correlated errors has 98 overidentifying
restrictions! For such models a small number of specification errors
can greatly distort the parameter estimates and lack of fit can be 
virtually undetectable if one solely relies on the overall 2 test. The
problem is analogous to an overall F test in the analysis of variance.
Since there are so many degrees of freedom on the numerator, the
overall test has low power to detect a few but important differences.
Clearly one must think through the model and explicitly test for
specific sorts of specification error. Failure to do so may often lead to
parameter estimates that are very misleading.

It is not unusual for the structural model to contain a mix of
constructs. Some of the constructs require multiple indicators while 
others may not. For instance, the model may contain demographic
variables such as sex, ethnicity, or age. It seems reasonable to argue
that these variables have perfect or near perfect reliabilities: They are 
perfect indicators with epistemic correlations of one. How can such
variables be incorporated into multiple indicator models?

The simplest way to do so is to create a factor for each such
measure. Then force the loading of the measure on the construct to be
one and do not give the measure a disturbance. The factor will then
become the measure, and its variance is set to the variance of the 
measure. Thus, if the variable is already standardized, the factor will
also be standardized. 

Before turning to an example of a multiple construct model, it
should be noted that specification error can be evaluated in a different 
manner with three or more constructs. Earlier, consistency of estimates
was defined. It involved comparing the ratio estimates of loadings
determined by the within and between construct correlations. With 

three or more constructs consistency can be evaluated by comparing
two sets of between construct correlations. For instance, note that in 
Figure 8.6 the ratio of the path from L to X1 to the path from L to X2

equals

13 14 15 16=  = =
23 24 25 26

The preceding yields six vanishing tetrads only three of which 
are independent: 

24 23 14 = 0      [8.1]
25 23 15 = 0 
26 23 16 = 0 
25 24 15 = 0 
26 24 16 = 0 

and

26 25 16 = 0      [8.2]

Two of the overidentifying restrictions are constraints of homogeneity
first between L and A (Equation 8.1) and second between L and W
(Equation 8.2). The final independent restriction can be called the
consistency of L with W and A. Only when a construct has just two
indicators does it make sense to evaluate consistency with two other
constructs. If there are three or more indicators this form of
consistency follows from both simple consistency and homogeneity
between constructs. In a similar fashion the consistency of A with L
and W and the consistency of W with L and A can be defined.

In Table 8.4 are the correlations between six subtests of the 
Iowa Test of Basic Skills for 1501 inner-city children (Crano, Kenny,
& Campbell, 1972) The six tests can be thought of as two indicators of 
language usage (capitalization, X1, and punctuation, X2), work skills 
(map reading, X3, and use of graphs, X4), and arithmetic (concepts, X5,
and problems, X6).
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Table 8.4. Correlation between Six Achievement Tests below the 
Diagonal and Residuals abovea,b

homogeneity between language usage and work skills is 

24 23 = 0 

between language usage and arithmetic

26 25 = 0 

and between work skills and arithmetic

46 45 = 0 

In Figure 8.6 is a path model and the parameter estimates from
the Jöreskog program. The work skill measures have the lowest
loadings. Not surprisingly the correlations among the factors are very
high. The 2(6) goodness of fit test is 9.98, which is not significant at 
conventional levels of significance. There are six degrees of freedom
since the number of correlations is 15 (6 x 5/2) and there are 9
parameters: 6 epistemic correlations, and 3 correlations between factors.
The residuals from the model are above the diagonal in Table 8.4.

The 2 tests of the second canonical correlation for each tetrad are 
1.58, 7.06, and .17, respectively. Obviously there is not homogeneity
between language usage and arithmetic whereas there is homogeneity
between the other two pairs.  To test for consistency we compute all
the tetrads of the form

ij kl ik jl = 0 

It is impossible to test for homogeneity within a construct 
since there are only two indicators per construct. However, a test for 
homogeneity between each pair of constructs is possible. The test of

where i and l are the indicators of one construct, j an indicator of a
second construct, and k an indicator of a third construct. There are a
total of 12 such tetrads. Using .05/12 as the alpha level, all the 12 such 
tetrads vanish. 

M U L T I T R A I T - M U L T I M E T H O D  M A T R I X  

Campbell and Fiske (1959) suggested the multitrait
multimethod matrix as a means for assessing validity. This matrix is a 
correlation matrix between the traits or constructs, each of which is 
measured by the same set of methods. In a sense, the measures are 
formed by factorially combining traits and methods. The resulting 
correlations can be characterized as same-trait, different-method
correlations, different-trait, same-method correlations, and different-Figure 8.6  Multiple indicator model for the correlations in Table 8.4
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trait, different-method correlations. According to Campbell and Fiske
(1959) convergent validity is indicated if the same-trait, 
different-method correlations are large. Discriminant validity is 
indicated if those same correlations are larger than the different-trait,
different-method correlations. Method variance is indicated if the 
different-trait, same-method correlations are larger than the different-
trait, different-method correlations. 

I L L U S T R A T I O N S

Jaccard, Weber, and Lundmark (1975) measured two
constructs, attitudes toward cigarette smoking (C) and capital
punishment (P), by four different methods: semantic differential 
(method 1), Likert (method 2), Thurstone (method 3), and Guilford
(method 4) methods. 

These rules of thumb are useful as far as they go, but ideally 
the matrix should be analyzed more formally. Numerous procedures 
have been put forward to factor analyze the matrix, two of which are
considered below. There is no single way to specify a factor model.

Table 8.5.  Correlations of Four Attitude Measures with Residuals
on and above the Diagonala,b

The sample size was onl 5. In Table 8.5 are the correlations
etwee nvergent validation is indicated
ecause

y 3
n the eight variables. Co

The first is called the classical test theory formalization. The
traits are factors whereas the disturbances or unique factors are allowed
to be correlated across measures using the same method. Such a model 
is identified if there are at least two traits and three methods. Assuming 
the model fits the data, then convergent validation is assessed by high
loadings on the trait factors, discriminant validation by low to 
moderate correlation between the trait factors, and method variance by 
highly correlated disturbances. 

The second formalization was originally suggested by
Jöreskog (1971) and has been extensively reviewed by Alwin
(1974). Here each method and trait are taken to be factors and the
factors may be intercorrelated. Consequently, each variable loads on
both a trait and method factor. Discriminant and convergent
validation are assessed as with the previous formalization, but
method variance is now indicated by the loadings on the method
factors. For such a model to be identified, at least three traits and
three methods must be measured.

b
b the measures of the same construct correlate highly.
Discriminant validation is also indicated because the cross-construct
correlations are all smaller than the within-construct correlations.
There is some indication of systematic method variance since the
correlations between different constructs using the same method are
larger than the correlations between measures of different constructs
and different methods.

Consider the path diagram in Figure 8.7 for the Jaccard et al.
study. In this figure there are two types of variables, measured and 
unmeas

   This second formalization should, in general, be preferred
over the first. The first presumes that method variance is uncorrelated
with both traits and the other methods. The second procedure does, 
however, assume that the effect of a method is single-factored whereas
the first procedure does allow for multidimensional effects. 

ured. The two traits, C = cigarette smoking and P = capital
punishment, are the common factors and their four measures load on 
each. None of the cigarette smoking measures load on the capital
punishment factor or vice versa. The factors designated E1 through E8
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are the unique factors (measurement errors) and one measure loads
on each. These unique factors are assumed to be uncorrelated with
the trait factors and with the other unique factors with the important
exception that unique factors may be correlated across measures
using the same method. This exception allows for the method effects. 
The model in Figure 8.7 is sometimes called the correlated
uniqueness model.

The minimum condition of identifiability is met because the
number of correlations, 28, exceeds the number of parameters. There
are 13 parameters, 8 factor loadings, and 5 factor correlations. The 
difference is 15, which is the total number of independent
overidentifying restrictions on the model in Figure 8.7.

The values in Figure 8.7 are the parameter estimates. Note that 
the loadings on each trait factor are high and fairly homogeneous.
There is a small positive correlation between the cigarette smoking and 
advocacy of capital punishment factors. There are also only small, 
positive correlations between disturbances. 

The 2(15) test of goodness of fit yields a value of 10.35. 
Because the 2 is not statistically significant, the parameters of the
model f eit th correlations. Given the low sample size, most certainly
other models if

nt validation is ind

Figure 8.7  M Table 8.5. 

ctor
C

have sigt the data.
Discriminant validation implies that the correlation between

traits is low. If both traits were identical, the correlation between trait
actors

ultiple indicator model for correlations in 

In a similar fashion one can test for the equality of the fa
loadings and factor correlations. To test whether the measures of 

nificantly different loadings, constrain them to be equal. The 
2 test of such a model is 10.71 with 18 degrees of freedom. Three

degrees of freedom are added over 15 since only one factor loading 
need be estimated, not four. Again subtracting 2 values, the 2 test off would be near one. One can force a structural equation modeling

program to make the correlation between traits to be one. (Making the
correlation between factors one is equivalent to a single-factor model.)
The resultant 2(16) for that model equals 120.75. To test for
discriminant validation simply subtract this 2 with the earlier one and
subtract their degrees of freedom to obtain a 2(l) of 110.40. Since this 
value is highly significant, the assumption that the trait correlation is 
unity is not confirmed and discrimina icated.

equal loadings on C is .36 with 3 degrees of freedom. A similar result
is obtained for the measures of P: 2(3) = 1.17. Thus, there is no 
significant difference between methods in tapping the underlying traits.
A similar test of the equality of correlated errors yields another
nonsignificant 2 of .16 with 3 degrees of freedom.
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Table 8.6.  Television Style Scales, Correlations below Diagonal
nd Residuals abovea,b

from Rosengren, 
investiga

an
 the 

denti
hree  as well:
2(11) = 19.28. The residuals presen Table

Table 8.7.  Loading and Correlation Matrix for the Correlation
Matrix in Table 8.6aa

The second example of a structural analysis of the matrix is taken 
Windahl, Hakansson, and Johnsson-Smargdi (1976). They

fication factor should be dropped. This left two trait factors and
method factors. The resultant solution did not fit nearly

ted above the diagonal in 

ted three different scales designed to measure style of viewing 
television: parasocial viewing (P), capture (C), and identification (I). Three
hundred and eighty-six Swedish adolescents completed the three scales for 
television in general (method 1), a parasocial show (method 2), and an 
identification show (method 3). The resultant nine scales were
intercorrelated, and are presented in Table 8.6. Since there are three traits
and three methods, each measure can load on each trait and each method
factor. Such a solution was attempted but it yielded an anomalous result. 
The 2(3) is less than one and the largest residual is only .009. The fit is 
excellent but the parameter estimates are odd to say the least. The loadings 
on the identification factor are less than .2 for two of the scales and one is
even negative. The correlation of this factor with two other factors is larger 
than one. A loading on another factor is larger than one, an implausible if
not impossible value. It was judged that the loadings on this factor are 
empirically underidentified. Moreover, it seems the data are overfit, that is,
that too many parameters are estimated. Evidence for overfit is that 2 is 
smaller than its degrees of freedom and the anomalous estimates.

Because the identification scale has only one variable with a
large loading, the factor cannot be distinguished from the disturb ce
and  the loadings  are empirically  underidentified.   It was decided 

i
t

8.6 are not large, however. The loadings and factor correlations in 
Table 8.7 indicate more method variance than trait variance and a
rather high correlation between the two traits. (No path diagram is
presented since it would be too cluttered to be interpretable.)
Employing the criteria offered by Campbell and Fiske, Rosengren et al. 
arrived at very different conclusions.

     Kenny and Kashy (1992) discuss estimation difficulties for the
multitrait-multimethod matrix.  In fact, they recommend estimating the 
correlated uniqueness model.

 In the next chapter the correlations among the factors are
analyzed. It is seen that one can impose on unmeasured variables the
same type of models that are imposed on measured variables in 
Chapters 4, 5, and 6.
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9
C A U S A L  M O D E L S  

W I T H  U N M E A S U R E D  
V A R I A B L E S

The preceding two chapters have exclusively discussed the 
question of multiple indicators of latent constructs. What has been 
developed is called the measurement model. This chapter is devoted to 
causal models in which the latent variables are endogenous and
exogenous; that is, there is a causal model for the unmeasured
variables. In the previous chapter it was shown how correlations
between unmeasured variables can be estimated. Here these
correlations are analyzed and this combined model is called a hybrid
model (Kline, 1998). The chapter is divided into two major sections. 
The first section elaborates the issues for structural models with latent 
endogenous and exogenous variables. The second and larger section
works through five examples that were chosen to illustrate the broad 
range of models amenable to this type of analysis.

G E N E R A L  C O N S I D E R A T I O N S

M E A S U R E M E N T  M O D E L

It is helpful to employ matrices to summarize the measurement
and causal models. Unfortunately the term matrix strikes fear in the 
heart of too many researchers. The purpose of matrices here is just the
same as that of a path diagram. A matrix conveniently summarizes a 
set of structural equations. For the measurement model there is a

matrix of measures by constructs. The row variables are all the
measured variables while the column variables are the unmeasured
variables. A nonzero entry in the matrix denotes that the measured
variable is caused by the construct or, to put it differently, the measure
is an indicator of the construct. Normally there is the specification that 
certain entries are zero. If this matrix seems to be similar to a factor 
loading matrix, it is no accident since the constructs are factors. 

It is helpful to make a distinction between a measure that loads 
on a single factor and one that loads on two or more factors. Strictly
speaking a measure indicates a construct only if the measure has only 
one nonzero entry, that is, loads on only one factor. In contrast, an 
example of a measure with multiple entries can be taken from the 
Jöreskog (1971) model for the multitrait-multimethod matrix discussed
in the previous chapter. There each measure is assumed to be caused
by both a method and a trait factor. 

Normally each of the measures is not totally determined by the
latent constructs or common factors. A measure has a disturbance or a
unique factor. In some special cases a latent factor is defined by a
measure which means the construct has only a single indicator and that
measure has no disturbance. For instance, if sex were one of the 
measured variables, it would have no disturbance and the construct on 
which sex loads is then defined as sex. In the main, however, a 
disturbance is needed for each measure.

These disturbances are usually assumed to be uncorrelated
with the constructs. They need not, however, be uncorrelated with each
other. It may be that measurement errors are correlated across
measures, and a covariance matrix for the disturbances is then needed. 
The diagonal values of that matrix would be the variances and the 
off-diagonal values would be the covariances. 

The disturbances can be viewed as measurement errors given 
a special definition of measurement error. Classical definitions of
error usually center on the notion of unreplicability. If a component
of a score cannot be replicated by an alternative measure or by the 
same measure with a time delay, then the component is considered
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error. But as Cronbach et al. (1972) state, the notion of replicability
depends on the context or, as they would say, the type of
generalization to be made. Reliability and measurement error then do
not reside in the measure, but in the goals of the research. It may be
that part of a measure's disturbance is systematic, replicable, and
stable. Cook and Campbell (1976) have argued that such components
should be called irrelevancies and need to be considered as errorful
even if they are replicable.

Table 9.1. Structural Model:  The F Variables Are Endogenous
and the G Variables Are Exogenous

Perhaps the simplest way to refer to the disturbances is that
they are unique factors. A unique factor contains both specific and
error variance. The important point to remember is that the specific
factor is specific relative to the measures included in the study. As an 
example consider a measure that loads on two factors, A and B, which
are uncorrelated. If the study includes only measures that are
indicators of A, then the B component of the measure will be
considered specific. If only indicators of B are included, then the A
component will be specific.

In general, the matrix that summarizes the structural model has
the following form. As in Table 9.1, the rows of the matrix are the n
constructs that are endogenous and the column includes the complete
set of constructs of the measurement model, that is, m exogenous 
variables and n endogenous variables. Entries into the matrix denote 
whether a particular construct causes the endogenous variable, and the 
columns are the causes and the rows the effects. Each row of the
matrix then summarizes the structural equation for each unmeasured
endogenous construct. 

S T R U C T U R A L  M O D E L

The latent constructs are ordinarily correlated. Perhaps the
most serious limitation of factor analysis, as it is customarily
practiced, is that the solution is usually constrained to be orthogonal.
One may, however, be primarily interested in the correlations
between the factors. The traditional factor analysis solution to the
analysis of the correlations between factors is to perform a factor 
analysis on the correlation matrix between factors. The resulting
factors are called second-order factors. However, since the factors are
constructs, albeit unmeasured, any type of structural analysis can be 
performed on the correlation (covariance) matrix. Models discussed
in all the previous chapters are then possible, as well as models
discussed in the subsequent chapters. For instance, an example
discussed later in this chapter has two latent variables involved in a
feedback relationship.

The columns of the matrix are ordered such that the first set of 
variables includes only the constructs that are exogenous. The whole 
matrix can be divided into two submatrices. The first is a rectangular
matrix of endogenous variables by the exogenous variables. The 
second matrix is square, and it is the endogenous variables by the 
endogenous variables. This partitioning of the matrix is illustrated in
Table 9.1. The n x m matrix of endogenous by exogenous variables
represents the causal effects of the exogenous variables. 

Now consider n x n matrix as in Table 9.1. The diagonal
values are always set to one and simply represent that a variable is in 
its own equation. One special type of n x n matrix is called 
lower-triangular. A lower-triangular matrix contains zero entries
above the descending diagonal. Below that diagonal the entries may
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be nonzero. If the n x n matrix can be arranged by shifting rows and 
columns to be lower-triangular, then the structural model is 
hierarchical; that is, it involves no feedback. If the n x n matrix 
cannot be arranged to make it lower-triangular, then the model
is nonhierarchical.

I D E N T I F I C A T I O N

For the structural model to be identified the correlations
(covariances) among the factors must be identified. Assuming that
such correlations are identified, the researcher then proceeds to use 
the rules established in Chapters 4, 5, and 6. For instance, if the
researcher can establish that the model among the latent variables is 
hierarchical and that none of the exogenous variables are correlated
with disturbances, multiple regression can be used to estimate the
model, assuming the correlations among the latent variables can be
estimated. Although estimation is more extensively discussed in the
next section, it is important to note here that any of the estimation
procedures discussed in previous chapters can be applied to virtually
any correlation (covariance) matrix. The correlations can be
estimated directly from sample data, estimated indirectly as by factor
analysis, or simply postulated by theory. However, if the correlations
are indirectly estimated or postulated, one should not employ the
standard tests of significance. For instance, it is totally illegitimate to
test the correlation between two unmeasured variables by the
standard t-test of a correlation.

Also to be considered are the two final parts of this very 
general formulation. First, the exogenous variables may be correlated 
and so one must consider the correlation (covariance) matrix for these
variables. Second, the disturbances of the n endogenous variables may
be correlated with each other or with the exogenous variables.

The preceding general formulation can represent every 
previously discussed model in this text. For instance, the models
discussed in Chapters 4 and 6have a very elementary measurement
model. Each measure is a perfect indicator for each construct. Put into
more familiar language, each measure is the operational definition for 
the construct. The matrix for the measurement model would then be a
square matrix with ones in the diagonal, that is, an identity matrix.
Since each construct is defined by the measure, there are no 
disturbances for the measurement model. The matrix for the structural 
model would be lower-triangular for the hierarchical structural models
in Chapters 4 and 5 and would not be lower-triangular for the models
discussed in Chapter 6. 

Assuming the correlations among the factors are identified, the 
status of identification of the structural model is straightforward. 
Overidentification of the measurement model can in no way aid in the 
identification of the structural model. Thus, adding more indicators 
cannot facilitate the estimation of the structural model except in the 
sense that it may identify the factor correlations. Recall that the 
identification of the structural model presumes that the factor
correlations are identified. 

For the model in Chapter 5 in which an exogenous variable 
correlates with the disturbance, the measurement model is an identity
matrix, and the structural model implies a lower-triangular matrix. For 
the exogenous variables measured with error in Chapter 5, the errorful 
measures need a disturbance. The matrix for the measurement model
remains an identity matrix if the classical model of measurement error
is assumed. The identification of the measurement model was discussed in

the previous chapter. Assuming that loadings and factor correlations
are moderate, only two indicators per construct are needed. Three 
indicators are safer, and four safer still. In some very special cases
when the structural model is overidentified, only one indicator of a 
construct is necessary. Instrumental variable estimation discussed in 

In Chapter 7 there is only a measurement model and its matrix
is a column vector (a string of numbers). For the models in Chapter 8
there is a multicolumn measurement model. Generally each row of the 
matrix has the following restriction: One value is nonzero and the 
others are zero. Again there is no structural model.



2 0 0 C O R R E L A T I O N  A N D  C A U S A L I T Y Chapter  9 H Y B R I D  M O D E L S 2 0 1

Chapter 5 is one such an example. When one exogenous variable is
known to have a zero path, then such a restriction can buy the
identification of a path from another exogenous variable to its
indicator. Thus, an over-identified structural model can in some very
special cases aid in the identification of the measurement model.
More typically the over-identification of the structural model does
not help in the identification of the measurement model. lf the model
is overidentified overall, it is usually helpful to be able to test for 
specification error in the various components of the model. One
reasonable strategy is to fit a just-identified structural model. Any
lack of fit of the model to the correlations can be attributed to 
specification error in the measurement model. The measurement
model can be adjusted to achieve more satisfactory fit, and then the
overidentified structural model can be fitted. Any significant increase
in lack of fit can then be attributed to specification error in the
structural model.

E S T I M A T I O N

Quite clearly the estimation task is quite complex. The
measurement model requires a factor analysis type model and the
structural model is typically a multiple regression type model. None
of the previously discussed methods can handle such a general
model. Some special models can be estimated by a two-step
procedure. If the structural model is just-identified, the first step is to
estimate the measurement model by confirmatory factor analysis.
From such an analysis one would obtain the correlations
(covariances) among the factors. The second step is to input these
correlations to a multiple regression or two-stage least squares
program for the estimation of the structural model. As mentioned
earlier, one cannot use the standard test of significance for these
estimates.

Instead of the two-step procedure, a structural equation 
modeling program (e.g., LISREL; Jöreskog & Sörbom, 1976) can be

used to estimate the parameters of such models by maximum
likelihood. The fit of the model can be evaluated by a goodness of fit
test. With the computer program LISREL eight different matrices are
set up: 

1. The loading matrix for the indicators of the endogenous
variables.

2. The loading matrix for the indicators of the exogenous
variables.

3. The paths from latent endogenous variables to latent 
endogenous variables.

4. The paths from latent exogenous variables to latent 
endogenous variables.

5. The covariance matrix for the latent exogenous variables.
6. The covariance matrix for the disturbances of the latent 

endogenous variables.
7. The covariance matrix for the disturbances of indicators of

the latent endogenous variables.
8. The covariance matrix for the disturbances of indicators of

the latent exogenous variables.

In most structural equation modeling programs the variances of the
latent endogenous variables cannot be fixed and, therefore, cannot be
standardized. Thus, to identify the model, either one loading on each 
latent endogenous variable must be fixed to some nonzero value, or
the variance of the disturbance of the latent variable must be fixed to
some nonzero value. The former strategy is to be preferred if results
are to be compared across different populations or occasions.
Programs do take the solution and then standardize the latent 
variables to produce a standardized.

Structural equation modeling programs such as LISREL are
not an easy programs to learn how to use.  These programs do, 
however, provide the most complete solution to the estimation problem 
of structural models.
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E X A M P L E S Table 9.2.  Measurement and Structural Models for Figure 9.1

T H E R E  C O N S T R U C T S ,  E A C H  W I T H  T W O
I N D I C A T O R S

In the previous chapter a model was discussed from Crano et 
al. (1972). In Figure 9.1 there is added a structural model in which 
language usage causes work skills which causes arithmetic, each factor
having two indicators. Language usage is denoted as L, work skills as
W, and arithmetic as A.

The rows of the top matrix in Table 9.2 are the six measures
and the columns are the three latent constructs for the model in Figure 
9.1. Note that each latent construct causes two different measures. The
structural model indicated by the bottom matrix in Table 9.2 is 
hierarchical since the matrix for it is lower-triangular; that is, all the
X’s are below the main descending diagonal. The measurement model
can be estimated as in the previous chapter. It is identified since each
construct has two indicators. In Chapter 8, it was noted that the overall
fit of the model is good, but there is some problem in the homogeneity
between language usage and arithmetic. The measurement model also
yields the following estimates of correlations between factors: rLW = 
.859, rLA = .768, and rWA = .895 (see Figure 8.6). These correlations are 
the major ingredients in the estimation of the structural model.

Figure 9.1  Structural model for Crano, Kenny, and Campbell example.

In Table 9.2 there are the two matrices that summarize both the 
measurement and structural models. The first matrix denotes which 
construct causes each measure. An "X" indicates the measure loads on 
the factor and "O" denotes it does not. Table 9.2 should not be 
confused with any variant of the game tic-tac-toe.

Because the structural model is hierarchical, one can use
multiple regression to estimate the path coefficients. The path from L
to W is simply pLW or .859. If paths from both L and W to A are 
specified, one can solve for them by using the multiple regression
formulas 4.5 and 4.6: 
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rAL  rAWrLWpAL = ————— = 0.003
 1 rLW

2

rAW  rALrLWpAW = ————— = 0.898 
 1 rLW

2

To find the coefficient for the disturbances solve for both 

  (1 rLW
2)1/2 = .512 

     (1 rAWpAW  rALpAL)1/2  = .446 

which are the disturbance paths for W and A, respectively. No special
problems arise as a result of having a structural model with unobserved 
variables, once the correlations (covariances) between the unobserved 
variables are known. Special considerations do arise if the researcher
wishes to estimate a structural model that is overidentified, as in Figure
9.1. Such a model makes the correlations among the latent variables 
overidentified by the structural model. The structural equation 
modeling programs were developed to estimate these models.

Consider the model in Figure 9.1. It is like the model in Figure
8.6, but in this case there is an overidentified structural model for the
latent variables. The estimates are in Figure 9.1. The 2(7) = 9.98 for 
the model. If a path is added from L to A, 2(6) = 9.98. Thus the test of
the measurement model is 2(6) = 9.98 and the structural model is 2(l)
= .00. Remember the test of the measurement model is to fit a
just-identified structural model. Lack of fit then is due only to
specification error in the measurement model. To test an overidentified 
structural model, one fits that model. Then any increased lack of fit 
over the just-identified structural model is due to specification error in 
the structural model.

What is unusual about the structural model in Figure 9.1 is that 
the path from L to A is virtually zero. Thus the fit of the overidentified
model and the just-identified model do not differ and the other

parameters are virtually unchanged. Such a result is highly unusual.
However, the zero path can be compared against other more standard
estimation procedures. If one simply regresses one indicator of A on 
one indicator of L and one of W, one would obtain on the average

pAL = .320 pAW = .305 

a result that is radically different from the multiple indicator results. If 
one unit weights the two indicators of each construct and then
regresses the sum of the two indicators of A on the sums for L and W,
one would obtain

pAL = .298 pAW = .469 

At least for this example an unmeasured variable approach yields a
conclusion that is very different from multiple regression. 

E X A M P L E W I T H  F O U R  C O N S T R U C T S ,  T W O
M E A S U R E D  A N D  T W O  U N M E A S U R E D

This example is taken from the Westinghouse Learning
Corporation evaluation of Head Start. As some readers no doubt know,
there is a great deal of controversy that centers around this work (see
Campbell & Erlebacher, 1970). Magidson (1977) has undertaken a 
reanalysis of these data and the example is taken from his analysis,
though the analysis following differs from his in many respects. 
Magidson's sample consists of 303 white 6-year-old first graders who 
attended summer Head Start. He chose this group because the original 
analysis obtained the strongest negative effect for this group. The
group consists of 148 children who received Head Start and 155 
control children.

For the following analysis six measured variables whose
correlations are in Table 9.3 are considered. The variables are mother's
education (X1), father's education (X2), father's occupation (X3), income
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(X4), and a dummy for Head Start (H), and the outcome variable (Y).
The Head Start dummy variable is coded one for those who attended
Head Start and zero for those who did not. Note that the correlation 
between H and Y is negative, indicating that those who completed
Head Start had lower test scores. 

Table 9.3. Head Start Correlations with Residuals above the Main
Diagonala,b

Figure 9.2 Head Start model.

for the structural model. The equation is that E, S, and H cause Y. Note 
that the model in Figure 9.2 can be viewed as a simple three-factor
model: E, S, and H. The variable Y simply loads on all three factors. The 
analysis then is rather straightforward: Simply estimate this three-factor
model. The first factor, E, has three "indicators" X1, X2, and Y; the
second, S, also has three "indicators" X3, X4, and Y; and the third, H, has
two "indicators" Y and H. The variable H's loading on factor H is fixed
to one. The solution is presented in Figure 9.2. Not surprisingly there is a
high correlation between E and S. Both E and S correlate negatively with
H but the socioeconomic outcomes factor correlates more negatively
than the educational factor. Just such a difference is to be expected since
eligibility into Head Start depended on socioeconomic outcomes. The
pattern is reversed for the effects of the factors on cognitive skills. The 
educational factor has a slightly larger effect than the socioeconomic
factor. Head Start has a slightly positive effect which is clearly not 
statistically significant. However, the effect is not negative as would be 
obtained had a simple regression analysis been performed with only
measured X1, X2, X3, and X4 partialled out. Thus, the structural analysis
wipes out the negative effect. 

The proposed causal model is contained in Figure 9.2. For the
moment ignore the parameter estimates. The model postulates two
latent variables. The first is labeled E in Figure 9.2 and it can be 
viewed as an educational background factor. The second factor relates
to socioeconomic outcomes and is labeled S. Obviously the model of 
latent factors in Figure 9.2 is unrealistic since the measured variables
have themselves a structural relationship. For instance, no doubt
father's education causes father's occupation. However, it may be
plausible to view the child's cognitive skills as a function of the two
proposed factors. The educational background factor would directly
cause cognitive gain through imitation and the socioeconomic outcome
factor would allow the parents to purchase goods that would increase
the child's cognitive skills. 

The measurement model for the Head Start example is 
straightforward. There are four constructs, E, S, H, and Y. The
constructs E and S each have two indicators, and H and Y have only a
single indicator that defines the construct. There is only a single equation
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There are a total of 10 free parameters for the Head Start
model. Because there are a total of 15 correlations, the number of 
overidentifying restrictions is five. The 2(5) equals 6.13, which is 
clearly not statistical significant. In Table 9.3 are the residuals for the 
model and they are not large. The largest residual occurs in a place 
where a specification error surely occurs. It is between mother's
education (X1) and father's occupation (X3) and is negative.

N O N H I E R A R C H I C A L  R E L A T I O N S H I P  B E T W E E N
L A T E N T  V A R I A B L E S

The preceding models that have been considered have had 
relatively simple structural models. The model to be considered now
contains almost every imaginable complexity. It contains, among other
things:

The five overidentifying restrictions of the model are totally
due to the measurement model. Recall that the structural model is just-
identified. Using the vocabulary of the previous chapter the five
overidentifying restrictions can be partitioned as follows:

1.  Unmeasured endogenous variables with multiple indicators. 
2. A nonhierarchical (i.e., feedback) relationship between

latent variables. 
3.  An overidentified structural model.

1. The homogeneity between E and S. 4.  Equality constraints for causal parameters.
2. The consistency of E for H.
3. The consistency of S for H. The data are taken from Duncan, Haller, and Portes (1971),

which has become a classic in the causal modeling literature. The
substantive question of their paper concerns itself with the effect of 
peers on aspirations. The measured variables are parental
encouragement of the child (X1), child's intelligence (X2),
socioeconomic status of the parents (X3) and the educational and 
occupational aspirations of the self (Y1 and Y2). The same variables
were measured for the person named by the child as the best friend
(ordered the same as for self: X4, X5, X6, Y3, and Y4). There are then a 
total of 10 variables, 5 for the self and 5 for the friend. The sample
consists of 329 adolescent males and the correlations are presented in 
Table 9.4. In Figure 9.3 there is a model for the data that Duncan,
Haller, and Portes postulated with some modifications. First, Duncan et
al.  postulated  that  the disturbances in the aspiration measures of  the 
self are correlated. For the sake of simplicity, it is assumed here that
such correlations are zero. Second, the model is constrained to be the 
same for both the self and the friend. Duncan et al. give no compelling
reason not to force such equality. They argue that the self named the
other child as a friend while the friend did not necessarily make a

4. The consistency of E for Y.
5. The consistency of S for Y.

As an exercise show that the following 11 vanishing tetrads
hold for the model in Figure 9.2 and show that only five are 
independent:

13 24 14 23 = 0 
13 2H 1H 23 = 0 
14 2H 1H 24 = 0 
13 2Y 1Y 23 = 0 
14 2Y 1Y 24 = 0 
1Y 2H 1H 2Y = 0
23 4H 2H 34= 0 
13 4H 1H 34 = 0 
13 4Y 1Y 34 = 0
23 4Y 2Y 34 = 0 
3Y 4H 3H 4Y = 0
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Figure 9.3  Peer aspiration model.

reciprocal choice. One would then expect that the friend would have 
more influence on the chooser. However, for illustrative purposes here 
equality of the coefficients is assumed.

An examination of the model in Figure 9.3 shows that there are
six measured exogenous variables, X1 through X6. These variables
cause two latent endogenous variables, G and H, which Duncan et al. 
called ambition of self and friend. Each latent construct has two 
indicators, educational and occupational aspiration. The latent 
endogenous variables are not caused by all the exogenous variables.
The intelligence of the self's friend and the friend's parents' 
encouragement are assumed not to cause the self's ambition. The two
unobserved variables are involved in a feedback relationship. The 
child's ambition causes his friend's ambition and vice versa. 

The structural equations are as follows for the measurement
model:
    Y1 = eG + iE1

    Y2 = fG + jE2

    Y3 = eH + iE3

    Y4 = fH + jE4
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Table 9.6.  Structural Model for the Duncan, Haller, and Portes Exampleand for the structural model

G = aX1 + bX2 + cX3 + dX6 + gH + hU1

H = aX4 + bX5  + cX6 + dX3 + gG + hU2

In Table 9.5 is the measurement model in matrix form. Note that since
the exogenous variables are measured, they each define their own 
factor and have loadings of one. Both G and H have two indicators. In
Table 9.6 there is the structural model. The exogenous variables are X1

through X6, and G and H are endogenous. The model is not hierarchical
because G causes H and vice versa. 

There are a total of 17 free parameters and 45 correlations. The 
17 free parameters are

1.  Nine correlations among the exogenous variables.
2. Four paths from the exogenous variables to the latent

endogenous variables.
Table 9.5.  Measurement for the Duncan, Haller, and Portes Example.

3.  One path from the endogenous variable to the other.
4.  The correlation between the disturbances of G and H.
5.  Two paths from G and H to their two indicators. 

There are then a total of 28 restrictions. The test of these restrictions
yields a 2(28) = 35.00 which is nonsignificant. These 28 restrictions
can be divided in the following way. First, 13 of the restrictions are
due to the assumption that the causal process is the same for friend 
and self. 

There are 13 equality constraints because a, b, c, d, g, e, and f
are duplicated and the following correlations among the exogenous
variables are assumed to be equal: 15 = 24, 16 = 34, 26 = 35, 12 = 

45, 13 = 46, and 23 = 56.  Thus the equality constraints account for 
13 of the 28 overidentifying restrictions. There are 15 remaining
constraints on the measurement and structural model. There are two 
constraints on the structural model since there are two zero paths from
the exogenous variables to each endogenous variable. There is then one
extra instrument for the equations for both G and H, creating two 
overidentifying restrictions. The remaining 13 restrictions are due to 
the measurement model. One of the 13 constraints is homogeneity

A structural equation modeling program like LISREL can be 
used to estimate the parameters for the model in Figure 9.3. Equality
constraints in most structural equation programs can only be placed on 
the unstandardized model. Recall that in most structural equation 
modeling programs the latent endogenous variables are not
standardized. Any equality constraint does not necessarily hold for the 
standardized solution. It was, therefore, decided to fix the disturbance
path h to one, and the solution is presented in Figure 9.3 without the 
correlations among the exogenous variables.
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between G and H, and the remaining constraints are the consistency of
the epistemic correlations of both G and H for X1 through X6.

Table 9.7.  Partition of 2 into Three Components of Specification Error

In Table 9.7 the overall 2 has been partitioned into the three 
different types of restrictions. The three possible types of specification
error are equality of parameters, the structural model, and the 
measurement model. To obtain the 2 to test the equality constraints, 
first a model is estimated in which the equality constraints are not
forced to hold. The resulting 2(15) for this model equals 26.83 and 
subtracting this from the overall 2 yields a test of the equality 
constraints. To test the constraint of the structural model, paths are
added from friend's intelligence to self's ambition and from self's 
intelligence to friend's ambition with no equality constraints. The 2

equals 25.21. Subtracting this 2 from the previous 2 yields 2(2) = 
1.62 which tests whether the path from X2 to H and X5 to G are zero 
given that the paths from X1 to H and from X4 to G are zero. (This turns 
out to be equivalent to testing whether the paths from X4 to G and X1 to 
H are zero given zero paths from X2 to H and X5 to G.) The 2 that 
remains then tests the measurement model. There does appear to be
specification error in the measurement model. An examination of the 
residuals shows a large value for rY1Y3. The model should be respecified 
to allow for correlated disturbances. 

The reader can now appreciate the wide range of model that
can be estimated by a structural equation modeling program. If a model
of the complexity of Figure 9.3 can be estimated, then no model should
pose any problem. The researcher still must carefully study the model

and determine the status of identification of the measurement and 
structural model.

C A U S A L  C H A I N ,  S I N G L E - I N D I C A T O R

Perhaps one of the most interesting models is the causal chain
with each construct having only a single indicator. As shall be seen, some
of the parameters are overidentified while others are underidentified.

In Figure 9.4 there is a model of a simple chain. As is typical
of such models the chain is composed of a single variable measured at
multiple points in time. In this case the variable is the number of 
citations of 240 chemists. The citations were counted by Hargens, 
Reskin, and Allison (1976) for four years, 1965 through 1968. In Table
9.8 are the correlations for the four waves of data. In Figure 9.4, X
denotes the measured number of citations and T the "true" number of
citations. Note T is caused only by the prior value of T. The technical
name for such a process is first-order autoregressive. The correlational
structure generated by a first-order autoregressive process is called a
simplex (Humphreys, 1960). A simplex tends to have lower and lower
correlations as one moves from the main descending diagonal. The 
mathematical definition of a simplex matrix is that the variables can be 
ordered such that 

ik = ij jk

i < j < k

Stated in words, if one partials any variable that comes between two 
variables in the causal chain, the partial correlation is zero. 
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Figure 9.4  First-order autoregressive model with measurement error.

Only the true score is governed by a first-order
autoregressive process and only its correlational structure is a
simplex. The measured score cannot be described so simply. Actually 
the measured score is assumed to be the sum of two autoregressive
processes: the true score and the errors of measurement. The errors
are a degenerate case of a first-order autoregressive process since the
regression of E on a prior value of E is zero. The correlational 
structure of the measured scores is called a quasi-simplex; that is, it 
would be a simplex if the scores were corrected for attenuation due to 
measurement error. A quasi-simplex differs from a pure simplex in
that ik.j does not equal zero and is usually positive.

Estimation in the quasi-simplex concerns two types of 
parameters. First, there are the paths from each construct to its
measure that constitutes the measurement model. Second there is the 
estimation of the causal chain or the structural model. It has long
been known that variants of principal components analysis do not
even come close to estimating the parameters of either a simplex or 
its cousin the quasi-simplex. Diagonal factoring does estimate
parameters of a simplex model, but requires prior knowledge of 
communalities to estimate quasi-simplex parameters. The approach

here is first to discuss path analytic solutions following Heise (1969)
and Wiley and Wiley (1970) and, second, to elaborate a confirmatory
factor analysis approach to estimation Jöreskog (1970; Werts, 
Jöreskog, & Linn, 1971).

Table 9.8.  Correlation Matrix for the Chemist Example; Correlations
below the Main Diagonal,  Variances on the Diagonal, and Residuals to
the Model with Equal Reliabilities above the Diagonala,b

For the model in Figure 9.4 there are six correlations 

  r12 = a1a2b1 r23 = a2a3b2

r13 = a1a3b1b2 r24 = a2a4b2b3

r14 = a1a4b1b2b3 r34 = a3a4b3

Note that there are seven parameters and six correlations, and thus the 
model must be underidentified.

Even though the model is underidentified, the parameter
estimates for a2

2, a3
2, and b2

2 are overidentified:

12 23 12
a2

2 = ——— = ——— 
13 14

13 34 23 34
a3

2 = ——— = ——— 
14 24
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14 23 13 24b2
2 = ——— = ——— 

12 34  12 34

Both a2
2 and a3

2 are reliabilities and so the positive root is taken. The
sign of b2 is the same as the sign of 23. Because the preceding
parameters are overidentified, one can solve for an overidentifying
restriction. It is 

14 23 13 24  = 0 

This is a vanishing tetrad which can be tested by checking whether the
second canonical correlation is zero. The result of such a test yields 

2(l) = .508 which is not significant, indicating that the overidentifying
restriction is met. 

The estimates of a2, a3, and b2 for the chemists' data are

    a2: .820, .784
    a3: .807, .771
    b2: .970, .926

The two estimates of each parameter are roughly similar, which is not
surprising since the overidentifying restriction holds. The "low"
reliabilities are discussed later. 

One is not able to estimate a1, a4, b1, and b3. One can, 
however, solve for the product terms, a1b1 and a4b3 after a2, a3, and b2

have been estimated. They can be estimated by

r12 r13a1b1 = —— = ———
a2 a3b2

r34 r24a4b3 = —— = ———
a3 a2b2

Because all the parameters of the model are also correlations, they
should be within +1 and 1. However, given sampling error, an

estimate may fall out of this range. Note that if the reliabilities or 
autoregressive parameters are zero or near zero the model is
empirically underidentified.

In general given k waves of measurement, the reliabilities of 
the first and last wave are not identified. Also not identified is the path
from the true score at the first wave to the true score at the second 
wave and the path from the true score at the next to the last wave to the 
true score at the last wave. All the other parameters are identified if k
equals three, and overidentified if k is greater than three. All the 
overidentifying restrictions are of vanishing tetrad form:

im jk ik jm = 0 

i < j < k < m

Because the model is partially underidentified, various
strategies have been put forward to bring about identification. Heise
(1969) suggested that one might assume that a1 = a2 = a3 = a4. This
implies that reliability does not change over time. This yields a
just-identified model for the three-wave case and an additional 
overidentifying restriction for the four-wave case. Alternatively one 
might force what seem to be very ad hoc specifications of a1 = a2 and 
a3 = a4 or even more implausibly a1 = a3 and a2 = a4.

Wiley and Wiley (1970) have argued that it may be more
plausible to assume that the error variance, V(E), and not the reliability,
is constant over time. Unlike the previous models this requires the use 
of the unstandardized metric and refers to the covariance matrix, not
the correlation matrix. The measurement model is

Xi = Ti + Ei

where V(E1) = V(E2) = V(E3) = V(E4) . The measures X are said to be 
tau equivalent since their error variances are assumed to be equal. The
structural model is
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Table 9.10. Model Parameter Estimates for Autoregressive Models;
All Parameters Are Standardized Except Error Variances and the 
Equal Error Variance Model

Ti+1 = biTi + Vi

The covariance matrix for the four-wave case is in Table 9.9. One can 
then estimate V(E) by both

C(X1,X2)C(X2,X3)V(X2)  ———————
C(X1,X3)

C(X2,X3)C(X3,X4)V(X3)  ———————
C(X2,X4)

The estimates of V(Ti) can now be computed by V(Xi) V(E). One can
then proceed to estimate b1, b2, b3, b1b2, b2b3, and b1b2b3. Note that
what is analyzed is the covariance matrix not the correlation matrix. 

The third solution to this underidentification problem has not 
been previously suggested in this context. It is, however, very popular
in the time series literature. It assumes that the autoregressive process
is stationary, that is, that b1 = b2 = b3. Such an assumption brings about 
identification for the four-wave case but adds no further
overidentifying restrictions. It does not bring about identification for 
the three-wave case as do assumptions about constant reliabilities or
error variances. 

All the preceding strategies have the particular problem that 
there is no clear way to pool the overidentified information. LISREL
or any structural equation modeling program can estimate all the 
preceding models. Inputting the correlation matrix into a structural
equation modeling program and forcing the equality of the paths from
Tt to Tt+l does not result in equal reliabilities because in most
structural equation modeling programs one cannot standardize in the 
latent endogenous variables of T2, T3, or T4. To estimate a model with
equal reliabilities then one forces the disturbance paths to the
measures to be equal. In Table 9.10 are the estimates for the four
models. All the estimates are standardized except the error variances
and the estimates for the equal error variance model. For the first 
model there are no constraints; this makes a1, a4, b1, b3, V(E1), and 
V(E4) underidentified. The fit of the model is quite good. Assuming
equal reliabilities does not result in a significant increase in lack of

Table 9.9.  Theoretical Covariance Matrix with Tau Equivalent Tests 
and a First-Order Autoregressive Process
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fit. Note that either due to rounding error or small specification error, 
the a parameters are not exactly equal.

The assumption of equal stabilities, b1 = b2 = b3, yields the
result that the reliabilities of the first and last waves are lower than
the two middle waves. Finally, the model with equal error variances
also fits, although not quite as well as the model with equal
reliabilities. Table 9.10 gives the unstandardized parameter estimates
for this last model.

The reader is still probably puzzled by the low autocorrelation
for true citations. Understanding the implicit assumptions of the 
autoregressive model can explain the low correlation. A test-retest
correlation can be less than one for three very distinct reasons: (a) true
change in causes, (b) measurement error, and (c) change in structure.
The first two reasons are most certainly already known by the reader,
while the third may not be. Assume that X is measured at two distinct 
points in time, say 1 and 2. The variable X1 is defined as the sum of its 
causes, aiZi1 and X2 similarly, biZi2. Assume also that none of the
causes change and they are all orthogonal. The test-retest correlation
will only be one if a1/b1 = a2/b2 = a3/b3 = … = an/bn. Thus if the causal 
structure changes over time, the test-retest correlation is not unity. 
There is then the implicit assumption that the structural equations do 
not change over time for the data to be first-order autoregressive. In
Chapter 12 this assumption is called quasi-stationarity and is discussed
in much more detail. 

A second implicit assumption of an autoregressive process is 
homogeneous stability: All true causes change at the same rate; that is, 
they all have the same autocorrelation. If a measure is 
multidimensional and the different dimensions change at different 
rates, the process cannot ordinarily be described as first-order 
autoregressive. Moreover, all the causes that are totally unstable over
time are defined as errors of measurement. Thus the reliability
estimates that were obtained for the citations of chemists are not low. It 
is true that if someone else did the counting this new count should
correlate very highly with the old count. Thus it is not the reliability of

the counts per se but the reliability of their ability to indicate some
latent trait. The actual number of citations is not a perfectly valid 
indicator of "citability." See Hargens, Reskin, and Allison (1976) for 
an alternative explanation. 

C O M P O S I T E  C A U S E S

In Figure 9.5 is a model that is very different from all others 
that have been considered in this text. The variable S is unmeasured
and has no disturbance. It is assumed to be a composite or linear
function of X1, X2, X3, and X4. The variable S is called a composite
cause because a composite of X1 through X4 causes Y1, Y2, and Y3. Note 
that S mediates the causal effect of the X variables on the Y set.
Composite variables are more commonly called indices. For instance,
one could index a child's aggressiveness by combining physical and 
verbal aggression. Population change is indexed by number of births 
minus the number of deaths plus the number of immigrants minus the 
number of emigrants. 

The reader should compare the role of S in Figure 9.5 with
the role of say L in Figure 9.1. They are both unmeasured, but once
the coefficients leading into S are determined. The construct S is
exactly known. However, the construct L can be estimated only with
imperfect reliability. The X variables cause S in Figure 9.5, whereas

Figure 9.5  Composite cause model.
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in Figure 9.1 they are caused by L. Finally it is assumed that S's X
variables are free of measurement error, whereas the indicators of L
are unreliable. Clearly there is only a superficial similarity between S
and L. It is shown later that there are differences in estimating the
two models also.

The correlations among disturbances are simply partial correlations:
rY1Y2.S, rY1Y3.S, and rY2Y3.S. The model is overidentified and the set of 
overidentifying restrictions are of the form

XiYk XjYm XiYm XiYk  = 0 
The four components of S are father's education, mother's

education, father's occupation, and average parental income making S
a composite cause.  The Y variables are as follows: mental ability, 
high school grades, and college plans. Data are taken from Hauser
(1973), and the correlations are reproduced in Table 9.11.

Note that this set of restrictions is equivalent to assuming homogeneity
between the X and Y set (see the previous chapter), which is why the
second canonical correlation can be used to test for homogeneity
between constructs. The degrees of freedom are (n  l)(m  l) where n
is the number of variables in set X and m the number in set Y. The 2(6)
= 11.31, which is not statistically significant at the .05 level. A 
structural equation modeling program produced the same parameter
estimates and 2(6) = 11.33. 

To estimate the parameters of the model, first set up the
following canonical correlation analysis. The X variables form one
set and the Y variables form the second set. The paths from the X
variables to S are given by the canonical variate coefficients for the 
X variables. The estimate of S obtained from such a canonical
analysis is 

Normally models for composite causes are much more
complicated. The reader should consult Hauser (1973) and Hauser
and Goldberger (1971) for more details. The reader should note that
while canonical correlation analysis is useful in estimating causal 
models, the canonical correlation itself does not estimate a 
meaningful structural parameter.

     .332X1 + .332X2 + .281X3 + .386X4  [9.1]

To determine the path from S to Y1 note that it equals rSYi. Thus for the 
path from S to Y1 one computes the covariance between Y1 and 
Equation 9.1 which is Table 9.11.  Correlations for Socioeconomic Variables and Outcomesa,b

pY1S = rY1S

       = pX1SrX1Y1 + pX2SrX2Y1 + pX3SrX3Y1 + pX4SrX4Y1

       = (.322)(.244) + (.322)(.230) + (.281)(.212) + (.386)(.203)
       = .295 

The paths from S to Y2 and Y3 are similarly defined: 

pY2S  = (.332)(.151) + (.332)(.149) + (.281)(.127) + (.386)(.116)
= .180 

 pY3S = (.332)(.306) + (.332)(.269) + (.281)(.299) + (.386)(.304)
      = .392 
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C O N C L U S I O N

Five specific examples have been analyzed. Quite clearly, 
structural modeling with unobserved variables is possible. As with any 
model one must take care in the specification and identification of such 
models. Always check the estimates and residuals to determine if the 
results are meaningful. To some extent the measurement model can be 
separately considered. First, the measurement model can be specified 
and, if it is identified, one can proceed to estimate the covariances 
among the latent variables. Then one can specify the structural model 
and, if it is identified, go ahead and estimate it. Occasionally an 
overidentified structural model can bring about the identification of a 
previously underidentified measurement model. 

   The fit of the model can be tested as follows. First the 
measurement model can be estimated with a just-identified structural 
model. Any significant lack of fit can be attributed to the measurement 
model. Then the full model can be estimated and the increased lack of 
fit can be attributed to the structural model. 

A structural equation modeling program is a powerful tool for 
estimating models with latent variables. When working with the program, 
one should take care not to fall prey to the many common traps: 

1.  Check to make sure one has not obtained a local minimum 
by altering the starting values. 

2.  Check the degrees of freedom to see if it agrees with a 
simple counting. 

3.  Do not rely on the program to determine if the model is 
identified. Try to independently establish the status of 
identification.

4.  Carefully study the parameter estimates and look for 
anomalous results. 

When I run a structural equation modeling program I presume I have 
made an error. I check and recheck my results. As George Harrison put 
it, "with every mistake, we must surely be learning." 
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10
R A N D O M I Z E D
E X P E R I M E N T S

Although the focus of this text is the analysis of
nonexperimental data, in this chapter the topic is randomized
experimentation. Structural modeling can add new insights to
randomized experiments as well as encourage researchers to apply
nonexperimental methods even within experimental settings. The first
section of the chapter discusses the logic of experimentation. The
second section considers alternative dummy coding schemes. The third
section presents an example that uses path-analytic techniques to 
estimate structural parameters. The fourth section discusses the 
advantages of a multiple regression approach to experimental data. The 
fifth section considers alternative structural formulations of repeated
measures designs.

L O G I C  O F  E X P E R I M E N T A T I O N

The key feature of the randomized experiment is random
assignment of experimental units to conditions. To randomly assign 
units the experimenter must be able to control or manipulate the causal
variable.  Occasionally natural experiments like the draft lottery occur
(Staw, 1974), but in the main randomization requires that the 
experimenter control the causal variable. This control has brought
about the term that is used to refer to the exogenous variable in an 
experiment: the independent variable. This variable is called 
independent since it is under experimental control and is not related to 
any other important exogenous variables. The endogenous variable is 
called the dependent variable since any covariation between it and the 

independent variable is brought about through the independent
variable.

The requirement of random assignment forces social
scientists to choose as independent variables those variables that are
under experimental control. To some degree experimentation has 
locked social science and particularly psychology into an epistemology
that outside forces determine the behavior of the individual. Since
stimulus variables can ordinarily be manipulated whereas response
variables can only be manipulated with difficulty, it is hardly
surprising that experimentalists are predisposed to a stimulus-response
approach to human behavior (see Chapter 12). 

The experimental researcher possesses a vast arsenal of
experimental designs from which to choose. For the moment consider
experimental designs commonly called between-subject designs. 
Persons are randomly assigned to receive one particular treatment. In 
within-subject designs persons receive multiple treatments.
Imagine a two-group experiment in which Np participants are in the 

experimental group and N(l p) or Nq are in the control group, N
being the total number of persons and p the probability of being 
assigned to the experimental group. Let X be a dummy variable such 
that when the subject is in the experimental group he or she receives
one and if in the control group, the person receives a zero. Calling the
dependent variable Y, it follows that V(X) = pq and C(X,Y) = (YE

YC)pq where YE is the experimental group mean and YC the control 
group mean. The regression of Y on X is the mean difference between
the experimental and control group. Not surprisingly, going from 0 to 1
in X, the dependent variable increases by (YE YC).

In Figure 10.1 there is a path diagram. In this case X is the
dummy variable, 1 for treatment and 0 for control, and Y is the 
dependent variable and U is the residual from the regression of Y on X
or Y – bYXX. The important point about experimentation is that one
knows that in the population the disturbance is uncorrelated with the 
exogenous variable. Given of random assignment, the independent
variable must be uncorrelated with all other causes of the dependent 
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Another virtue of randomized experiments is the possibility of
uncorrelated causal variables.  This strength of experiments rest again 
on the fact that the experimenter controls the causal variables.
Consider a 2 x 2 design. One independent variable, called A, has two 
levels, A1 and A2, and the other called B, also has two levels, B1 and B2.
There are then four cells in the design, A1B1, A1B2, A2B1, and A2B2.
With multiple regression three dummy variables are created, that is, as 
many dummies as there are cells in the design less one. In Table 10.1
there is what is called the model matrix or design matrix (Bock, 1975).
The columns are the cells of the design and the rows are the dummy
variables.  The first dummy, X1, assigns a 1 to participants in A1 and a

1 to those in A2. Obviously this dummy tests the A main effect. The 
second dummy, X2, assigns a 1 to those in the B1 cells and a 1 to those 
in the two B2 cells and is a test of the B main effect. The last dummy,
X3, is formed by taking a product of the main effect dummies, X1X2,
and tests interaction. 

variables.  However, in any sample the disturbance is correlation with a 
causal variable due to sampling error, making a guarantee of a zero
correlation good only in the long run.  Clearly, experimentation
provides the researcher a specification of great importance.  In Chapter
4 it was shown that the key assumption for the causal interpretation of 
regression coefficients is that the disturbance is uncorrelated with the
causal variables; however, in experimentation this is guaranteed! 

Table 10.1.  Model Matrix a 2 X 2 (A X B) Factorial Design
Figure 10.1  Path model for the experiment.

Of course, demonstrating a causal effect is only part of the
game.  One must attach to that effect a verbal interpretation. The result
must be put within some theoretical context. Moreover, often one must
rule out the hypothesis that the independent variable is confounded
with some irrelevant variable. Our labeling the independent variable in 
particular does not ensure that it is in fact that variable; Cook and 
Campbell (1976) call this problem construct validity. Experimentation
in and of itself rules out a number of classic confounding variables
such as history, maturation, and selection, but numerous other artifacts 
like experimenter bias and demand characteristics remain. However,
the strength of causal inference within randomized experiments gives it 
the highest degree of interval validity (Campbell & Stanley, 1963) of
any method discussed in this text.

The textbook recommendation for factorial design is to have
equal number of participants in each cell, say n. Examine now the 
correlation between X1, and X2. First, all three means are zero because
half the participants have a score of 1 and the other half have l.
Figuring X1X2, it is n for A1B1, n for AIB2, n for A2B1, and n for
A2B2 all of which sums to zero. Working through X1X3 and X2X3

again zero is obtained. Thus, in this case and in general, given factorial 
design and equal number of participants, the main effects and their 
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interactions are all unconfounded. Multicollinearity evaporates as a 
problem. Actually the whole strategy of analysis of variance is based
on this fact. Given factorial design, the multiple correlation squared 
(the between group sums of squares) can be partitioned unambiguously
into separate effects. The analysis of variance can be viewed as a
computational shortcut for balanced (equal n) factorial designs. 

A researcher is presented a choice in the coding of multilevel
independent variables. As an example consider a four-level
independent variable and three different types of coding: Helmert, 
deviation, and effects coding. 

Table 10.2.  Three Different Methods of Coding a Multilevel
 Nominal Variable

D U M M Y  V A R I A B L E S

Consider again the dummy variables and model matrix. The
values of the model matrix may be designated ij where the first
subscript i refers to the dummy variable Xi and the second subscript j
refers to the column which in turn refers to a cell of the factorial
design. The mean of a dummy variable Xi is 

nj ijMi = ———   [10.1]
N

where nj is the number of persons in the jth cell and N is the total
number of participants. If j ij equals zero, then Mj is also zero when nj

is constant across all conditions. The covariance between two dummies
is given by

In Table 10.2 there are examples of these three types of codes. 
One use for Helmert codes would be in the case of hierarchically
ordered groups. For instance, imagine an educational evaluation that
involves a considerable amount of training of students. An experiment
was designed with four groups:

jnj ij kj ( nj ij)( nj kj)     C(Xi,Xk) =  ————  ——————      [10.2]
N     N2

1. Pure control. 
If the covariance is zero, the two dummies are said to be orthogonal. If

j ij = j kj = j ij kj = 0, then Equation 10.2 is also be zero if the cell 
sizes are equal. It is noted here that the variance of a dummy is a
special case of Equation 10.2:

2. Training only.
3. Training plus one month's use.
4. Training plus six months' use.

Helmert contrasts could be used to contrast group 1 against 
groups 2, 3, and 4; group 2 against groups 3 and 4; and group 3 against
group 4. The first contrast would test the combined effect of the 

nj ij
2 ( nj ij)2

 C(Xi,Xi) = = ———  _———
N N2
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innovation, the second would test whether use was of value, and the 
last contrast would test whether 6 months' use is better than one 
month's. Note that if there is equal n in the groups, all the Helmert 
contrasts have zero mean and are orthogonal.

Deviation coding, the second method in Table 10.2, seems to 
compare a group with the other groups. In the univariate case if level I 
is coded with a 1 and the other three levels with 1/3, the univariate
regression of the dependent variable on Xi yields mean for the level 
minus the grand mean. However, if the other deviation codes are 
created as in Table 10.2, the partial regression of the dependent
variable on X1 partialling out X2 and X3 yields the mean for the level 
minus the grand mean all of which is divided by two.

Although a deviation coding seems to compare one group with
the other groups, when all the codes are entered in one equation, it
actually compares one group with one other group. To see this, note 
that X1, X2, and X3 all compare groups 1, 2, and 3. The only part that is 
unique about each contrast is the comparison of each group with the
fourth group. Thus, when the other variables are partialled out, only the 
comparison of each group with group four remains. Deviation codings 
are clearly not orthogonal, but are negatively correlated. 

The final sets of codes are called effects coding or simple
coding by Bock (1975). These codes work in just the opposite way as 
the deviation codes. When only one effect is in the equation, the 
regression coefficient X1 yields the difference between the mean for the
level minus the grand mean all of which is divided by 2; when all the
terms are in the equation, the effect of X1 equals the mean of the level
minus the grand mean.

They are called effects codes because they yield regression
coefficients identical to analysis of variance effect estimates. Effects
coding is not orthogonal even in the equal n case and usually yields
positive correlations. For example, with equal n and any number of 
categories, the correlation between two dummies is .5.

Clearly the creation of dummies must be done with care. They
do not always estimate or test what they seem to be. There are two 

helpful rules that can aid one in setting up dummy variables. However, 
the rules should not be slavishly followed if they conflict with 
theoretical considerations. First try to keep the dummies as orthogonal 
as possible A second helpful rule is to express dummies in mean
deviation form, which yields three advantages: 

1. It can be quickly determined if two dummies are
 orthogonal by jnj ij kj.
2. The intercept in the regression equation estimates the grand 

mean.
3. If interaction contrasts are formed by the multiplication of

dummy variables, the interaction term is usually not
correlated very much with each of the main effects
(Althauser, 1971). 

This last point is an important one. Consider a 2 x 2 factorial design
with equal n. If one uses 0 and 1 coding for the main effect, the 
resulting coding for interaction is 0, 0, 0, and 1. However, using 1 and

1 codes for the main effects, there is a second set of codes for the 
interaction, 1, 1, 1, and 1. This second set of codes is uncorrelated
with the main effects, whereas the first set has a .289 correlation with 
each main effect.

E X A M P L E

Sibley (1976) investigated a possible source of bias in the 
perception of grammaticality of sentences drawn from articles by 
linguists. She speculated that linguists "set up" the reader to perceive 
the sentence in the way desired by the linguist. Sibley tested this
hypothesis experimentally. The experiment involved 16 linguists and 
16 non-linguists. Half of each received 120 sentences from two articles
by prominent linguists in the same order as given by the original author
while the other half received the sentences in a random order. The final 
independent variable was the instructions given to the participants.
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Half were told to make an intuitive judgment while the other half were
told to use grammatical rules if necessary. The experiment is then a 2 x 
2 x 2 factorial design. Four participants were in each condition and
participants were randomly assigned to order by instruction condition. 
The dependent variable is the number of "errors" made over the 120 
sentences, an error being defined as a disagreement with the author. 

Table 10.4.  Cell Means for Linguistics Study

In Table 10.3 there is the model matrix for the design. The first
dummy, X1, compares the linguists with the non-linguists. The second,
X2, compares the author's order with the random order, and X3

compares the intuition instruction with the rule instruction. Dummy X4

is formed by multiplying X1 by X2; X5 by X1 and X3; X6 by X2 and X3;
and X7 by X1, X2, and X3. These four variables are the interaction
effects. All dummies have zero mean and are orthogonal. In Table 10.4
are the cell means. First note that each dummy variable is a dichotomy
and so one can use the formula given in the next chapter to compute
the point biserial correlation between each of the dichotomies with the 
dependent variable Y. For instance, for rX1Y the formula is (20.5 
26.5)(0.5)/5.847 yielding 0.513. The standard deviation of the 
dependent variable is 5.847. In Table 10.5 are the other correlations for
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each of by prominent linguists in the same order as given by the
original author while the other half received the sentences in a random
order. The final independent variable was the instructions given to the 
participants. Half were told to make an intuitive judgment while the
other half were told to use grammatical rules if necessary. The
experiment is then a 2 x 2 x 2 factorial design. Four participants were 
in each condition and participants were randomly assigned to order by 
instruction condition. The dependent variable is the number of "errors" 
made over the 120 sentences, an error being defined as a disagreement
with the author. 

Table 10.4.  Cell Means for Linguistics Study

In Table 10.3 there is the model matrix for the design. The first
dummy, X1, compares the linguists with the non-linguists. The second,
X2, compares the author's order with the random order, and X3

compares the intuition instruction with the rule instruction. Dummy X4

is formed by multiplying X1 by X2; X5 by X1 and X3; X6 by X2 and X3;
and X7 by X1, X2, and X3. These four variables are the interaction
effects. All dummies have zero mean and are orthogonal. In Table 10.4
are the cell means. First note that each dummy variable is a dichotomy
and so one can use the formula given in the next chapter to compute
the point biserial correlation between each of the dichotomies with the 
dependent variable Y. For instance, for rX1Y the formula is (20.5 
26.5)(0.5)/5.847 yielding 0.513. The standard deviation of the 
dependent variable is 5.847. In Table 10.5 are the other correlations for 

each of the dummies. Because the dummies are uncorrelated, the
correlation is the standardized regression coefficient which in turn is 
the path coefficient. To find R2 simply compute the sum of all the
correlations squared or .577. In Table 10.5 is the t-test for each
coefficient using Equation 4.1. Table 10.5 also contains the
unstandardized coefficients, which are identical to the ANOVA effect
estimates. Finally, in Figure 10.2 is a path diagram.

Table 10.5.  Analysis of Variance Tablea

The results of Sibley's experiment show that linguists make
fewer errors than non-linguists and that more errors are made when the 
sentences are in a random order than in the author's order which 
confirmed Sibley's hypothesis. No interactions are indicated. 

D U M M Y  V A R I A B L E  R E G R E S S I O N

There has been recent recognition that the analysis of variance 
(ANOVA) is only a special case of multiple regression. As has just
been seen by judicious choice of dummy variables, multiple regression
can reproduce the results of ANOVA. A relatively straightforward
presentation of this process is given in Cohen and Cohen (1975), and a 
more complicated but highly general presentation is given in Bock
(1975).
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Figure 10.2  Linguistics example.

The virtues of multiple regression over ANOVA are manifold.
First, the use of dummy variables encourages researchers to scale their
independent variables. Since a scientific law is often best stated as a 
functional relationship between the independent variable and the 
dependent variable, the independent variable should be measured on a 
scale. Often variables in experiments are only operationalized with two 
levels, high and low, but with multilevel independent variables, the 
researcher using multiple regression is forced to choose dummy
variable weights for the independent variable. Many times there is a 
natural metric for the independent variable, for example, percent
similarity, status, amount of information, or level of motivation. These 
variables can be easily scaled and the scale weights can be used as a 
variable and entered into the regression analysis. It can then be tested
whether these scaled values explain the variation among the cell means
and, more importantly, whether there is no systematic dependent 
variable variation after the scaled independent variable has been
controlled. For instance, Byrne and his associates have consistently 
shown that attraction is a direct function of percent similarity and that
there is no evidence of nonlinearity. Byrne can then state not only a 

relationship between the independent variable and the dependent 
variable, but he can also state the functional form of the relationship
which allows both interpolation and extrapolation of results. 

Even if there is no natural scale for the independent variable,
one could be derived by the use of scaling methods. One candidate for
scaling independent variables might be multidimensional scaling. 
Levels of an independent variable could be first judged regarding their
similarity. Then the similarity judgments could be multi-dimensionally
scaled. The dimensions obtained from the scaling could be used in the 
dummy coding of independent variables, and then it could be judged
which independent variable explained the variation in the cell means. 

Another strategy might be to have expert judges scale the
independent variable. The cells in a factorial experiment could be 
judged as to how effective they are in producing change according to a 
theoretical formulation. "Judged effectiveness" would then be an
independent variable in the regression analysis and it would be tested
whether it adequately explains the variation among the cell means.
Ideally all the systematic variation of the dependent variable should be 
explained by the scaled independent variable or some simple
transformation of the scale (e.g., logarithmic), and the residual effect
should be nonsignificant.

Scaling the independent variable provides a dividend of
increased power. Because the scaled independent variable is captured
by a single variable, it is tested by a single degree of freedom, and Fs
with one degree of freedom on the numerator have potentially more
power than those with multiple degrees of freedom.

A second advantage of multiple regression over ANOVA is the
generality of design. ANOVA is best suited to the case of equal
number of participants in each treatment condition. In fact, ANOVA 
can be viewed as a simplification in the computations of multiple
regression in the equal n case. In the all too common unequal n
situation, researchers often employ highly questionable correction
procedures. Some researchers randomly discard precious data; others
gather data from additional participants, ignoring the chance that either 
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the subject population or the experimental setting have changed. Equal 
or unequal sample size presents no special conceptual problems within
regression analysis. With unequal n it is randomized that effects
become partially confounded, and the efficiency of effect estimates are
reduced. This situation, known as multicollinearity, is not so much a 
problem but rather the price we pay for unequal n, and of course it is 
present in either variance or regression analyses.

Table 10.6. Unweighted verses Weighted Means Example

Given multicollinearity, the between-cells sum of squares 
cannot be orthogonally partitioned. Unfortunately some researchers
have advocated methods that attempt to orthogonally partition the sum
of squares: unweighted means analysis and hierarchical model testing.
Although the former is an ANOVA strategy and the latter is a multiple

regression strategy, both seek equal n ANOVA-like partitioning of 
variance. The following shows how both unweighted means analysis
and hierarchical model testing can both yield anomalous results with
unequal n.

Table 10.7.  Illustration of Hierarchical Model Testing

Unweighted means analysis assumes that all the cell means are
based on the harmonic mean. Unweighted means is meant to be only
an approximation and is not, as is commonly thought, meant to handle 
accidental unequal sampling. To illustrate the arbitrariness of the 
unweighted means analysis, consider the means in Table 10.6. These
artificial data indicate that there is a main effect of independent
variable B. The values in column 3 have a mean of 13.0 and those in 
columns 1 and 2 have a mean of 7.0. Confidence in the existence of the 
main effect should be a function of the distribution of the two sets of 
sample sizes. The first set of sample sizes in Table 10.6 would inspire
greater confidence than the second set of sample sizes because, in the 
first set of sample sizes, the deviant means in column 3 are associated
with large sample sizes whereas in the second set the deviant means 
are associated with small sample sizes. Since both have harmonic cell
means of 7.5, an unweighted means analysis yields a sum of squares of
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It should be noted that ignoring the effects of the other 
independent variables (i.e., not controlling for them) does not always
inflate the sum of squares attributed to an effect. It is possible, 
although it is empirically unusual, that effects could be grossly
underestimated. Given the second set of means in Table 10.7, the 
marginal means of A are both 15 ignoring B, but clearly there is a main
effect of A. This effect is formally identical to the suppressor variable
phenomenon in multiple regression. 

360 for the column main effect in both cases. A weighting of means by 
sample sizes yields a sum of squares for B more in accord with 
intuition: 432 for the first set of values and 288 for the second set. 
Unweighted means analysis fails to weight the deviancy of a mean
from other means by its sample size. 

The second approach to be criticized is called a hierarchical 
approach, or method III by Overall and Spiegel (1969). The effects are 
first ordered, say A, B, and A x B. First, the effects of A are fitted
ignoring the effects of B and A x B. The effect of B is then fitted
controlling for A and ignoring A x B. Finally, the A x B effect is fitted
controlling for both A and B. In this way the between-cells sum of
squares can be orthogonally partitioned. Note, however, that the effect
of A is confounded with B and A x B and the effect of B with A x B
since the latter effects are not controlled. This fact can create
anomalous results. Examine, for instance, the first set of means in 
Table 10.7. They clearly illustrate only an A x B effect. The 
between-group sums of squares is 2500. Using the hierarchical 
approach, the weighted marginal means for A are 19 and 11. Because 
of unequal n they are not 15 and 15. Computing sums of squares for A
yields 1600. None of the sum of squares can be attributed to B after
fitting A. Fitting the interaction controlling for the main effects yields a 
sum of squares of 900. Thus, the total between-cells sum of squares 
has been orthogonally partitioned between A and A x B.
Counter-intuitively, more of the sum of squares is attributed to A than 
to A x B. This is due to the strong confounding of the A and A x B
effect. Using the dummy codes for A and A x B, the correlation of A
with A x B is .8. Since A explains 64% of the variance of A x B, 64% of 
the interaction effect is attributed to A (i.e., .64 x 2500 = 1600).
Clearly, anomalous conclusions are very possible with the hierarchical
mode of model testing. The logic of the hierarchical method implies 
that if the interaction is statistically significant the main effect should
not be tested since the test of the main effect has ignored the significant
interaction. In practice, however, most users of the hierarchical
approach do not examine the confounding and do not stop testing. 

Figure  10.3  Hierarchical ANOVA.

The hierarchical method implicitly assumes that the 
independent variables can be causally ordered. For instance, as in 
Figure 10.3, A causes B and A x B, B causes A x B and not A, and A x B
does not cause A or B. Then the dependent variable Y is regressed on A,
U, and V. The effect for A includes the direct effect of A plus its 
indirect effect through both B and A x B. The effect of U includes the
direct effect of B plus the indirect effect of B through A x B. The effect
of V includes only the direct effect of A x B. Thus the direct effect of A
could be zero, but A could be judged to have a significant effect if A
and B are correlated and B has a direct effect. The procedure yields an
orthogonal partitioning of variance since A, U, and V are uncorrelated; 
however, it does not test effects in a sensible manner. Moreover, the
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independent variables in experiments have no causal orderings and the 
notion of indirect effects makes no sense.

Given unequal n, confounding or multicollinearity is inevitable 
in factorial designs. The solution to the problem is not to find some
way to achieve orthogonal partitioning as in the equal n case.
Multicollinearity is not a problem in experimental design; rather, it is a 
cost that must be paid given the failure to have equal n.

With regression analysis there is a more reasonable approach 
to the testing of causal effects. The significance of each effect can be
judged by comparing the sum of squares with the effect in the model
with the sum of squares with the effect removed. All other effects are
included in both models. This strategy is called method I by Overall 
and Spiegel (1969) and has been recommended by a chorus of authors
(cf. Overall, Spiegel, & Cohen, 1975). For example, for the first set of
means in Table 10.7 no variance would be attributed to the main
effects and 900 of the sum of squares would be attributed to
interaction. Given confounding, 1600 of the sum of squares cannot be 
attributed. The reader should also consult an alternative approach given
by Appelbaum and Cramer (1974).

A third advantage of multiple regression is the ease in 
pooling interactions into the error term. Anticipated nonsignificant
interactions can be dropped from the regression equation, increasing
the number of degrees of freedom in the error term and thereby 
increasing power. This procedure allows for a large number of 
between-subject independent variables even with a small number of
participants in each cell.

A fourth advantage of the use of multiple regression is that it is 
flexible as to the type of independent variables. Nominal, ordinal, and
interval independent variables are possible in multiple regression. 
ANOVA is limited to discrete independent variables and analysis of 
covariance is limited to a set (usually one) of independent variables 
measured at the interval level of measurement. Some researchers are
reluctant to apply multiple regression because of the assumption of
linearity. However,  because multiple regression reproduces the results

of ANOVA, the same set of assumptions applies to both. As with 
ANOVA, multiple regression assumes an additive model which is a 
linear equation. Within regression analysis nonlinearity and interaction 
can be handled by creating additional dummy variables. 

ANOVA is in no danger of becoming an endangered statistical 
species. One major virtue of ANOVA is that it deals with means and 
the discussion of means often makes greater intuitive sense than 
regression coefficients. Means can be only indirectly computed from
regression coefficients. Multiple regression is often cumbersome to 
apply: The possible number of terms in the regression equation is the 
number of cells in the design, and an equation with as many as 64 
terms is rarely very comprehensible. The cumbersomeness becomes
almost intolerable when the complications of repeated measures and
mixed models are added. Many of the features of multiple regression 
can he applied to ANOVA by the use of special contrasts that are
sometimes called planned comparisons. Obviously the researcher
should be flexible about when to use ANOVA or multiple regression,
but quite clearly multiple regression has some important advantages. 

M U L T I P L E  D E P E N D E N T  M E A S U R E S

Often a researcher is at a loss how to analyze data when there
is more than one dependent variable. At the very least, six different
strategies are available: 

1. Perform repeated measures ANOVA.
2. Perform an ANOVA on the sum of the measures.
3. Perform a MANOVA.
4. Sum the measures weighted by a factor analysis.
5. Covary on one of the measures. 
6. Perform a univariate analysis on each of the measures.

The choice among the six strategies can be facilitated by
examining three causal models. Imagine two independent variables, X1
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and X2, and two measured dependent variables, Y1 and Y2. In Figure
10.4 path diagrams represent three different causal models for the four 
variables.

Figure 10.4  Models for repeated measures.

The top causal model in Figure 10.4 assumes that the
independent variables cause each of the dependent variables. There are
two different approaches to the analysis of this type of model: 
univariate and multivariate. The univariate strategy would be to 
perform separate ANOVA's on each of the dependent variables. 
However, as the number of dependent variables increases, such a 
strategy would result in a large increase in the probability of both Type
I and Type II errors. To reduce the probability of these errors, a 
multivariate approach should be used. A multivariate F tests the effect
of an independent variable on a weighted sum of the dependent
variables. The weights for linear combination of the dependent variable

are chosen to maximize the univariate F of that linear combination.
Significance levels are adjusted because the F is spuriously high. The 
multivariate F is then "hypothesisless" since the particular nature of the 
effect is specified by a statistical, not conceptual, criterion.

The middle path diagram in Figure 10.4 contains an
unmeasured variable, Y, that the independent variables cause, and Y, in 
turn, causes the measured dependent variables. Unlike the top path
diagram, the independent variables cause a construct of which the 
dependent variables are only indicators. An example of this model
might be when some manipulation causes arousal which is 
unmeasured; possible indicators of arousal are fear, tension, and heart
rate increase. To test this model, consider two sub-models of the
middle figure: correlated errors and uncorrelated errors. Correlated 
errors are represented by the curved line between U and V which is 
simply a theoretical partial correlation between Y1 and Y2 with Y
partialled out. If Y totally explains the correlation between Y1 and Y2,
there are no correlated errors. Given correlated errors, a multivariate
analysis is the appropriate method. There should, however, be only one
statistically significant solution. As in Figure 9.5, only the first root of
the canonical analysis should be statistically significant. One should
not perform the analysis separately for each independent variable since 
this would not capture the specification that Y mediate the effects of 
both independent variables on both dependent variables. One can 
perform a canonical correlational analysis and then test each
independent variable with a stepdown F (cf. Bock, 1975); that is, each
independent variable is removed from the analysis and the reduction of 
the canonical correlation is then judged .

If it is assumed that there are no correlated errors, then a factor
analytic approach is appropriate. Given no correlated errors, the 
correlation between the dependent variables is totally explained by the 
unmeasured variable, that is, by the factor Y. Scores on the factor can
then be estimated and treated as dependent variables. To estimate the
factor loadings at least three dependent variables are needed. Ideally
the raw correlation matrix is not factored but the correlation matrix
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with independent variables partialled out. If the model is well 
specified, this should yield a single-factor solution and factor scores 
can then be estimated. Finally, a univariate ANOVA can be performed
on the factor scores. This F is more powerful than the multivariate F
since it allows for specification of the construct. More efficient and 
more general estimation procedures can be obtained by using
confirmatory factor analysis, as discussed in Chapter 7, 8, and 9. Alwin 
and Tessler (1974) used confirmatory factor analysis in an 
experimental investigation of clients' reactions to initial interviews. 
They had multiple measures for both independent and dependent
variables.

A repeated measures ANOVA is sometimes appropriate for the
middle path diagram in Figure 10.4. Since factor loadings are often 
roughly equal, a simple adding of the variables, as in a repeated
measures ANOVA, yields a composite highly correlated with factor
scores. Because adding the variables implies an equal weighting, this
assumption can be tested by no significant independent variable by 
repeated measures interaction. To perform a repeated measures
ANOVA, all the dependent variables should be measured on the same
scale.

The bottom diagram in Figure 10.4 postulates a causal
relationship between the dependent variables. Dependent variable Y1 is
assumed to cause Y2. Variable Y1 can be a manipulation check, an
intervening variable, or a prior measure of Y2. This model is like the 
middle diagram but in this case the intervening variable is measured.
The appropriate analysis for this model is to compute two univariate
ANOVAs. In the first Y1 is the dependent variable, and in the second Y1

is a covariate and Y2 the dependent variable. If one prefers regression 
analysis, one first regresses Y1 on X1 and X2 and then Y2 on X1, X2, and
Y1. The suggestion of covarying on Y1 breaks the rule that the covariate
should not be caused by the independent variables, but such a rule is 
important for the main thrust of covariance analysis: increasing power.
Covariance analysis can also be used to control for mediating variables
like Y1. One must assume that the reliability of Y1 is high, say at least

.90. (If not, this model becomes the middle diagram in Figure 10.4.) If 
the reliability of Y1 is not unity, the effects of X1 and X2 on Y2 are 
ordinarily though not always overestimated (see Chapter 5). Often for 
this model it is postulated that Y1 mediates the causal effect of X1 and 
X2 on Y2. For instance, Insko et al. (1973) argued that implied
evaluation mediates the effects of similarity on attraction. They 
showed that by covarying implied evaluation out of attraction there 
was no effect of similarity. This does not demonstrate that the 
relationship between similarity and attraction is spurious but only that 
the causal relationship is mediated by an intervening variable, implied
evaluation. Serious multicollinearity problems can develop if the
relationship between X1 or X2 with Y1 is strong. This would especially
be true if Y1 is a manipulation check. It should be made clear that
covarying on a dependent variable is permissible only if it can be
assumed that the same variable mediates a causal relationship between
the independent variable and another dependent variable. 

Thus, a structural equation modeling approach is useful in 
determining the mode of statistical analysis. Note that it is not the 
design per se that determines the statistical analysis, but the design plus 
the causal model. The difficult question is often not the choice of the 
statistical analysis but the choice of the causal model.

Figure 10.5 A model with between-and within-subject variables.
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The combination of both between- and within-subjects 
(repeated measurements) variables can prove to be rather awkward
when one sets up a structural model. Nonetheless structural models for
such designs can provide richer information than either a repeated
measures analysis of variance or multiple regression analysis. For 
instance, consider a 2 x 2 design with three repeated measurements.
Call the within-subjects variable trials and let three dummy variables 
represent the 2 x 2 between-subjects variables: X1 for the main effect of 
A, X2 for the main  effect of B, and X3 for the A x B interaction. In
Figure 10.5 is a path diagram for the six variables. The X and Y
variables are unstandardized, but the U variables are standardized.
There are no curved lines between the X variables because it is
assumed that there are an equal number of participants in each of the
four cells of the design; however, if cell sizes were unequal no special
problems would arise. The minimum condition of identifiability is met 
since there are 15 correlations and 15 free parameters, 9 paths, 3 
covariances among the X variables, and 3 correlations among the 
disturbances. Even though the researcher knows that the covariances 
between X1, X2, and X3 are zero, they still need to be estimated. The 
model is a hierarchical model and can be estimated by multiple
regression and partial correlation analysis.

One can employ a structural equation modeling program to test 
the usual analysis of variance hypotheses. For instance, a model in
which c1 = c2 = c3 tests the A x B by trials interaction. That is, if there 
were no interaction the coefficients would be equal. Recall that an 
interaction specifies that a causal law varies as a function of some
other variable. The test of the A by trials interaction sets a1 = a2 = a3

and the B by trials interaction sets b1 = b2 = b3.
If none of the between-subjects variables interact with trials, 

then one can proceed to test the A and B main effects and their 
interaction. They are: the A main effect — a1 = a2 = a3 = 0; the B main
effect — b1 = b2 = b3 = 0; the A x B interaction — c1 = c2 = c3 = 0.
Such an analysis does not make the restrictive assumptions of repeated
measures analysis of variance: homogeneity of variance, d1 = d2 = d3,

and homogeneity of correlation, rU1U2 = rU1U3 = rU2U3. In fact, these
assumptions can be tested by a structural equation modeling program
(e.g., LISREL). It is true that the program does assume multivariate
normality and the 2 test is only approximate; however, it does provide 
more natural parameter estimates.

Figure 10.6 Interactions as an artifact of scale.

As an example of the flexibility of the structural approach,
consider the researcher who suspects that the interactions of trials
with A, B, and A x B are an artifact of the scaling of the Y variables. 
Thus if Y2 were rescaled by Y2/k1 and Y3 by Y3/k2, the interactions
would disappear. Such a model presumes that a2/a1 = b2/b1 = c2/c1 = 
k1 and a3/a1 = b3/b1 = c3/c1 = k2. To test such a model, one estimates
the model in Figure 10.6. Note that variable Z has no disturbance. If
the model fits the data, then a rescaling can explain the interactions.
Such a model can be tested by a multivariate analysis of variance or 
canonical correlation analysis, but neither provides direct estimates of
parameters nor can they allow respecifications such as the Y variables
being unmeasured.

C O N C L U S I O N

It has been seen that logic of experimental inference can be
sharpened by an understanding of the issues of correlational inference. 
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Moreover, even in an experimental context the researcher can employ 
correlational methods. A structural modeling approach forces 
researchers to elaborate more complicated causal chains whereas the 
simple-minded analysis of variance method focuses on a single 
dependent variable. Social science does not need fewer randomized 
experiments but rather experiments that also analyze the data 
correlationally.
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1 1
T H E  N O N E Q U I V A L E N T  

C O N T R O L  G R O U P
D E S I G N

A growing concern of social scientists is the evaluation of 
social programs (Campbell, 1969). Increasingly social scientists are
called upon to evaluate educational innovations, behavior modification
programs, social work strategies, and job training methods. This 
chapter shows that structural modeling is equally important in
evaluation of social programs as it is in discipline research. 

Weiss (1972) has stated that the most common design in
evaluation research is a pretest-posttest design in which participants are
not randomly assigned to groups or, as Campbell and Stanley (1963) 
refer to it, the nonequivalent control group design. Thus with this
design there is a pretest and posttest, but the control and experimental
participants may differ at the pretest because of the failure to
randomize. This initial pretest difference may be because: 

1. A treatment is administered to classroom, school, or 
school system    and another classroom, school, or
school system is taken as a   control group.

2. A randomized experiment is planned but because of
mortality, contamination of the control persons by the
experimentals, or variation in the experimental 

treatment, the true experiment has become a quasi-
experiment.

3. Because of scarce resources the treatment is only
given to a select group. 

4. Participants select their own treatment level. 

Anyone familiar with the problems encountered in natural 
settings must realize that although randomization and true
experimentation are ideal goals in research, they are not always
possible. A pretreatment measure does allow the researcher to assess
how confounded the experimental treatment is with the participants'
predisposition to respond to the dependent variable. 

What follows is a structural analysis of the nonequivalent 
control group design. The chapter is divided into three sections. The 
first section specifies a general model. The second section outlines a
set of analysis strategies for the design. The third section discusses
various special cases of the general model.

GENERAL MODEL 

For the nonequivalent control group design there are at least 
three measured variables: X1, a pretest measure of the variable that the 
treatment is to change; X2, a posttest measure; and T, the treatment 
variable coded 1 for the experimentals and 0 for the controls. The 
causal function of X is divided into three unmeasured, latent
components:

G — group difference such as sex, race, classroom, and others,
Z — individual differences within groups,
E — totally unstable causes of X (errors of measurement).

Variable G must be included in the specification of causes of X
because in field settings it can rarely be assumed that one samples from
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T = qG + mZ1 + sE1 + fU   [11.3]a single homogeneous population. Usually multiple populations are 
sampled with each population having different mean level of X.

where U is a residual term that is uncorrelated with all the other 
variables in the model and is simply a variable that represents all other 
causes of selection besides G, Z, and E.

For most of what follows all variables, both measured and 
unmeasured, are standardized because standardization decreases
algebraic complexity and because in this case it means little loss of
generality. Occasionally, however, the unstandardized measure is 
employed, as in measures of treatment effect. 

Equations 11.1, 11.2, and 11.3 have been expressed in the path 
diagram in Figure 11.1. The correlations between the measured
variables are:   The equations for X1 and X2 can be expressed in terms of 

their causes G, Z, and E and any treatment effect: 
rX1T = qa1 + mb1 + se1      [11.4]

X1 = a1G + b1Z1 + e1E1 [11.1]     rX2T = qa2 + mjb2 + t      [11.5]
X2 = a2G + b2Z2 + tT + e2E2 [11.2]     rX1X2 = a1a2 + b1b2j + trX1T     [11.6]

where the subscripts 1 and 2 refer to time. It is assumed that the group
differences variable, G, is perfectly stable making its autocorrelation
unity which explains why G needs no time subscript. Relative position 
within groups, Z, may not be perfectly stable making its 
autocorrelation less than one, while errors of measurement, E, are
perfectly unstable making its autocorrelation zero. (Uncorrelated
measurement errors are assumed by only one analysis strategy 
discussed here: analysis of covariance with reliability correction.) It is 
also assumed that all unmeasured variables are uncorrelated with each
other with the previously stated exception that Z1 and Z2 may be 
correlated (rZ1Z2 = j).

The treatment variable has been dummy coded, 1 for treatment and 0
for control. A correlation of a dichotomous variable with another 
variable is sometimes called a point biserial correlation and is itself a
product moment correlation. Campbell (1971) has suggested that these
treatment-effect correlations are very useful in assessing treatment
effects. A simple correlation may seem to be an unusual measure of 
difference between treated groups, but it can be shown that both mean
difference and the t ratio can be easily transformed into r. The formula
for t to r is 

t
r = ——————If the treatment is correlated with the pretest, it must then be 

confounded with the causes of the pretest. Thus, the treatment must be
correlated with group differences, relative position within groups, 
errors of measurement, or any combination of the three. So in writing 
the structural equation for the treatment variable, the variables G, Z,
and E must be included. It is assumed that the occasion of selection of 
the persons into treatment occurs at the pretest, thus making T
confounded with Z and E at time one. The causal function of the 
treatment variable is then 

       (t2 + N – 2)1/2

where N is the total number of participants. The formula for the 
difference between treated mean (XT) and control mean (XC) to r is 

 (XT – XC)(PTPC)1/2

r = ———————
sX
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where sY is the variability of the observations, PT the proportion of the 
total sample in the treated group, and PC the control group (PT + PC = 
1). The treatment-effect correlation is then closely related to t and the 
difference between means, but like all measures of correlation it is a
standardized measure of the strength of a relationship. The use of 
dummy codes for categorical independent variables is discussed in the
previous chapter. 

ANALYSIS STRATEGIES 

Designate  as the population mean of the treatment group at 
the pretest, and C as the control group mean at the pretest. Both 
and C refer to the population means at the posttest. Those means now 
refer to the unstandardized pretest and posttest. Ordinarily, in the
nonequivalent control group design there is an initial difference such 
that C  is nonzero. These pretreatment differences then make the 
interpretation of any difference between groups on the posttest
problematic. At issue is whether pretreatment differences should
increase, decrease, or remain stable given no treatment effect. 

The literature suggests four modes of statistical analysis to
measure treatment effects in the nonequivalent control group design:

1. Analysis of covariance.
2. Analysis of covariance with reliability correction.
3. Raw change score analysis.
4. Standardized change score analysis.

In Table 11.1 the differences between these four techniques can be
illustrated by considering what each technique takes as the dependent
variable. In covariance analysis the pretest is a covariate and the 
residual from the posttest-pretest regression is the dependent variable. 



2 6 2 C O R R E L A T I O N  A N D  C A U S A L I T Y Chapter  11 N O N E Q U I V A L E N T  G R O U P  D E S I G N 2 6 3

The results of analysis of covariance are virtually equivalent to 
a multiple regression analysis in which the pretest and treatment
variable are the predictors, and the posttest the criterion. Both Lord 
(l960) and Porter and Chibucos (1974) have suggested that the 
estimated regression coefficient is attenuated by measurement error in 
the pretest, and so the regression coefficient must be corrected for 
attenuation. For raw change score analysis the pretest is simply
subtracted from the posttest.

Figure 11.1 Model of selection for the nonequivalent control
group design.

Although change score analysis is often condemned (e.g., 
Cronbach & Furby, 1970; Werts & Linn, 1970), it is perhaps the most
common way of analyzing this design. The popularity of this mode of 
analysis is no doubt due to its seeming ease of interpretation and the 
fact that it can be viewed as part of a repeated measures analysis of 
variance. The main effect for treatment in raw change score analysis is 
equivalent to the Time by Treatment interaction of a repeated-measures
analysis of variance (Huck & McLean, 1975). It should be noted that
using the change score as the dependent variable and the pretest as a
covariate yields significance test results that are identical to the 
analysis of covariance with a metric of change (Werts & Linn, 1970).

Another mode of analysis is standardized change score analysis. As is
seen later, this is actually a correlational method, but it is possible to 
view the dependent variable of the analysis as the posttest minus the 
pretest multiplied by the ratio of time 2 pooled within treatment groups 
standard deviation to the time 1 pooled within treatment groups
standard deviation. Kenny (1975a) presents the dependent variable as 
the difference between the standardized (unit variance, zero mean)
pretest and posttest. For reasons to be discussed later, the dependent 
variable in Table 11.1 is preferable. 

There is for each mode of analysis a statistical expression that 
equals zero if there were no treatment effects, that is, a null hypothesis
for each method. Discussed are two different ways of expressing this 
null hypothesis: means and treatment-effect correlations. Although
both ways are algebraically equivalent, each has its own distinct
advantage. The use of means gives a measure of treatment effect in the 
metric of the posttest. Treatment-effect correlations are useful in 
determining the relative difference between the experimental and 
control group, that is, relative to the standard deviation.

For each of the four modes of analysis the measure of 
treatment effect can be viewed as the difference between means at the
posttest ( C ) minus the difference at the pretest ( C ) times
some correction factor. Porter and Chibucos (1974) call this correction
factor the index of response. In Table 11.1 are the measures of 
treatment effect for each of the four methods. For analysis of 
covariance the correction factor is b21.T the unstandardized partial 
regression coefficient of X2 on X1 controlling for T. For analysis of 
covariance with reliability correction the correction factor is b21.T

corrected for attenuation due to measurement error. The appropriate 
reliability is the pooled within-treatment groups reliability. Raw
change score analysis has no correction factor or, more precisely, a 
correction factor of one. For standardized change score analysis the
correction factor is sX2.T/sX1.T where sX2.T is the pooled within-treatment
standard deviation of the posttest.
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 For raw change score analysis the covariance is All four null hypotheses can also be viewed as setting the
posttest-treatment correlation equal to the pretest-treatment correlation
times a correction factor. For analysis of covariance the correction
factor is the pretest-posttest correlation. Since the pretest-posttest
correlation is ordinarily less than one, analysis of covariance implies
that in the absence of treatment effects, the posttest-treatment
correlation is less in absolute value than the pretest-treatment
correlation. The correction factor of the analysis of covariance with
reliability correction is the pretest-posttest correlation divided by the 
reliability of the pretest. 

C(T, X2 X1) = C(T,X2) C(T,X1)

Dividing through by sX2sT  and with some algebraic manipulation, the 
following equation is obtained:

sX2(1 rTX2
2)1/2

C(T,X2) C(T,X1) ———————
sX1(1 rTX1

2)1/2

This correction factor is ordinarily less than one, making
posttest-treatment ordinarily less in absolute value than the 
pretest-treatment correlation. The correction factor for raw change 
score analysis is the standard deviation of the pretest divided by the 
standard deviation of the posttest. The correction factor for
standardized change score analysis is equal to one. 

For standardized change score analysis, it can be shown that 

 (1 rTX2
2)1/2

rTX2 rTX1 ——————
 (1 rTX1

2)1/2

The preceding equals zero except in trivial cases only if rTX2 = rTX1

equals zero.    Campbell and Erlebacher (1970) have suggested a fifth
method: covariance analysis with common factor coefficient 
correction. This method closely resembles analysis of covariance with 
reliability correction, the difference being that the regression
coefficient is divided by the pretest-posttest correlation of X instead of 
the reliability of X1.

To demonstrate the treatment-effect correlation measures of 
treatment effects in Table 11.1 take the covariance between the
treatment with the dependent variable and simplify the expression. For 
analysis of covariance the covariance of the treatment with the
dependent variable is 

C(T, X2 bX2X1.TX1) = C(T,X2) bX2X1.TC(T,X1) This correction yields the same correlational null hypothesis as 
that for standardized change score analysis since the pretest-posttest
correlations cancel each other. With some algebraic manipulation, the above reduces to 

It should be clear from Table 11.1 that the measures of
treatment effect of the four modes of analysis are different hypotheses
except in highly trivial cases. Each of the four modes of analysis has
been advocated as the method of analysis for the nonequivalent control
group design by various authors. Other authors (e.g., Lord, 1967) have
pointed out that it is paradoxical that different methods yield different
conclusions. Cronbach and Furby (1970) state that treatments cannot
be compared for this design. The literature on this design is, therefore,
very confusing and not at all instructive to the practitioner. 

rTX2 rTX1rX1X2

The preceding formula is the numerator of the formula for rTX2.X1 and 
TX2.X1, that is, the partial correlation and standardized partial 

regression coefficient of X2 and T controlling for X1.
The logic for analysis of covariance with reliability correction 

is the same as previously with the inclusion of the reliability of the 
pretest in the formula.



2 6 6 C O R R E L A T I O N  A N D  C A U S A L I T Y Chapter  11 N O N E Q U I V A L E N T  G R O U P  D E S I G N 2 6 7

SPECIAL CASES OF THE GENERAL MODEL 

The validity of any mode of analysis depends on its match with
the process of selection into groups. In the remaining part of this 
chapter, various special cases of the general model of selection are 
considered.

Each mode of analysis is appropriate for a given model of 
selection. These special cases of the general model yield
overidentifying restrictions given no treatment effects. It will then be 
shown that these overidentifying restrictions derived from the model of 
selection match the null hypothesis of each of the four modes of 
analysis given in Table 11.1.

Three different types of selection processes are considered.
The first type is selection based on the measured pretest. This is the 
only type of selection considered for which selection is controlled by
the researcher. In this case either by design or accident the treatment is
correlated with the entire pretest and, therefore, correlated with all the 
causes of the pretest: G, Z, and E. For this type of selection process the
analysis of covariance is appropriate. The second type of selection is 
selection based on the true pretest. For this case the treatment is related
to G and Z and not E, making the analysis of covariance with reliability
correction appropriate. The third type of selection is based on group
differences. Participants are assigned to the treatment because of 
demographic and social variables, G. Given that the effect of these
demographic variables is stationary over time, standardized change 
score analysis is the appropriate mode of analysis. Finally discussed is
the case in which the occasion of selection into treatment groups is not 
at the pretest. 

S E L E C T I O N B A S E D  O N  T H E  P R E T E S T

At times it may be possible to control selection into treatment
groups, but it is decided not to randomly assign participants to
treatment conditions. One reason for not randomly assigning is that it

may not be fair for all types of participants to have the same 
probability of receiving the treatment, that is, certain persons (e.g., the 
injured or disadvantaged) are considered more deserving of the
treatment. One strategy, called the regression discontinuity design by 
Thistlewaite and Campbell (1960), is to assign participants to the
treatment on the basis of pretest.

Persons scoring above (below) a certain point would be given
the treatment and those scoring below (above) or equal to that point
would be the controls. (Since the pretest is measured on an interval
scale and treatment is dichotomous, rX1T does not equal one but it is 
high.) Actually a pretest itself need not be used, but rather any measure
of "deservingness." The treatment, then, is a function of the pretest (X1)
and random error (U):

   T = kX1 + fU        [11.7]

In this case assignment to the treatment groups is deliberately 
confounded with the pretest and. therefore, with the causes of the 
pretest while in the true experimental case, the treatment is deliberately 
uncorrelated with the pretest through randomization. But like the true 
experimental case, a specification has been gained by controlling the 
assignment to groups. In the population the treatment should correlate
with the unmeasured causes of pretest (G, Z1, and E1) to the degree to
which they cause the pretest. Substituting Equation 11.1 for X1 with 
Equation 11.7 yields

T = k(a1G + b1Z1 + e1E1) + fU

Taking the covariance of G, Z1, and E1 with the preceding equation 
yields a1k, b1k, and e1k. Because one can also solve for the same
covariances from Equation 11.3, it follows that 

a1k = q
b1k = m
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e1k = s

or alternatively q/a1 = m/b1 = s/e1 = k. Given Equations 11.4 and 11.8 it
follows that 

rX1T = a1(a1k) + b1(b1k) + e1(e1k)
 = k(a1

2 + b1
2 + e1

2)

Since al
2 + b1

2 + e1
2 = 1 through standardization, it follows that 

rX1T = k    [11.9]

If no treatment effects are assumed (t = 0), given Equations 11.5 and
11.8 it follows that 

rX2T = a2(a1k) + b2j(b1k)
   = k(a1a2 + b1b2j)

Given no treatment effects and Equation 11.6, it follows that 

rX2T  = krX1X2

Solving both Equations 11.9 and 11.10 for k, it then follows in the 
population that

TX2 TX1 X1X2 = 0 

which is the null hypothesis for analysis of covariance in Table 11.1.
Thus, when participants are assigned to the treatment on the 

basis of the pretest, analysis of covariance is the appropriate mode of 
analysis. Rubin (1977) and Overall and Woodward (1977) have shown
that much more complicated decision rules than regression
discontinuity can be used to determine selection and covariance
analysis can still be valid. However, the researcher must still control 

selection into treatment groups. Special attention should be paid to the 
validity of covariance's assumptions of homogeneity and linearity of
regression.

Lack of linearity can usually be remedied by including
higher-order terms such as the pretest squared. Given the little or no
overlap in the pretest distributions of the treated and untreated groups, 
violations of linearity could lead to erroneous conclusions and may be
indistinguishable from a treatment by pretest interaction.

It seems to be an all too common occurrence that 
randomization of participants into treatment groups produces treatment
differences even before the treatment is administered. Although one 
realizes that the probability of such pretest differences is 1 out of 20, 
given the conventional .05 level of significance, there is nonetheless 
the feeling of being persecuted by fate. It seems that the experiment
has been doomed and there is no way to achieve valid inference. 

Unhappy randomization does not mean cases of failure to 
randomize or cases in which there is randomization but a selected
group of control and experimental participants fail to provide posttest
data. It is a randomized experiment with a pretest difference between
the experimentals and controls. Randomization has not failed, as it is 
sometimes mistakenly thought; only an unlikely type of event has
occurred.

Valid inference is possible in a way similar to our discussion
of the regression discontinuity design. If there is a pretest difference,
the treatment is confounded with the causes of the pretest. The
expected degree of this confounding with each cause is proportional to 
its causal effect on the pretest. For a randomized experiment with the 
pretest correlated with the treatment, the analysis of covariance is not 
only appropriate but necessary.
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S E L E C T I O N B A S E D  O N  T H E  P R E T E S T T R U E
rX1T = k(a1

2 + b1
2)   [11.12]S C O R E

   rX2T = k(a1a2 + b1b2j) + t
The main concern here is not for when the researcher controls 

selection into treatment groups but for when this is not the case. Two
types of subject selection are discussed: first, selection based on the
pretest true score (G and Z) and, second, selection based only on group
differences (G).

Because the reliability of the pretest X1X1 is defined as a1
2 + b1

2, it
follows that rX1T = k X1X1. Also given no treatment effects and Equation 
11.6, it follows that rX2T = k X1X2. The analysis of covariance null
hypothesis will not equal zero because 

   The model previously discussed assumes that the treatment is 
correlated with the errors of measurement in the pretest. This is
generally implausible when selection is uncontrolled. If persons select
themselves into programs, the variables that determine selection into 
the treatment are likely to be correlated with true ability and not chance 
performance on the pretest. The participants, not the experimenter,
control selection making the treatment correlated with only the true 
causes of the pretest. These true scores are not actually measured but 
the causes of selection like motivation, expectation, and 
encouragement are correlated with true ability. As earlier, it is assumed
that the ratio of the effect of group differences on the treatment to its 
effect on the pretest equals the ratio of the effect of individual 
differences on the treatment to its effect on the pretest; that is, 

rTX2 rTX1rX1X2 = krX1X2 krX1X1rX1X2

  = krX1X2(1 rX1X1)

Except in trivial cases, the preceding will only equal zero if the 
reliability of the pretest is perfect. 

The reason for this bias is that the within groups regression 
coefficient is attenuated because the pretest is measured with error. The
posttest should be regressed not on the measured pretest as in 
covariance analysis, but on the true pretest (see Chapter 5). It is
because of this bias that both Lord (1960) and Porter and Chibucos 
(1974) have suggested a correction for the analysis of covariance. One
can view this correction as correcting the regression coefficient for
unreliability in the pretest. To make the reliability correction we must
have an estimate of the reliability of the pretest. Assuming that there is 
an estimate of reliability and s = 0 and Equation 11.11 holds, the 
analysis of covariance with reliability correction yield unbiased
estimates of treatment effects.

q    m 
  — = — = k  [11.11]

a1 b1

This assumption presumes that selection into treatment groups is on the 
basis of the true pretest, a1G + b1Z1, and not on errors of measurement
or any other function of G and Z. In the case of selection based on the
measured pretest, a similar hypothesis was made but that hypothesis
was justified by the design of the research. In this case Equation 11.11 
is an assumption that must be justified by evidence from the selection
process itself.

Porter and Chibucos (1974) discuss in detail computational
methods for true score correction. Regress the pretest on the treatment
variable to obtain bX1T. Now compute

XA = bX1TT + 1(X1 bX1TT )

where 1 is the within-treatment group reliability of the pretest and XA

is the adjusted pretest. The next step is to regress X2 on XA and T, and 
If it is assumed that s = 0 and Equation 11.11 holds,

correlations  11.4 and 11.5 become 
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the regression coefficient for T is unbiased if s equals zero and 
Equation 11.11 holds. The vanishing tetrad can be tested by the null hypothesis of a zero

second canonical correlation between variables X1 and T and variables
X2 and Y as in Chapter 7. Note that it has been assumed that the true
score of X1 was used to select persons into treatment groups, not the 
true score of Y.

A difficulty with the reliability correction procedure is the 
necessity of having a reliability estimate. The inclusion of any ad hoc 
estimate, for example, internal consistency, into the correction formula
almost certainly increases the standard error of the estimate. Ideally the
reliability estimation procedure should be part of a general model.
Following Lord (1960) consider, for example, a parallel measure of X1,
say Y. Let 

However, if both true scores were identical, it follows that 
a1/a3 = b1/b3 and that

X1X2 YT X1T YX2 = 0
Y = a1G + b1Z1 + e3E3

S E L E C T I O N N O T  A T  T H E  P R E T E S T
where E3 is uncorrelated with all other unmeasured variables. If it is 
assumed Equation 11.11 holds and that t = s = 0, then it follows that It has been assumed that the occasion for selection into 

treatment is at the pretest. For most programs the occasion for selection
is not so well defined. Treated and control participants may drop out of
the program or move out of the area, some controls may enter the 
program, unsuccessful or unhappy treated participants may not show 
up at the posttest, and so on. Sometimes the "pretest" takes place well 
before the treatment begins; for example, test scores of the previous
year are used as a pretest for a remedial program for the current year.
For many real world programs the occasion of selection into the
program is not identical with the pretest. 

   rX1Y = a1a3 + b1b3    [11.13]
   rX2Y = a2a3 + b2b3j
   rTY = k(a1a3 + b1b3) [11.14]

Given Equations 11.12, 11.13, and 11.14, it follows that 

TX1 X1Y
X1X1 = ———— For assignment based on the true score, the correlation of the

treatment with the effect variable is not the highest at the pretest. This
would substantially bias analysis of covariance with reliability
correction it selection does not occur at the pretest. Imagine that the
researcher does not measure X1 but uses X0 as a "pretest." For such a 
case the analysis of covariance with reliability correction would
ordinarily be biased. For instance, if parameters a, b, and j remained
stationary over time, then the treatment-effect correlations are equal to 
each other, given no treatment effects. Thus, if selection occurs
midway between the pretest and posttest, or "averages out" midway,
and if the researcher can assume stationarity, then standardized change 

TY

Substituting the preceding formula for reliability into the reliability 
correction formula in Table 11.1 yields the following null hypothesis:

TY X1X2
X2T = ————

YX1

or equivalently in vanishing tetrad form:

X2T X1Y TY X1X2 = 0



2 7 4 C O R R E L A T I O N  A N D  C A U S A L I T Y Chapter  11 N O N E Q U I V A L E N T  G R O U P  D E S I G N 2 7 5

score analysis is the appropriate form of analysis. If selection is based 
on group differences, the occasion of selection is irrelevant since group 
differences are perfectly stable. 

The reader can probably also conceive other patterns of sociological 
selection. Suffice it to say, it is a rather common form of selection into
social programs. 

 S E L E C T I O N  O N  T H E  B A S I S  O F G R O U P In terms of the general model, selection based on group 
differences implies that s = m = 0. However, treatment effects are still
not identified if they exist, and consequently there is no overidentifying
restriction given the absence of treatment effects. To be able to
estimate treatment effects one must take additional assumptions or add 
on additional measures. Following Kenny (1975a), it is shown in this
chapter that the fan spread hypothesis can allow for identification. 

 D I F F E R E N C E S

For most social programs, assignment to the treatment is not 
based on some psychological individual difference, that is, true score,
but on some sociological, demographic, or social psychological
characteristic. This "sociological" selection is brought about in a 
variety of ways: One way to gain an overidentifying restriction is to assume

some form of stationarity, that is, assume that the effect of group 
differences is the same at the pre- and posttest. Campbell (1967) has
argued for just such a model with what he called the "fan spread
hypothesis." The hypothesis is that associated with the mean
differences between groups is a difference in maturation: Those with 
the higher mean mature at a greater rate than those with the lower 
mean. Campbell calls this the "interaction of selection and maturation"
and has used this interaction as an argument against raw change score
analysis. Since the mean difference between groups is widening over
time, change score analysis indicates only the more rapid rate of 
maturation of the initially higher group. The fan spread hypothesis is 
that accompanying increasing mean differences is increasing
variability within groups. In its strictest form the fan spread hypothesis
is that the difference between group means relative to pooled standard
deviation within groups is constant over time. 

1. It may be a matter of policy or legislation that 
treatment is available to a particular social group, for
example, persons living in particular census tracts. It
may be virtually impossible to find some members
of that social group who did not receive the treatment.

2. Some treatments are administered to members of an 
entire organization, for example, school system, and
members of the treated organization are compared
with another organization.

3. To receive a selective treatment a person or their 
sponsor must be   highly motivated, or have political
connections and organizational "savvy." These
volunteers differ systematically from nonvolunteers on 
a number of characteristics (Rosenthal & Rosnow, 
1975). The rationale for the fan spread hypothesis is that the 

different groups are members of different populations living in
different environments. The different environments create and 
maintain different levels of performance and different rates of growth.
Given that growth is a cumulative process, variability increases over
time. The groups would eventually asymptote at different levels. 

4. Sometimes the treatment either is a sociological or 
demographic    variable or hopelessly confounded with 
one. Examples of this are a study on the effects of
dropping out of high school and testing for
differences in socialization between males and
females.
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Formally, the model for selection on the basis of group
differences is

T = qG + fU

Fan spread and no treatment effects implies that a1 = a2, making rX1T  =
rX2T, that is, equality of the treatment-effect correlations.

Recall that fan spread is only a hypothesis. It may not hold in
any particular data set. Ideally fan spread should be tested internally by
the data itself (Kenny & Cohen, 1980). Alternative specifications other
than fan spread are also possible (Bryk & Weisberg, 1977; Linn & 
Werts, 1977).

If the variance within treatment groups of the pretest and
posttest is stationary over time, then the results of standardized change
score analysis and raw change score analysis converge. Thus, for cases
in which variance is stationary, raw change score analysis is to be
preferred since standardization is needed only to stabilize variance over 
time. Power transformations may also be applied to stabilize within
treatment variance, in a way akin to meeting the homogeneity of
variance assumptions of analysis of variance. 

It is not advisable to actually standardize the pretest and
posttest and perform a standardized change score analysis as was
implied in Kenny (1975a), since the standard deviation is itself affected
by any treatment effect. Rather, one should adjust the pretest by 
sX2.T/sX1.T and then perform a change score analysis. As defined earlier,
sX2.T is the standard deviation of the posttest with the variance of the 
treatment partialled out, that is, in the case of discrete treatment
groups, the pooled within group treatment standard deviations. A 
difficulty with using this adjustment is that sampling variation is surely 
introduced because sX2.T/sX1.T is a sample statistic, not a population
value. Nonetheless, using X2 – (sX2.T/sX1.T)X1 as the dependent variable 
yields an interpretable, simple metric in the posttest. 

One might also simply compare treatment-effect correlations
over time. This has the disadvantage that an interpretable measure of

treatment effects must then be derived. It does, however, have the 
advantage that the summary inferential statistic does not vary
according to which score is taken as the pretest and which is the 
posttest. Note that the statistical test results differ if X2  (sX2T/sX1T)X1 is
the dependent variable or if X1  (sY1T/sX2T)X2 is the dependent variable. 

The test of statistical significance between two treatment-
effect correlations is the Hotelling-Williams test (Williams, 1959). It is 

     (rX2T – rX1T)[(N – 1)(1 + rX1X2)]1/2

t(N – 3) = —————————————————————
[2d(N – 1)/(N – 3) + (rX2T + rX1T)2 + (1 – rX1X2)3/4]1/2

where d equals 

1 – rX1T
2 – rX2T

2  - rX1X2
2 + 2rX1TrX2TrX1X2

and N is the sample size. 
It is more likely that mean differences are proportional to the

true standard deviations as opposed to the measured standard
deviations. Thus the index of response should be

s 1/2
X2 X2X2————

sX1 X1X1
1/2

where X2X2 is the reliability of the posttest and X1X1 the reliability of
the pretest. All standard deviations and reliabilities are defined within
treatments. Note that if sX2/sX1 is used as the index of response it must
then be assumed that X1X1 = X2X2.

Before moving on to consider an example it should be
pointed out that all the statistical techniques can be applied in a 
multivariate fashion. That is, if there are background variables like age,
sex, and ethnicity, they can be entered into the analysis since all four of 
analysis techniques can be viewed as application of multiple
regression. For analysis of covariance the posttest is the criterion and 
the pretest, treatment, and background variables are the predictors. For
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the analysis of covariance with reliability correction the pretest must be 
adjusted before it is entered into the prediction equation. The pretest is 
regressed on the treatment and background variables to compute X1

' or
the predicted pretest. Then (X1 X1

') is entered into the regression 
equation (where  is the reliability of X1 X1

') along with the treatment
and background variables. For raw change score analysis the criterion 
is simply raw change and the treatment and background variables are 
the predictor variables. For standardized change the criterion is the
posttest minus the pretest times the standard deviation of the posttest
with the treatment and background variables partialled out divided by
the pretest standard deviation again with the treatment and background
variables partialled out. The predictor variables are again the treatment
and background variables. 

The treatment need not be conceived of as a simple
dichotomy. It may be a multilevel variable, and multiple dummy
variables are then formed. Moreover, the treatment variable may be 
measured at interval level of measurement, as in the number of 
treatment hours received and treatment-background variable 
interactions may be entered. 

To compute treatment-effect correlations, one needs to 
compute partial treatment-effect correlations. That is the background 
variables, and other treatment variables should be partialled out. 

E X A M P L E

Steven M. Director (1974) reanalyzed an evaluation of a
manpower training program. The interesting aspect of the design is that 
there are two pretreatment measures of yearly income, the measures
being separated by one year. The analyses in this example use the two
pretest measures as the pretest and posttest. Since the treatment had not
been administered, the analysis should indicate no effect. 

In Table 11.2 are the basic summary statistics. Note that those 
who received the manpower training started lower than the control 

group and remained lower. In fact the gap actually widened by
$134.00. The pretest-posttest correlation between income is .808. 

In Table 11.3 are the indices of response for four methods of
analysis. There is no reliability measure for the pretest, but for 
illustrative purposes it has been set to a .90 value. Note that all four 
estimates of the nonexistent treatment are negative, indicating that the
phantom program reduced income. Since the program is compensatory,
the larger the index of response, the less negative the estimate of 
treatment effect.

Standardized change gives the least negative estimate of effect
and covariance the largest. Only the covariance estimate reaches
statistical significance. Although this example makes covariance look 
bad, I could have just as easily chosen an example that makes
standardized change analysis look bad. 

Table 11.2.  Means and Standard Deviations in Dollars of the
Manpower Training Evaluation

A critical issue has been the direction of bias in analysis of
covariance when it is misapplied. Campbell and Erlebacher (1970)
have stated that covariance tends to underadjust, that is, it 
insufficiently controls for initial differences. They argued that this was 
especially damaging for compensatory programs. For a compensatory
program, the difference on the covariate favors the advantaged group.
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If covariance analysis underadjusts, then it would tend to make
compensatory programs look bad as it did in the previous example. A 
program that had no effect would be made to look harmful and the 
effects of a slightly beneficial program might be wiped out. Cronbach
and Furby (1970), however, state that the effect of misapplying
covariance analysis is not so certain. In some cases it will underadjust 
and in other cases it will overadjust. Cronbach, Rogosa, Floden, and
Price (1978) give an explicit mathematical formalization of the cases in
which analysis of covariance will under- and overadjust, but the
mathematics of this very important paper go well beyond this text.

Table 11.3.  Estimates in Dollars of the Effects of the Manpower
Training Program

Treatment effects from the nonequivalent control group design
does not imply a single method of data analysis. Campbell and Stanley
(1963) tend to give the mistaken impression that there is an ideal
statistical analysis for each experimental and quasi-experimental
design. It is true that the design can introduce certain specifications,
but I can think of no design that can always be analyzed by a single 
statistical method. 

The validity of each of the statistical methods discussed in this
chapter depends on the causal model it presumes. One has no 
guarantee that any particular model is true. It is almost certainly the 
case that none of the models is exactly true. Special care must be given 

to various issues: unreliability in the covariate, growth rates over time,
stationarity, and most importantly the process of selection.



2 8 2 C O R R E L A T I O N  A N D  C A U S A L I T Y Chapter  12   CLPC 2 8 3

1 2
C R O S S - L A G G E D

P A N E L  C O R R E L A T I O N

The models discussed in this chapter were developed
exclusively for longitudinal data. Whereas the models discussed in the
previous chapters that used either multiple regression or factor analysis
to estimate structural parameters can be used in a longitudinal context, 
they were primarily developed to analyze cross-sectional data.
Cross-lagged panel correlation (CLPC) was first suggested by
Campbell (1963) and has been extensively reviewed by Kenny (1973,
1975b). In its simplest form CLPC involves two constructs, say X and 
Y, measured at two points in time, say 1 and 2. There are then four
variables X1, X2, Y1, and Y2 and six correlations: two synchronous
correlations, rX1Y1 and rX2Y2, two autocorrelations, rX1X2 and rY1Y2, and 
two cross-lagged correlations, rX1Y2 and rX2Y1. As the name suggests,
CLPC is the comparison of the cross-lagged correlations, which can be 
expressed as a cross-lagged differential: rX1Y2 minus rX2Y1. Campbell's
original suggestion is that if X caused Y, then the cross-lagged
differential would be positive and if Y caused X the differential would
be negative. (Unless otherwise stated, all correlations in this chapter
are assumed to be positive.) Campbell and his students (Kenny, 1973,
1975b; Rickard, 1972; Rozelle & Campbell, 1969) have elaborated the
method. Another tradition (Bohrnstedt, 1969; Duncan, 1969;
Goldberger, 1971; Heise, 1970; Pelz & Andrews, 1964) has suggested
replacing CLPC with multiple regression or partial correlation analysis.
Still another approach to panel data has been the application of factor

analysis (Jöreskog & Sörbom, 1976). This approach usually involves
oblique solutions in which factors are time specific. 

The fourth and oldest formal approach to panel data is the 
sixteenfold table described by Lazarsfeld (1972; Yee & Gage, 1968).
This approach involves nominal data, usually dichotomous.  Goodman
(1973) has applied log-linear analysis to the sixteen-fold table. 

Figure 12.1  Crosslag examples. 

In Figure 12.1 there are three highly atypical but very 
interesting examples of CLPC.  As someone who attended college in 
the late 1960s, I chose as examples, marijuana use, women’s
consciousness, and Vietnam protest.  The first example is taken from 
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Jessor and Jessor (1977) and the two variables are marijuana behavior
involvement and attitudinal tolerance of deviance.  The marijuana
variable is a four-item scale of the amount of marijuana usage and the
attitudinal tolerance of deviance is a 26-item measure of the tolerance 
of “conventional” deviant behaviors like lying, stealing, and 
aggression. The sample consists of 188 males of high school age and
the lag between waves is one year. The crosslags in Figure 12.1
suggest that tolerance for deviance causes an increase in marijuana use.

The second example is taken from unpublished data of Z.
Rubin. The subjects are 115 college-age female members of dating 
couples.  The two measures are the woman’s perception of her physical
attractiveness and her perception of her intelligence.  The lag between 
measurements is 15 months.  The crosslags indicate that the opposite 
of the “dumb blond” hypothesis occurs. Instead they point to perceived
attractiveness causing an increase in perceived intelligence. 

The final example is taken from Bachman and Jennings
(1975).  The two variables are trust in the government and Vietnam 
dissent.  The lag is one year and the sample consists of 1406 male 
late-adolescents.  The crosslags indicate that dissent against the war in 
Vietnam caused a decrease in trust.  Perhaps the lack of trust brought 
about by Vietnam laid the groundwork for public acceptance of the 
crimes of Watergate. 

LOGIC OF CLPC 

CLPC is a quasi-experimental design (Campbell & Stanley,
1963).  At the heart of quasi-experimental inference is the attempt to
rule out plausible alternative explanations of a causal effect, that is,
biases or artifacts.  In correlational analysis the chief alternative
explanation of any causal effect is spuriousness.  Any statistical
relationship, be it simple correlation, partial correlation, or regression 
coefficient, can be attributed not to causality but to spuriousness.  As 
discussed in Chapter 1, Suppes (1970) has even defined a causal
relationship negatively as a nonspurious relationship.  Ideally these

spurious causes should be measured and controlled in the 
nonexperimental case. 

Randomized experiments control for spuriousness by random
assignment to treatment conditions. As reviewed in Chapter 10, 
random assignment guarantees that there is no systematic relationship
in the population between the treatment and the dependent variable 
given the null hypothesis of no treatment effect.  Thus, any relationship
between the treatment and the dependent variable that cannot be 
plausibly explained by chance is attributed to the causal effects of the 
treatment.  Although random assignment permits researchers to make
strong causal inferences, it brings with it some potentially burdensome 
methodological limitations.  True experimentation rules out of
consideration as independent variables any variable that cannot be
manipulated and then randomly assigned.  Many important variables,
usually individual differences, are not subject to experimental
manipulation as simply as the intensity of light. Returning to the 
examples in Figure 12.1, it is clearly difficult to manipulate variables 
like attitudinal tolerance of deviance, perceived intelligence, or 
Vietnam dissent. Researchers spend considerable time theorizing about
intelligence, attitude change, extroversion-introversion, and evoked 
potential, but since these variables are attached to rather than assigned
to the organism, they are studied more often as dependent rather than 
independent variables. It might be argued that the stimulus-response or 
input-output orientation within psychology may reflect the limitation.
that experimental treatments be manipulatable variables. The 
requirement of manipulating the independent variable also prevents 
researchers from examining certain variables because of ethical
considerations. For instance, malnutrition has been proposed as an 
important cause of children's cognitive ability, but it would be highly
unethical to randomly assign children to levels of malnutrition. Thus,
for practical and ethical reasons it is not always possible to use random 
assignment to control for spuriousness.

The null hypothesis of CLPC tested by equality of the 
crosslags is that the relationship between X and Y is due to an
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Y1 = c1Z1 + d1V1    [12.3]unmeasured third variable and not causation. Before causal models are
entertained, the third variable explanation should be ruled out. The
logic of true experimentation is similar. Before accepting that the
treatment has an effect, the null hypothesis of sampling error must be
ruled out. Given the inapplicability of true experimentation in 
numerous areas, CLPC can be used to test for spuriousness. 

Y2 = c2Z2 + d2V2    [12.4]

where U, V, and Z are all uncorrelated with each other but are
autocorrelated. Each unmeasured variable takes on a different role. The 
variable Z is the unmeasured variable that brings about the relationship 
between X and Y and is called the third variable. The variable U
includes all causes of X besides Z. It includes true causes as well as
errors of measurement. The variable V plays the same role for Y. It is 
assumed that U and V are correlated over time. Although it is not
necessary for much of what is to follow, it is assumed that Z is 
first-order autoregressive (see Chapter 9). The model in Figure 12.2 is 
clearly underidentified. There are seven free parameters and only six
correlations. Interestingly enough, the autocorrelation of Z or rZ1Z2 is 
identified by the square root of the following:

r rX1Y2 X2Y1————rX1Y1rX2Y2

When the square root is taken, the sign should be taken from the 
cross-lagged correlations.  Given that it is a correlation, its value 
should be between plus or minus one. Because none of the other
parameters are identified, how can spuriousness be tested? The key
assumption of CLPC is stationarity. This assumption capitalizes on the
fact that the same variables are measured at each point in time. By 
stationarity it is meant that a variable's causal structure does not change 
over time; that is, its structural equation is the same at both points in 
time. It is important to distinguish stationarity from stability. Stability
refers to unchanging levels of a variable over time, whereas stationarity
refers to an unchanging causal structure. For the two-wave,
two-variable case stationarity implies

Figure 12.2  The null model for CLPC.

The null model for CLPC is illustrated in Figure 12.2. A third 
variable, Z1, causes X1 and Y1 simultaneously. (Actually Z may cause X
and Y with a lag, and the lag would be the same for both X and Y.)
Over time Z changes and at time 2, Z2 causes X2 and Y2. Given a model
of spuriousness in Figure 12.2 the structural equations for X and Y are
as follows: 

a1 = a2X1 = a1Z1 + b1U1    [12.1]
c1 = c2X2 = a2Z2 + b2U2    [12.2]
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Given stationarity there are two overidentifying restrictions:
equality of the synchronous correlations, X1Y1 = X2Y2, and equality of
the crosslagged correlations, X1Y2 = X2Y1. The strategy of CLPC is to 
examine the synchronous correlations to test for stationarity, and if 
stationarity is satisfied the cross-lagged correlations can be used to test 
for spuriousness. 

Unfortunately, even if the synchronous correlations are equal, 
stationarity may not be satisfied. For example, if a1/c2 were to equal
a2/c1, then synchronous correlations would be equal whereas the 
crosslags would be unequal. 

The opposite can also happen: if a1/c1 = a2/c2, the crosslags are
equal whereas the synchronous correlations are unequal. Thus given
the model in Figure 12.2, equal synchronous correlations is neither a 
necessary nor sufficient condition for equal crosslags. Quite obviously,
it is highly questionable whether crosslags can be used to test for 
spuriousness in the simple two-wave, two-variable case: First, equal
synchronous correlations are needed to demonstrate stationarity.
Although it is rather common for the synchronous correlations to be 
equal, a fair percentage of the time they are not. Second, even if the 
synchronous correlations are equal, stationarity may still not hold. In 
such a case unequal crosslags do not indicate a violation of 
spuriousness but unstationarity.

Besides stationarity, the second key assumption of CLPC is 
synchronicity: Both variables must be measured at the same point in 
time. To see why this assumption is important, examine the model:

Xt = aZt + bUt

Yt = cZt + dUt

    Zt = jZt-1 + fFt

where U, V, and Z are autocorrelated but not cross-correlated. The 
synchronous correlation is then ac and the crosslag of rXt,Yt+k is acj k .
Note that the synchronous correlation is a special case of the crosslag 
formula where k = 0. Now if X is measured at times 1 and 3 and Y at 

times 2 and 4, but if X1 and Y2 are considered wave 1 and X3 and Y4 are
considered wave 2, then the "crosslags" would not be equal because

   rX1Y4 = acj3

   rX3Y2 = acj

These unequal crosslags would not be due to a violation of 
spuriousness or even stationarity but due to a violation of
synchronicity. Not surprisingly, the variables measured closer together
in time correlate higher than those measured further apart in time.
Synchronicity is then an important assumption of CLPC. 

It is instructive to examine the formula for the crosslag in more
detail: acj k . Note that if j is positive, as it would be expected to be, the
correlation between the two variables reaches an absolute maximum
when the lag is zero. As the lag (i.e., k) increases, the correlation
decreases in absolute value. Campbell has called this phenomenon 
temporal attenuation (Rozelle & Campbell, 1969) or temporal erosion
(Campbell, 1971). Temporal erosion is an important empirical fact to 
remember in examining longitudinal data. The intuition behind 
temporal erosion is that two variables measured closer together in time
should, ceteris paribus, be more highly correlated. This "fact" may not
hold when either spuriousness or stationarity do not obtain. However,
this is the very reason that temporal erosion has been emphasized by 
Campbell. Relationships that do not erode over time may indicate
nonspurious effects. Note that given spuriousness and stationarity the 
crosslags must be less than or equal to in absolute value the 
synchronous correlations (Cook & Campbell, 1976). What governs this
decrease in correlation is the rate of change of the third variable, Z.

At first glance synchronicity would seem to be an easy
assumption to satisfy. Panel studies are defined as the replication at 
two different points in time of a cross-sectional survey on the same set
of persons. However, because of the problems of retrospection and
aggregation, synchronicity may not be so easily satisfied. Some
variables in panel studies ask subjects to recall behaviors, attitudes, or
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experiences of the past. These questions either directly or indirectly ask
subjects to retrospect. In some sense the data may not be generated at 
the time of measurement but at some time prior to measurement.

Another problem for synchronicity is aggregation. Many
variables are aggregated or averaged over time. A good example of a 
measure of this type is grade point average. If grade point average is to
be taken as a measure of ability, at what time point does it measure
ability? It is actually an aggregation of performances evaluated by a
teacher. The aggregation problem is well known in the econometrics
literature where many of the important economic variables are 
aggregated across time, for example, gross national product and
unemployment rates. 

Thus both a lack of synchronicity and a lack of stationarity are 
potential explanations of a difference between cross-lagged 
correlations. If the model in Figure 12.2 is correct, then both 
stationarity and synchronicity together would imply equal crosslags. 
The null hypothesis that the crosslagged differential is zero is then a 
test of spuriousness. 

What if the crosslagged differential is nonzero? Asymmetrical
crosslags may indicate a causal effect; more generally they indicate
that there is a factor that causes one of the measured variables and then
causes the other measured variable at a later point in time. This factor,
called the causal factor, is one of many factors that make up the causal 
variable. Saying "X causes Y" is shorthand for "something in X later 
causes Y." It need not be the case that the measure of X is valid or that
the causal factor is the same as the true score of X. Although this
problem of verbally explaining a causal effect is also present in 
randomized experiments, it is not as severe. One knows from an
experiment that X causes Y but the experiment does not necessarily tell 
what in X causes Y. Different theoretical perspectives focus on 
different aspects of an experimental treatment to explain the same
causal effect. The problem of interpreting cross-lagged differences
centers on the construct validity of measures just as it does in

experimental research. The more valid, reliable, and unidimensional
the measure, the more straightforward is the interpretation. 

To illustrate the difficulties in interpreting cross-lagged
differences, consider the marijuana example in Figure 12.1. A naive 
interpretation would say that tolerance of deviance causes marijuana
use. A more precise interpretation would be that some variable that 
causes tolerance for deviance later causes marijuana use. Perhaps there
is a developmental sequence in which there is first tolerance for
deviance and then marijuana use. Although lightning may precede 
thunder with a time lag, one would not argue that lightning causes 
thunder.

An alternative model to that in Figure 12.2 has S cause X
simultaneously and Y with a lag of one unit of time. (Alternatively, S
causes X with a lag of k units and Y with a lag of k + 1 units.) The 
equations then are 

  Xt = atZt + gtSt + btUt

  Yt = ctZt + htSt + dtVt

In general the correlation between X and Y is 

rXt,Yt+k = atct+krZt,Zt+k + gtht+krSt,St+k-1

For the special case in which there are two waves at times 1 
and 2, the synchronous correlations are 

  rX1Y1 = a1c1 + g1h1rS0S1

  rX2Y2 = a2c2 + g2h2rS1S2

and the crosslags are 

rX1Y2 = a1c2rZ1Z2 + g1h2

  rX2Y1 = a2c1rZ1Z2 + g2h1rS0S2
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If stationarity were assumed, a1 = a2, c1 = c2, g1 = g2, and h1 = h2, then
except for trivial cases the crosslags would be unequal. Note that this
more general model diverges from the result of the model in Figure 
12.2. The difference between crosslags assuming stationarity is 

       (1 – rS0S2)gh [12.5]

If it is now assumed that S behaves with a stationary first-order
autoregressive process, it then follows that the synchronous
correlations are equal and that it is possible for a crosslag to be larger
than a synchronous correlation in absolute value. Such a result is not 
possible for the model in Figure 12.2.

Figure 12.3  Confounded hypotheses: correlation of number of 
police and number of burglaries per capita measure in 1968 

and 1969 in 724 cities.

Rozelle and Campbell (1969) and Yee and Gage (1968) have
pointed out a difficulty in interpreting cross-lagged differences—
competing, confounded pairs of hypotheses. There are two sources of a
causal effect, X and Y, and two directions of that effect, positive and
negative, making a total of four possible hypotheses. In terms of the 
previously elaborated causal model the source refers to which variable 
S causes first and the direction refers to whether g and h have the same

or different sign. Finding rX1Y2 > rX2Y1 is consistent with both X causing 
an increase in Y and Y causing a decrease in X. Finding rX1Y2 < rX2Y1 is 
consistent with both Y causing an increase in X and X causing a
decrease in Y. To illustrate the difficulties of confounded hypotheses
consider the example taken from Kidder, Kidder, and Snyderman
(1974) in Figure 12.3. The variables are the number of burglaries and
the number of police for 724 United States cities. At first glance it 
appears that burglaries cause an increase in the number of police. An 
alternative "law and order" explanation is that the number of police 
causes a decrease in the number of burglaries. Both hypotheses are 
equally plausible. The data are not consistent with two other 
hypotheses: police increase burglaries or burglaries decrease the 
number of police. These later hypotheses are not ruled out but their
effects if they exist, are overwhelmed by the effects of one or both of 
the two former hypotheses.

Rozelle and Campbell suggested a no-cause baseline be
computed to test both of the confounded hypotheses. Their procedure
is as follows:

1. Compute the test-retest correlations of both variables and
correct  them for attenuation. 
2. Average these two correlations to obtain a measure of the
stability.
3. Multiply the estimate by the average of the two synchronous
correlations.
4. The resulting value is a no-cause baseline to which both 
crosslags  can be compared.

The implicit logic of the no-cause baseline is that given temporal
erosion, the crosslags should be less than the synchronous correlations
by some factor. Given stationarity and spuriousness, the crosslags
should equal the synchronous correlation times the autocorrelation of 
Z. Rozelle and Campbell assume that the autocorrelation can be
estimated from the autocorrelations of X and Y. Unfortunately there are 
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   NONSIGNIFICANT DIFFERENCEStwo difficulties with the Rozelle and Campbell baseline. First, it
requires that the researcher have estimates of each variable's reliability 
because each autocorrelation must first be corrected for attenuation.
Second, and more problematic, is the hidden assumption that all the 
nonerrorful causes of X and Y change at the same rate over time, that
is, have the same autocorrelation. This assumption is called
homogeneous stability. Evidence consistent with this assumption is 
that the two unattenuated autocorrelations are equal. Given the 
necessity of reliability estimates and homogeneous stability
assumption, it would seem that the Rozelle and Campbell baseline is of
limited practical use for longitudinal studies. 

What does an insignificant difference between the cross-lagged
correlations indicate? Strictly speaking one should not accept the null 
hypothesis of spuriousness, that is, the hypothesis that the variables do 
not cause each other but are cosymptoms of some set of common
causes. There are several alternative explanations. First, it may be that 
both X and Y equally cause each other in a positive feedback loop 
making the crosslags equal. Without a no-cause baseline such a model
cannot be distinguished from spuriousness. Second, it may be that X
causes Y or vice versa, but the magnitude of the effect is too small to 
be detected. In my experience, it is very difficult to obtain statistically
significant differences between cross-lagged correlations even when 
the sample size is moderate, 75 to 300. The cross-lagged differential 
depends on the stability of the causal factor, rS0S2 from Equation 12.5.
The more stable this factor is the smaller the differential. In the 
limiting case in which the factor does not change at all, the differential 
is zero. Cross-lagged analysis is, therefore, inappropriate for examining
the causal effect of variables that do not change over time. For these
variables their effects might best be diagnosed using other quasi-
experimental models (see Chapter 11). (These models actually identify
causal effects through unstationarity, that is, as increases in 
synchronous correlations.) Large cross-lagged differences are also
difficult to obtain because the measured lag may not correspond to the 
causal lag. Normally the lag between measurements is chosen because
of convenience, not theory, since theory rarely specifies the exact
length of the causal lag. Moreover, for most social science theories it is 
doubtful that there is a single lag interval. Rather, the lag is variable 
across time or, as the econometricians call it, a distributed lag. Finally
CLPC is most appropriate for the analysis of variables that have
moderate or large correlations. My own experience is that the analysis
of variables with low correlations (less than .3), yields disappointing
and confusing results. In sum, CLPC requires at least moderate sample
sizes, variables that change, lagged effects, and at least moderate

Although the sign of the synchronous correlations is neither a 
necessary nor sufficient condition for the direction of the causal effect,
it is, nonetheless, suggestive of its direction. If the synchronous
correlations are positive, they are supportive of X causing increases in
Y or Y causing increases in X. Negative synchronous correlations
indicate decreases. Moreover, occasionally the researcher may know
the source of causation and the only empirical issue is the direction, or 
the direction is known and the only empirical issue is the source. In
this way some of the confounded hypotheses can be ruled out a priori.

Given homogeneous stability the crosslags should always be 
smaller in absolute value than the synchronous correlations given
spuriousness, stationarity, and synchronicity. Thus a crosslag larger
than the synchronous correlations (assumed to be equal given
stationarity) is indicative of a causal effect. It should be made clear that 
if X causes increases in Y and homogeneous stability is the case, then 
the crosslag from X to Y need not necessarily be larger than the
synchronous correlations since both instability of spurious causes and
misspecified causal lag would tend to make the crosslag smaller than 
the synchronous correlations. 
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The following then has approximately a standard normal distribution: synchronous correlations. To obtain such moderate correlations the 
instruments must be reliable. Never attempt a crosslagged analysis on 
measures with doubtful reliability. N1/2(r r )14 23Z = ————————————

   [(1 r14)2 + (1 r23)2 - k]1/2Given the low power of CLPC the researcher should design the
longitudinal study to include many replications. Ideally a cross-lagged
difference should replicate across    STATIONARITY REVISITED

The pivotal assumption on which cross-lagged analysis rests is
stationarity. As demonstrated later, the assumption can be somewhat
relaxed in the multivariate case; nonetheless it is still critical. Put in 
words, stationarity implies that a variable has the same proportions of 
"ingredients" at both points in time. More formally, it implies that the 
structural equations are the same. The exogenous variables may be 
changing, but they are weighted the same way at both times. Others
have called this assumption a steady-state process. 

1. Different time lags. 
2. Different groups of subjects.
3. Different operationalizations of the same construct. 

For instance, most of the causal effects in Crano, Kenny, and 
Campbell's (1972) study of intelligence and achievement can be
summarized as abstract skills causing concrete skills. In one of the best 
empirical applications of cross-lagged analysis Calsyn (1973)
demonstrates all three of the preceding types of replications to show 
that academic achievement causes academic self-concept.

Stationarity cannot be guaranteed by using the same 
operationalization at both points in time. It may well be that the same
test measures different constructs at different times. Unfortunately
stationarity may be least appropriate in the situation in which it is most
needed: rapid developmental growth. Developmentalists today are
emphasizing the discontinuities of growth. Implicit in such stage
theories of growth is that the causal model shifts. Variables that are 
important at one stage of development are irrelevant at other stages of 
development. Instead of assuming stationarity, it may be more
reasonable to assume that a variable becomes more causally effective
over time. This effect would be indicated by not only asymmetrical
crosslags, but also changing (usually increasing) synchronous 
correlations. Thus in many nontrivial instances, changing synchronous
correlations may be indicative of causal effects. 

SIGNIFICANCE TESTS 

The hypotheses tested in a cross-lagged analysis are, first, the
equality of synchronous correlations to test for stationarity and, second, 
the equality of crosslags to test for spuriousness. One cannot use 
Fisher's z transformation (McNemar, 1969, pp. 157-158) to test for the
significance of the differences between these correlations since the
correlations are correlated. One can, however, use a rather bulky but 
easily programmable test cited by Peters and Van Voorhis (1940) and
attributed to Pearson and Filon. 

Because the formula is not easily accessible it is reproduced
here. Let 1, 2, 3, and 4 be variables, N be sample size, and One good rule of thumb is that stationarity is more plausible

in cases in which the lag between measurements is short. For instance,
I found in the analysis of four-wave data sets that the adjacent waves 
were relatively more stationary, than were the more distant waves. 

k = (r12 r24r14)(r34 r24r23) + (r13 r12r23)(r24 r12r14)
       + (r12 r13r23)(r34 r13r14) + (r13 r14r34)(r24 r34r23)
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   THREE-WAVE, TWO-VARIABLE MODELBACKGROUND VARIABLES

The model in Figure 12.2 can be extended to three waves. The 
general equations are 

Very often panel studies contain measures like sex, ethnicity,
social class, and other background variables which are potential
sources of spuriousness. There are two different strategies for handling 
these background or social grouping variables. The first is to perform
separate analyses on each sex, race, or social group. The second is to 
subtract out the effects of the background variable. The first strategy is 
preferred if different causal patterns are expected for different social
groups. For instance, Crano, Kenny, and Campbell (1972) found
contrasting causal relationships for lower and middle class children in 
the relationship between intelligence and achievement. However,
sample size often prohibits this strategy.

Xt = atZt + btUt

Yt = ctZt + dtVt

The usual assumptions are made that Z, U, and V are autocorrelated but 
not cross-correlated. If Z is first-order autoregressive, then 13 = 12 23

for Z. It then follows that the following two vanishing tetrads hold: 

X1Y2 X2Y3 X1Y3 X2Y2 = 0
The second strategy—subtracting out the effects of

background variables—can be done by computing partial correlations 
between the relevant variables controlling for the background
variables. If the background variables are nominally coded then 
dummy variables can be created for them. This procedure assumes that 
the causal processes are the same within social groups although the
groups may differ in mean level. Controlling for background variables
often increases the stationarity of the data. After the background
variables are partialled, the synchronous and cross-lagged partial 
correlations can be examined.

X2Y1 X3Y2 X3Y1 X2Y2 = 0

Note that both of these tetrads hold even if there is not stationarity: a1

a2 a3 and c1 c2 c3. Even if Z were not autoregressive ( 13

12 23), the following overidentifying restriction would hold:

X1Y2 X2Y3 X3Y1 X2Y1 X3Y2 X1Y3 = 0 

Unfortunately these overidentifying restrictions are of little 
practical use. In the first place, three-wave data are difficult to obtain. 
Second, it must be presumed that the causal lag is or is very near to the
measured lag between the two waves. If the lag is much different, the 
tetrads still vanish. Finally the tetrads presume a first-order 
autoregressive process, and such an assumption may often be
unrealistic.

There are two helpful rules in choosing variables to partial out. 
First, the variable to partial out should independently explain, at least,
a moderate amount of variance. Otherwise nothing is changed by the 
partialling. Second, D. T. Campbell has suggested that any control
variable should in principle be able to explain as much variance of the 
time 1 variables as the time 2 variables. For instance, imagine a study
of cognitive skills that had only a time 2 measure of intelligence. Given
temporal erosion, the intelligence measure will correlate more highly
with the time 2 measures than the time 1 measures, and, therefore, it
would be inappropriate as a variable to partial on. 

For example, examine the crosslags in Figure 12.4. An
example of three waves from Jessor and Jessor (1977) is contained. 
The synchronous correlations are stationary, and the crosslags clearly
indicate a causal effect from attitudinal tolerance of deviance (ATD) to 
marijuana behavior involvement (MBI). However, both the tetrads 
vanish: 2(l) equals 1.23 and .03.
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where aij are the common factor loadings and Ui1 is a unique factor for
Xi1 uncorrelated with the Fs. The Us can be considered errors of
measurement and may be correlated over time. All the factors and 
measured variables have unit variance. Similarly the equation for Xi at
time 2 is 

Xi2 = jbijF2i + ci2Ui2

All the unmeasured variables are standardized at both time points. It is
also assumed that all the common factors, the Fs, are orthogonal to
each other. Although the orthogonality assumption is totally
unrealistic, it greatly simplifies the algebra. Later in this chapter, the 
model is modified to allow the factors to be correlated. Figure 12.4  Three-wave example. 

The stationarity assumption is
Just as a two-wave study does not begin to solve all the

inference problems of the cross-sectional study, the three-wave study is
no panacea. Quite bluntly, the delivery of longitudinal studies falls far 
short of its inflated promises. The view that "one more wave" is all that
is needed to make the conclusions of the study airtight is clearly 
mistaken. Longitudinal studies are very expensive and usually have
severe attrition problems. They should only be undertaken with the 
sober realization of their limitations.

      k = bi1/ai1 = bi2ai2 =  = bip/aip      [12.6]

This assumption has been called quasi-stationarity (Kenny, 1975b). It
simply states that the path coefficients for each variable increase
proportionately over time. The term ki

2 has a simple interpretation. It is 
the ratio of the Xi2 communality to Xi1 communality. This is so because 
the communality of Xj is jbij

2 and the communality of Xj1 is jaij
2.

Given Equation 12.6, it follows that bij
2 = ki

2 aij
2. It then follows that 

the ratio of communalities is ki
2. Because for a variable with no 

specific factor the communality and reliability are identical, one can 
view ki

2 as reliability ratio assuming no specific variance.
Quasi-stationarity also implies that the standardized structural equation 
of each variable is invariant with respect to time once the unique factor
has been omitted from the equation and the coefficients are 
accordingly changed to standardize the equation. 

   TWO-WAVE, N-VARIABLE MODEL 

For the previous models of CLPC, it was assumed that only a
single unmeasured exogenous variable caused both endogenous
variables. Now it will be assumed that all the endogenous variables are 
caused by a set of p exogenous variables, F1, F2, F3,…, Fp. These p
variables are ordinarily all unmeasured and may be considered factors. 
The equation for endogenous variable Xi at time 1 is As has been shown in Kenny (1973) these communality ratios 

can be estimated in a straightforward manner. Given the above model,
the correlation of Xi with Xj at time 1 is a kaikajk and at time 2 is Xi1 = jaijF1j + ci1Ui1
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kbikbjk. Given quasi-stationarity, it then follows that kbikbjk =
kikj kaikajk. If qij stands for the ratio of the time 2 correlation of Xi with 
Xj to the time 1 correlation of the same variables, then given the above
model, qij simply equals kikj. Now given three variables Xi, Xj, and Xm,
it follows that

   q qij im  ki
2 = ———   [12.7]

   qjm

Both kj
2 and km

2 can be obtained in a similar fashion: 

     q qij jm  kj
2 = ———    qim

q qim jm  km
2 = ———

      qij

If the communality ratio ki
2 is larger than one, the communality is

increasing over time; if less than one, the communality is decreasing;
and if one, the communality is unchanged. Although it is theoretically
possible for ki to be negative, it is unlikely. It would be indicated by
changes in sign of the synchronous correlations and probably negative
autocorrelations. Because ki is not likely to be negative, one can
routinely take the positive root of ki

2.
   It follows from the earlier equations for the synchronous

correlations that if the time 1 synchronous correlation of Xi and Xj is
multiplied by  (kikj)1/2 and the time 2 correlation is divided by the same
value, the two synchronous correlations should be equal. With this 
correction, both correlations should now equal (kiki)l/2

kaikajk.
In a similar fashion the cross-lagged correlations can be 

corrected to be made equal. The cross-lagged correlations between Xi

and Xj are kaikbjkrk where Xi is measured before Xj and kbikajkrk where
Xj is measured before Xi and rk is the autocorrelation of Fk at times 1 
and 2. Given quasi-stationarity, one crosslag is kj kaikajkrk and the other
is ki kaikaikrk. If the first crosslag is multiplied by (ki/kj)1/2 and the

second by (kj/ki)1/2, both corrected crosslags should be equal. Unequal
corrected crosslags would then indicate a violation of spuriousness.

The very same conclusions can be obtained for an oblique set 
of factors if stationarity assumptions are imposed. It must be assumed
that the synchronous correlation of Fi with Fj does not change over 
time alld that the crosslags of Fi and Fj are equal; that is, ri1j2 = ri2j1.

SIGNIFICANCE TESTING AND ESTIMATION

An example is perhaps the best way to illustrate the rather 
detailed process of estimation. The example is taken from the 
Educational Testing Service (ETS) evaluation of Sesame Street by Ball 
and Bogatz (1970). The data to be discussed here were obtained from
the Cook, Appleton, Conner, Shaffer, Tamkin, and Weber (1975)
reanalysis of the data. The sample to be discussed includes 348 
preschoolers from five cities. The children are predominately
disadvantaged. All the children were encouraged to view Sesame
Street by the ETS staff. The children were measured at two points in 
time with a six-month lag. During six months the children watched, to 
differing degrees, Sesame Street.

The four dependent variables to be considered are Body Parts,
a 32-item test to measure knowledge of body parts; Forms, an 8-item
test to measure recognition of geometric figures; Letters, a 65-item test 
to measure recognition of letters of the alphabet; and Numbers, a 
54-item test to measure number recognition. All tests were devised by 
ETS and were tailored to the objectives of Sesame Street. 

In Table 12.1 above the diagonal is the partial correlation
matrix for the four measures at the two points in time. For this analysis 
10 variables were controlled or partialled out making the effective 
sample size 338. Some of these are dummy variables to control for sex,
city, and race, and others are variables measured at the interval level of 
measurement, such as age and social class.

To employ the methods elaborated in Kenny (1975b), first the
elements of the earlier described qjj  matrix is  created  by  dividing  the 
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time 2 synchronous correlation by the time 1 synchronous correlation 
between the same variables. For instance, the q for letters and forms is
.566/.377 = 1.680.

Table 12.2.  The Time 2 Synchronous Correlation Divided by 
the Time 1 Synchronous Correlation 

Table 12.2 presents the q matrix. One can solve for the 
communality ratios by substituting the sample-based estimates into 
Equation 12.7. There are three solutions for each of the four 
communality ratios. In general given n variables there are (n  2)(n
1)/2 solutions. The solutions are 

Body Parts: 1.081, 0.945, 1.351
Forms: 1.039, 1.188, 1.485
Letters: 2.716, 2.173, 1.900
Numbers: 1.124, 0.786, 0.899

In theory all the preceding estimates should be the same, but they differ
because of sampling error. 

The problem now is how to pool the three estimates of the
communality ratios. Kenny (1975b) suggests the following procedure. 
The three estimates for Body Parts are 

       (.497)(.425)(.337)   (.497)(.506)(.515)  (.425)(.506)(.570)______________ _______________    _______________
       (.469)(.248)(.566)   (.469)(.491)(.595)  (.248)(.491)(.745)
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In Table 12.3 there is the Pearson-Filon test of the difference
between synchronous correlations both with and without correction. It 
shows that for three of the pairs of the synchronous correlations there 
is a significant difference. All three of these pairs involve the Letter 
variable, which is not surprising since that variable has the
communality ratio that is most different from one. After correcting for
shifts in communality, these three significant differences between the 
synchronous correlations disappear. It then appears that the correction 
is helping and quasi-stationarity is indicated.

Each estimate is the product of three correlations divided by
three correlations. What can then be done is simply to sum the
numerators of each estimate and sum the denominators. Then divide
the two in order to obtain an estimate of the communality ratio. For 
instance, for Body Parts the pooled estimate is 

  ( 497)( 425)( 337) + ( 497)(.506)(.515) + ( 425)( 506)(.570)
  ————————————————————————  = 1.101
  (.469)(.248)(.566) + (.469)(.491)(.595) + (.248)(.491)(.745)

Table 12.4.  Pearson-Filon Test of Equality of Crosslags The remaining pooled communality ratios are 1.277 for Forms, 2.135
for Letters, and 0.935 for Numbers. Note that all the estimates are
compromises of the three unpooled estimates. A problem does arise if 
some of the correlations are negative. In such cases the absolute values
should be summed.

Table 12.3.  Pearson-Filon Test of Equality of the
Synchronous Correlations 

In a similar fashion the difference between crosslags can be
tested. Again there is the problem that it must be assumed that the ks
are population values. In Table 12.4 there is the Pearson-Filon test of 
the difference between crosslags. There is one significant difference
between crosslags before correction: with Letters and Numbers. Before
the reader begins to concoct all sorts of explanations how the learning
of numbers causes the learning of letters, note that after correction this 
difference disappears.

Next it must be determined whether the synchronous
correlations are equal after they have been corrected for shifts in 
communality. The hypothesis to be tested is i1j1(kikj)1/2 = i2j2/(kikj)1/2.
The Pearson-Filon test can be used to compare the two correlated
correlations. There are, however, two problems with this method. It 
ignores, first, that the ks are sample estimates and, second, that the ks
were deliberately chosen to make the synchronous correlations equal. 
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   CONCLUSION 

CLPC is a valuable technique for ruling out the plausible rival 
hypothesis of spuriousness. It should not be viewed as only an intuitive 
approach but as a formal method with assumptions. This chapter has 
inordinately emphasized alternative explanations of crosslag 
differences in order to present the reader with a list of problems much 
in the same way that Campbell and Stanley (1963) do for 
quasi-experimental designs. 

   CLPC is, however, largely an exploratory strategy of data 
analysis. My own suspicion is that its main use will be in uncovering 
simple causal relationships between uncontrolled variables. What 
would then follow is either the refinement of both the variables and the 
process in controlled settings or the estimation of causal parameters of 
the system by structural equation models. The career of a hypothesized 
causal relationship might be as follows: first, the consistent replication 
of a cross-sectional relationship; second, the finding of time-lagged 
relationships between cause and effect; third, the finding of 
cross-lagged differences; and fourth, an experiment in which the causal 
variable is manipulated. Obviously, these steps may often overlap, 
some may be omitted, and the order may be different. I hope to 
emphasize that CLPC plays only an intermediary role in social science, 
between the correlation and a well-elaborated structural model. 
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13
L O O S E  E N D S

In this final chapter both technical and conceptual issues
concerning causal modeling are covered. Hopefully some closure is 
brought to what is certainly a limitless topic. The chapter is divided 
into two sections. The first section considers technical issues of 
linearity, ordinal and nominal variables, and standardization. The 
second section considers conceptual problems in model testing. Let me 
now try to tie together the loose ends that remain.

T E C H N I C A L  I S S U E S

L I N E A R I T Y

In this context linearity refers to a straight-line functional 
relationship between the cause and effect and not the level of 
measurement of either variable or the additivity of effects. These last
two topics are discussed later in this chapter. The issue of linearity then
concerns itself with whether there is straight-line relationship between
X and Y. The simplest and most intuitive test of linearity is to examine 
the scatterplot between X and Y. One should always remember that
behind every correlation lies a scatterplot; a correlation or regression 
coefficient is only a number that tries to capture the complex meaning
of the scatterplot. While the old eyeball method can often be very
useful in determining nonlinearity, in marginal cases your left eyeball
may disagree with your right eyeball. You may then need a more
formal way to assess the degree of nonlinearity.

One common method of testing for nonlinearity is polynomial
regression. The effect variable, Y, is regressed on X, X2, X3, , Xn. If

any off these variables besides X significantly predicts Y, then 
nonlinearity is indicated. Be aware, of problems of large numbers (e.g., 
255) and multicollinearity.  It may be advisable to subtract off the mean 
of X before computing powers.

A well-known measure of relationship, both linear and 
nonlinear, is 2 or eta squared, the correlation ratio. A second strategy 
for testing nonlinearity based on 2 is to compute 2 r2 which is a
measure of the percentage of Y variance explained by nonlinearity.
Operationally this becomes a bit computationally messy since 2 can
only be estimated when X is divided into discrete categories. If X is not 
naturally in such categories, it must be divided into categories, for 
example, for intelligence 80-89, 90-99, 100-109, and so on. The
estimate of 2 is obtained from a one-way analysis of variance with the 
discrete levels of X as the independent variable and Y as the dependent
variable. The value for 2 is then SSBG/(SSBG + SSWG) where SSBG is the 
sum of squares between groups and SSWG the sum of squares within
groups. Now 2 should not be computed (as is sometimes mistakenly
done) by correlating X with Y. Rather the means of the Xs within
categories are correlated with raw Y variable. It then follows that under 
the null hypothesis of 2 – r2

  ( 2 – r2)SS /(k – 2)TOTF(k–2,N–k) =  —————————
MSWG

where k is the number of categories that were created. A more efficient
method is analysis of covariance. The variable X is the covariate and 
discrete levels of X are the "treatments." If there is a main effect for 
treatments then nonlinearity is indicated. This method is more
powerful than the analysis of variance method since the MSWG is 
reduced due to the covariate. 

The assumption of linearity should not be tested with just X
and Y. It could very well be that the relationship between X and Y is
nonlinear but once other variables are controlled the relationship 
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becomes linear. Thus, it is more appropriate to examine the 
relationship between X and residuals of Y, if they can be computed.

Given that the relationship between X and Y is nonlinear, what 
is to be done? The usual strategy is a transformation. Either the 
exogenous or endogenous variable is transformed into a new metric.
Following Kruskal (1968), it is useful to distinguish between one- and 
two-bend transformations. As suggested by the name, one-bend 
transformations are functions whose curves have a single bend, while 
two-bend transformations are curves with two bends. Power
transformations of the form Xt = aXp, where Xt is the transform of X,
are called one-bend transformations. Transformations like arcsin, logit, 
probit, and Fisher's Z are two-bend transformations. One-bend
transformations are generally more appropriate for variables that have 
a lower limit of zero and no upper limit. Two-bend transformations are 
useful for variables that have a lower and upper limit, for instance zero
and one. 

The three most common one-bend transformations are
logarithm, square root, and reciprocal. The logarithm is most useful for 
amounts, for example, dollars. More generally, the log transformation 
is useful when it is suspected that two variables combine
multiplicatively to cause the dependent variable. For instance, the 
Cobb-Douglas law states that capital and labor multiply to cause gross
national product. The square root transformation is most useful for 
variables that are assumed to be distributed as Poisson. Good 
candidates for a square root transformation, therefore, are counts, for 
example, the number of behaviors per unit time. The third one-bend
transformation is the reciprocal or 1/X. This transformation is 
especially useful for a variable like time to response or latency, where
the transformed variable is now in the metric of speed. With any 
transformation it is important to be able to interpret the metric of the
transformed variable. 

The two-bend transformations are useful for variables that 
are proportions or could easily be turned into a proportion. For
instance the number of items passed in an intelligence test could be

divided by the total number of items and would then become a
proportion. The most radical transformation is the logit, which is 
the natural logarithm of the odds. The odds of a proportion p is 
simply defined as p/(1 - p). Slightly less radical is probit. Probit,
which is used by biologists, simply takes the probability and looks
up the corresponding standard normal deviate (Z value) that would
yield that probability. Since biologists do not seem to like negative
numbers, it is customary to add five to this value. The least radical
two-bend transformation is the arcsin, a transformation
psychologists seem to prefer in analyzing proportions.

There is a final two-bend transformation that is commonly
employed. It is Fisher's Z transformation, which is a cousin of the
logit transformation. This transformation is usually applied to
correlations.

One obvious point should be made here. One-bend
transformations should not be made on negative numbers, the log
and reciprocal on zero, and logit and probit on zero or one.

Tukey (1977) outlines a number of useful methods by which
the appropriate transformation can be chosen empirically. It is
beyond the scope of this book to restate these methods. A useful 
point, though, is that when exploring which transformation to apply,
one should work with medians since the median of transformed set
of data is the transform of the median while this does not 
necessarily hold for the mean.

It has been assumed throughout that the causes of an
endogenous variable add up. Of course, in some cases nonadditive 
models may be just as plausible if not more plausible. The whole 
may not be the sum of its parts. Within the experimental tradition
there are methods to distinguish whether the independent variables
add or multiple. Also nonlinear least squares (Draper & Smith,
1966) is a feasible computing method, but in the nonexperimental 
case the functional form in which the exogenous variables 
combine is best determined a priori and not in any simple a
posteriori manner. 
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O R D I N A L  A N D  N O M I N A L  V A R I A B L E S

Just as every adolescent goes through an identity crisis, it
seems that every researcher goes through a "measurement crisis." At 
some point he or she realizes that the interval assumptions of most
social scientific measures are just assumptions. A little reflection then 
reveals that, at best, most measures are only ordinal. The researcher
then vows to discard the correlation and the mean for the rank order
coefficient and the median. But just like the crisis of an adolescent, it 
seems only to be important to have the crisis not to resolve it. 

It is indeed true that there is a giant leap of faith in assuming
that our measuring instruments are interval, but we are often forced to 
make just such an assumption. Unfortunately sometimes we are faced 
with a measure that is clearly ordinal. There is no meaningful rule for 
assigning numbers to objects. In such a case we might try to 
determine numbers by scaling methods, for example,
multidimensional scaling methods.

If the exogenous variable is ordinal one can simply create a set 
of dummy variables as was done in Chapter 10. If both the endogenous
and exogenous variables are ordinal, there is an interesting empirical
scaling method that gives scale weights to the categories of both
variables to maximize the correlation between them (Bonacich & 
Kirby, 1975).

In recent years there has been a great deal of statistical work
on the analysis of nominal variables. The model that is analogous to
the regression models in Chapter 4 is called logit analysis (Fienberg, 
1977), and the model that is analogous to factor analysis is called latent 
structure analysis (Goodman, 1974). The two preceding sources should 
prove useful introductions to readers interested in either topic. To give
the reader an example of the power of these methods consider the 
following example taken from Werts, Linn, and Jöreskog (1973). 
Given three measured dichotomies A, B, and C, let there be a 
dichotomy Z such that within levels of Z, variables A, B, and C are
independent. This is a latent structure model similar to the single-factor 

models discussed in Chapter 7. Werts, Linn, and Jöreskog show that
not only can the loadings be estimated but the marginals of the 
underlying dichotomy can be as well. One potential use of this 
technique might be in clinical assessment. For instance, say three
clinicians independently made judgments about whether each member
of the patient population was schizophrenic or not. It could then be 
determined what is the actual percentage of the schizophrenics. Also, 
the hit rate of each clinician can be measured, and from the hit rates
one can determine the probability a patient is a schizophrenic given the 
judgments of the clinicians. Of course, independence of judgments is 
of the essence.

I N T E R A C T I O N

Unfortunately, the topic of interaction has received scant 
treatment in the causal modeling literature. To some degree researchers 
do not search for interactions because they are afraid to find them. The
approach here is that an interaction implies that a causal law of the 
form "X causes Y" must be modified to "X causes Y depending on Z."
The variable Z is said “to modify the X causes Y relationship.” This 
notion of interaction as a moderator of a causal law has led some to
suggest to draw an arrow from Z to the path between X and Y. This
view of interaction is somewhat different from the usual analysis of
variance view of interaction in which the two components of the 
interaction are equal partners in the relationship. The view here is more
like the view of Campbell and Stanley (1963) who define an 
interaction as a threat to external validity. The choice of whether Z
modifies XY, the causal relationship between X and Y, or X modifies ZY
relationship is arbitrary. For instance, if age and motivation interact in
causing athletic ability, a developmentalist would say motivation
modifies the developmental age trends and a motivational psychologist
would say age modifies the effect of motivation. Both would be 
correct, but both would be aided by the idea of modification.
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Sweeping things under the rug is the enemy of good data 
analysis. Often, using the correlation coefficient is “sweeping
under the rug” with a vengeance (1969, p. 89). 

The usual way that interaction is modeled is by the inclusion of
multiplicative terms in the model. For instance for our X, Y, Z example
we would have 

Y = aX + bXZ       [13.1] Others have called correlation and standardization the devil's tools
(Birnbaum, 1973). It would then seem that standardization is highly
controversial. Let us consider four criticisms of standardization. To capture the idea of modification, we simply factor X out of 13.1 to 

obtain
1. Standardized measures are inappropriate for generalizing 

across populations. Y = (a  + bZ)X  [13.2]
2. The unstandardized metric is more interpretable. 
3. Standardization will not allow certain specifications or at

least make them clumsy.
Thus the structural coefficient for X is a + bZ. It is a variable since we
do not know how much X affects Y without knowing Z. Take a simple
case where Z can only take on the two values of 0 and 1 and a + b = 0.
When Z is zero the coefficient is a, and when Z is 1 the coefficient is 
zero.

4. Standardization introduces statistical complexities.

Consider the first point, that standardized coefficients are not
as comparable across populations as unstandardized coefficients. It is 
more theoretically plausible that structural parameters may be invariant 
across different populations when they are in the unstandardized metric
than in the standardized metric. Normally, invariance of the 
unstandardized metric does not imply invariance of the standardized
metric. For instance, if the structural equations for two populations are 
identical, the standardized path coefficients will ordinarily differ if the
variances of the endogenous variable differ. Thus, the well-known 
finding that beta weights and R2 are usually larger for whites than 
blacks is often an artifact due ordinarily to the larger variance in whites
than blacks. A good rule of thumb is that then comparing structural 
coefficients across populations, it is usually best to compare the
unstandardized coefficients.

Researchers should be encouraged to introduce interaction 
terms. One should note that ordinarily the XZ and X will be highly
correlated, depending largely on whether X has a nonzero mean. Thus,
the researcher may have low power in testing interactions. Currently 
there is much interest in the addition of multiplicative terms to a linear
model (Bohrnstedt & Marwell, 1977; Cohen, 1978).

As was just stated, it may be useful to include multiplicative
terms in an equation to test for specification error. The presence of a 
significant interaction term might indicate either a need to transform, a
nonadditive combination of variables, or even the omission of 
important third variables. 

S T A N D A R D I Z A T I O N
The preceding rule is easy to apply with causal models with 

measured variables. It is not as instructive for models with unobserved
variables. Take, for instance, the simple case in which there is one
factor that causes three measured variables with uncorrelated
disturbances. We can take the two strategies. We could assume that

This text has relied very heavily on the use of standardized
coefficients. To many researchers who exclusively rely on correlation 
it may come as a surprise the statistician John Tukey has said: 
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It is also possible, though not common, that some
specifications or overidentifying restrictions can occur for only the
standardized metric. For instance, the fan spread hypothesis implies
an overidentification that holds for treatment-effect correlations but 
not covariances.

the variance of the unmeasured variable is invariant across
populations and let the "factor loadings" be variable, or we could
assume that the loadings were invariant. If we take the second
strategy we must still fix one factor loading. Suffice it to say that we 
cannot in this case nor in most others allow both the factor loadings
and variances to vary across populations. In certain cases the unstandardized metric is much simpler. For 

instance, with standardization it is impossible to make the classical
specification that a measured variable equals the true score plus error
of measurement. This created complications for the analysis in Chapter
5 on measurement error. Yet it is was a simple matter to handle. 

The second criticism of standardization is that the 
unstandardized metric is a more interpretable one. If the raw metric has 
some natural meaning, then all is lost by standardization. It is nice to 
know how many dollars of earned income is caused by each year of 
education, the number of items learned for each season of Sesame
Street that is watched, and number of pecks for each reinforcement.
However, interpretability is often a subjective issue. Sadly, the metrics
in most social science studies are nearly meaningless. It may be the 
case that knowing that if a unit is one standard deviation above the 
mean on X, then the unit is b units of a standard deviation from the
mean on Y is more meaningful. Perhaps the biggest challenge to social
scientists is to make measures more naturally interpretable.

The final reason for unstandardized coefficients is that the 
standardized coefficients imply dividing by a sample estimate, the 
standard deviation. This should increase confidence intervals and alter
tests of significance. Although these problems are beyond the scope of 
this text and the competence of its author, we should recognize that we 
have created a statistical problem by standardization. We leave it to the 
statisticians to develop solutions to these problems.

In general, unstandardized coefficients should be preferred.
However, one should be flexible. Often times, I compute both. In 
Chapter 3 we gave a very simple formula to destandardize and 
another formula to standardize an unstandardized coefficient. This
text has overly concentrated on the standardized metric. This was 
done for two reasons. 

The third criticism of standardization is that it sometimes
prevents the researcher from making specifications that allow for
identification. Consider an example. In Chapter 9 we discussed a 
model of Wiley and Wiley that stated that the error variance of a
measure would remain stable over time while the true variance might
change. If the researcher has standardized the variables and discarded
the variances, it is impossible to make such a specification. If the
variances are not lost it is still possible to standardize and then assume 

First, most researchers are more familiar with the standardized
model. It seems to me simpler to motivate causal modeling by using a
language and notation familiar to the audience. Second, in my opinion,
and others differ here, the standardized metric is just much simpler to
work with. One need not worry about normalization rules and the like. 
It seems to me that standardization is especially simpler when one 
takes a simple high school algebraic approach as was done in the text. 
The unstandardized metric is somewhat simpler when using a matrix
algebra formulation. 

1 – V(X )X1X1 2———— = ———
1 – X2X2 V(X1)

It is always possible that one can standardize and estimate the 
parameters if the variances are saved. It is then critical always to 
compute and report variances, as well as means. Even if you are not
interested in the means or variances, someone else may be. 

Readers should be slowly weaned away from exclusive
reliance on standardization. Other texts on this topic, both advanced 
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and beginning, almost exclusively employ analysis using the raw
metric. One may need to first translate some of these analyses to the 
standardized metric, but eventually one should be able to handle the 
problem entirely in terms of the unstandardized metric.

Remember to be flexible. The important thing is to learn from
data. One must learn only with what one knows, but one must be 
willing to learn new methods in order to learn even more.

C O N C E P T U A L  I S S U E S

E S T I M A T I O N  V E R S U S  T E S T I N G

Traditionally the major emphasis within the causal modeling
literature has been on the estimation of structural parameters. An 
alternative and sometimes competing emphasis has been the testing
and comparison of causal models. To some extent this distinction 
parallels the classic distinction between descriptive and inferential
statistics.

The best way to illustrate the differences between the two
emphases is to show how they differently handle overidentification.
Let us say we have a model that is overidentified and there are two 
different researchers who approach it. The first researcher is interested 
in estimation. He or she wants the most efficient estimates of
parameters. The researcher is overjoyed that the model is
overidentified for the following reason. Since a given parameter
estimate is overidentified, there are two or more estimates of the same
parameter. The researcher can then pool these multiple estimates to 
obtain a more efficient estimate. There may be some technical
problems on how to pool the multiple estimates (Goldberger, 1973),
but it always involves a weighted sum of the estimates.

The second researcher is also overjoyed the model is 
overidentified, but for a very different reason. Since there is 
overidentification, it should be possible to find an overidentifying
restriction. With a little imagination a statistical test can be found and it

can be determined whether the overidentifying restriction is satisfied 
by the data. If the overidentifying restriction is not satisfied by the 
data, then the model contains a specification error. 

The aims of the two researchers are not incompatible since it is
always possible to test if the overidentifying restriction is met in the 
sample, and if it is, to pool estimates to obtain more efficient estimates 
of parameters. Unfortunately, though, some researchers fail to test
overidentifying restrictions and others do not obtain efficient estimates
of parameters.

The historical reason for the greater emphasis on estimation is
due to the fact that the growth of structural modeling occurred first 
among econometricians. The typical data set they use is a time series 
with usually no more than 25 observations. It would seem that this 
would be an incredibly hostile environment for causal modeling to 
grow, but grow it did. Faced with the problem of serial dependency,
the issue of estimation became paramount. Moreover, given the small 
sample sizes and very high multicollinearity, the efficiency of 
estimation is even more critical. Readers of econometrics texts often
fail to realize the co-linearity of economic data since usually only
covariance matrices are given. For instance, for the inventory-demand
model discussed by Goldberger (1964, p. 286) the median correlation 
is .92, and lowest correlation is .90. It is hardly surprising that 
econometricians worry about the efficiency of their estimates.

A second reason for the emphasis on estimation over testing is
that econometricians were the pioneers of the theory of identification.
The central question is whether a model is identified in the first place 
not whether it is overidentified. Thus, the focus was on identification
and not overidentification.

A third reason for the emphasis on estimation within 
econometrics is the very natural metric that they possess: dollars.
Economists, unlike psychologists, are unabashedly applied and as a
matter of course want to know the effect in dollars and cents of the 
exogenous variables. Estimation of structural parameters is then very
useful for economic policy.
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Estimation is an important goal in causal modeling, but it
should not blind one from considering the testing of models as also
important. One should not neglect the testing of overidentifying
restrictions. Also one should consider models in which none or few of 
the parameters are estimable, but the model is still overidentified.
Examples of this are in Figure 3.6 and throughout Chapters 11 and 12.
Normally, parameter estimates are complicated combinations of 
covariances but it may be that a simple comparison of two covariances
or correlations reveals something very interesting about a model.

Still overidentifying restrictions are not the be all and end all
of causal modeling. A major problem with an overidentifying
restriction is that, if it fails, it may not be able to pinpoint where the
specification error exists. Ordinarily if the restriction is not met, a
whole multitude of specifications could be incorrect, either only one or 
all. Thus not meeting the restriction may not be sufficiently diagnostic
about where the specification error is. 

Also, even if the restriction is met the model is still not proved 
to be true. In the first place, the test of the overidentifying restriction 
may be of low power. For instance, if correlations are low, then the test
of a vanishing tetrad is of low power. Second and even more
fundamental, if the restriction holds, there are an infinite set of 
similarly over-identified models that would satisfy exactly the same set
of restrictions. 

We should never lose sight that causal models can never be 
proven to be true. Certainty must be left to the mystic. Causal models
can be disconfirmed by the data but never is a single model confirmed,
but rather a host of such models. No doubt that after finishing this text
the reader has a sense of disillusionment. Before starting the text, it
was perhaps hoped that one would learn magical methods to use 
correlations to test theory. Perhaps some hoped for a black box into 
which one would put the correlations and out would come the theory
that explained the correlations. Such is not the case. It should now be
clear that causal modeling requires the researcher to already know a

great deal about the processes that generated the data. Knowledge does
not grow in a vacuum.

There is still an advantage in having a model that is 
overidentified. A model should say not only what should happen with
the data but also what should not. If a zero path or an overidentification 
follows from a model, then the path must be zero or overidentification 
must hold. If they do not hold then the model is misspecified. One can, 
of course, rescue the model by adding an additional parameter, but, 
hopefully, honest researchers will lessen their confidence in the model. 

Campbell and Fiske (1959) make a valuable contribution in
their discussion of the validity of constructs by introducing convergent
and discriminant validity. Metaphorically one can test the convergent
and discriminant validity of a structural model. Convergent validity
refers to the fact that a model replicates across different samples,
operationalizations of constructs, and estimation methods. Duncan 
(1975, pp. 152-158) provides a very useful discussion of the replication 
of estimates of a structural parameter across different samples. Just as
important is discriminant validation. The model should imply very
different things than alternative competing models. This will usually 
take the form of zero paths and overidentifying restrictions. Ideally 
data should be able to discriminate between alternative structural
models. One can never rule out all possible models but we should
attempt to rule out the strongest competing alternative models.

For correlational studies the classic Campbell and Stanley
(1963) distinction between internal and external validity breaks down. 
To some extent internal validity can be defined as all the threats to
causal inference that are controlled for by a true experiment. Thus by 
definition a correlational study lacks internal validity. It would then
seem that the more appropriate goals of a correlational study are 
convergent and discriminant validity.
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M O D E L  S P E C I F I C A T I O N

Two errors of model specification are common to beginning
causal modelers. The first is the tendency to draw path models in
which everything causes everything else. All variables are assumed to 
be measured with error and all the variables are involved in feedback 
relationships. When one reads theory papers on various topics, one
usually finds a pseudo path diagram in which every variable causes the 
other. As the reader must now realize, although such a model may be
theoretically interesting, it is most certainly underidentified; that is, it
is empirically useless. The researcher and the theorists must learn to 
pare a theory down to a smaller number of paths. Such a simplification
will involve distortion, but if the omitted paths are small then such 
distortion should be minor. Each of us should realize that all models 
are most certainly misspecified, but hopefully the specification errors
are minor.

One common type of "overspecification" is measurement error 
in measured exogenous variables. Readers of Chapter 5 should not 
despair of identifying causal models when there are "errors in 
variables." If reliability is high the effect of measurement error will be 
small.

One still should be very careful to avoid an "ad hoc
specification." An ad hoc specification is one that is chosen solely with
the purpose of identification in mind. It strikes me that often the zero
path assumption made in instrumental variable estimation is often
made for the sake of expediency rather than being motivated by theory.
One must avoid the trap of ad hoc specification. 

Related to ad hoc specification is the need to respecify a model
after estimation and testing. This is a normal practice and a researcher
should not be embarrassed. What one should avoid in writing up and 
presenting results is discussion of only the final model as if it were the 
only model. The reader deserves to know and to be instructed about the 
initial model and the steps that were taken to obtain the final model.

An excellent example of the development of a final model is contained
in Duncan, Haller, and Portes (1971). 

The second problem that beginners have with model
specification is underspecification. The model is nicely overidentified
but it is clearly unrealistic. Be realistic about all possible linkages in a 
model. Read the literature and know which paths have been found in 
the past. It is indeed useful to always start with (or work to) the 
simplest and most parsimonious model, but realize that the world is not 
as simple as we might like it to be. 

I N  S E A R C H  O F  H I G H R 2

The traditional criterion for evaluating a regression equation is 
R2. It is generally thought that the larger the R2, the better the model is.
It would be nice to be able to predict 100% of the variance, but this 
may not be feasible or even possible. As suggested in Chapter 1, one 
may take the ontological position that empirical phenomena are not
perfectly predictable in both theory and practice. As a practical rule 
there often appears to be an upper limit to R2.

In the first place the researcher should avoid questionable
statistical methods that capitalize on chance. The R2 should be adjusted
downward to take into account any such capitalization. Moreover,
there are three guaranteed methods of increasing R2 that involve no real
theoretical insight: using an alternative measure, a lagged value, and 
aggregation of units. The alternative measure method is simply to use 
another measure of the endogenous variable as an exogenous variable.
In such a case the R2 will be more a measure of reliability than
predictability. A second and related method is to use a lagged value as 
an exogenous variable; if one is attempting to predict intelligence at 
age 10, use intelligence at age 9 as a predictor. The third method of
achieving a high R2 is to aggregate the data. Combine subjects into
groups and make groups the unit of analysis. As a rule aggregated data 
yield a higher R2 than individual level data. But beware of the 
ecological fallacy. The inferences for the aggregated data refer to the 
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aggregated units and not the individual. The goal of causal modeling is 
not to maximize R2 but to test theory. One would suppose that better 
theories have higher R2 but this does not necessarily follow. 

One can legitimately increase R2 by having models that include 
unmeasured variables. For instance, let Xl and X2 be equally reliable 
indicators of a latent construct F with reliability a2 and assume that F
causes X3. If r13 = r23 = b then the multiple correlation squared of X1

and X2 with X3 is 

2a2b2

                                                  ———                                          [13.3] 
1 + a2

whereas the correlation squared of F with X3 is b2/a2. Note for any 
value of b the correlation of F with X3 is always greater than Equation 
13.3 (a2 < 1) and that for a fixed b, as parameter a decreases the 
correlation of F with X3 increases. Thus, for a fixed set of correlations 
between indicators and an endogenous variable, the correlation of the 
factor with that variable increases as the reliabilities of the measures 
decrease!

Although a high R2 is not the absolute goal, some correlation is 
necessary for causal analysis. Please take my advice and do not vainly 
attempt to salvage a matrix of essentially zero correlations. There are 
tests of significance that triangular and rectangular matrices have only 
zero correlations. Such tests should be used more often to discard 
useless data sets. 

N E G L E C T E D  T O P I C S  A N D  P R O C E D U R E S

This text is meant to be only an introduction to causal 
modeling. Although only introductory, it has taken a rather broad 
sweep. Some of these topics have been covered rather superficially and 
tangentially. The hope is that the broad exposure will whet the appetite 
for more. But remember, a little sip is dangerous, so drink deep. 

There has been no extensive discussion of time series. This 
would be a text in and of itself. Also nowhere is the estimation method 
of generalized least squares. This estimation technique is useful for 
overidentified models, "seemingly unrelated equations," and time 
series. Not enough attention has been paid to various statistical 
assumptions (e.g., distributional) and their implications to statistical 
estimates. Finally and perhaps most seriously, the text has not 
employed matrix algebra. Thus, many of the methods discussed have 
not been adequately explained for the general case. However, this 
book is an introduction. The concern here is for initial comprehension 
of a simple case. Then once that is learned, the reader will be 
motivated to learn the general case. The book, to use a metaphor of 
Wittgenstein, is a ladder with which one can climb to new heights, 
but once one has climbed as high as the ladder will take one, the 
ladder must be cast aside. 
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