Model

The Two-Group
Design

The prototypical research study is the two-group design. Persons are in one of
two groups. For example, one group receives an experimental treatment and
another group serves as a control group. Examples of treatments are a new
drug to cure cancer, an instroctional program for disadvantaged children, a
procedure to change attitudes, a pain relief strategy for childbirth, and an
exercise program. The control group is a group of persons who are assumed
to be identical to those in the treatment group except that individuals in the
control group do not receive the treatment,

In this chapter a model for the analysis of the two-group design is pre-
sented. Also discussed are the design considerations concerning the assign-
ment of persons to treatment groups and the formation of the two groups.
Measures of the differences between the two groups are presented and statis-
tical power considerations are discussed.

The model for the two-group design is fairly simple, The model is

effect of the .
dependent : residual
. = constant + independent + _ .
variable variable

variable

The restricted model is identical to the above model except that the in-
dependent variable has no effect on the dependent variable. Hence

dependent residual
. = constant + .
variable variable

The restricted model in this chapter is identical to the complete model
discussed in the previous chapter.
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Consider the terms in the complete model. The dependent variable is what
changés or varies. It is the outcome that the treatment variable is designed to
alter. The constant is the average score of persons in both groups. (The test of
the constant was extensively discussed in Chapter 12.) The independent
variable is a nominal varizble with two levels—that is, a dichotomy. For
instance, one level is the treatment group and the other is the control group.
The independent variable is the variable that causes the dependent variable to
change or vary. The residual variable represents variation in the dependent.
variable that is not explained by the independent variable. The residual
variable is forced to have a mean of zero.

As an example, consider an experiment in which a researcher randomly
assigns ten infants to one of two groups. All infants spend 20 minutes with a
stranger. Then the infants are put into a situation with a number of fear-
arousing stimuli. For five of the ten infants the stranger is present (present
condition), and for the other five the stranger is absent (absent condition). The
researcher measures the number of fear responses of the ten infants.

Present Absent
6 12
4 6
3 8
7 10
4 7

The means are 4.8 for present and 8.6 for absent.

The central question with the two-group design is whether the independent
variable affects the dependent variable. If the independent variable did not
affect the dependent variable, as in the restricted model, then the population
means for the two groups are equal. Because of sampling error, the two
sample means are not exactly equal even if the restricted model is true. For the
example it is not known whether the difference between the means of 4.8 and
8.6 can be explained by sampling error.

The two groups will be designated 1 and 2. The sample means will be
designated X, and X, with sample sizes of r; and n,, respectively. At issue is
the amount of sampling error in the quantity X; — X, given that the population
means are equal.

In Chapter 9 the idea that statistics vary was presented. The standard
deviation of a statistic is called the standard error. As shown in Chapter 11,
the standard error of the difference between two means randomly and in-
dependently sampled from the same population is

111 1
o\f[— + —
n %)

where ¢ is the population standard deviation of the observations and #, and #,
are the sample sizes of the two sample means.
To estimate the standard error of the difference between two means an
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estimate of o is needed. In terms of the model, & is the population standard
deviation of the residual variable in the restricted model. The variance of the
residual variable can be estimated by computing the vanance of scores within
each of the groups. Thus the variance is computed for each of the two groups.
These variances are denoted as 5,2 and s5,°. Both of these are unbiased
estimates of o2, the variance of the residual variable. Some way is needed to
average or pool these variances to produce the most efficient estimate of the
variance. When averaging variances the most efficient way to do so is to
weight each variance by its depominator, n — 1. That is, weighting by n — 1
results in an estimate with the smallest standard error. The most efficient
estimate of o2 is called sz, given as-follows:

2 _ - s + (ny — Dsy?
F o+ -2

For the example, the variance for the present group is 2.7 and the variance
for the absent group is 5.8. The pooled variance or s, is
@ET + (4)5.8) _
54+5-2

4.25

Now that there is an estimate of 2, the standard error of the difference
between two means sampled from the same population can be estimated. That

‘estimate is
(m=Dsi® tm- s [1 1
m ot -2 ny Ay

This formula states how variable the difference between means would be if
the two sets of observations were drawn from the same population. Such an
assumption is made in the restricted model. So to evaluate whether the
independent variable causes the dependent variable (the complete model}, a
model in which the independent variable has no effect is tested. Given this
restricted model, the population means of the two groups are equal. To test
the restricted model and the null hypothesis of equal population means, the
difference between sample means is compared to its standard error. For the
example the standard error of the difference between two means is

4.25 = 1.304

1
_+ —
5 5

The difference between the means is 4.8 — 8.6 = -3.8, and its standard error
is 1.304. Their ratio is -3.8/1.304 = -2.914,
If it were known how the gquantity

X - X

1 + i
Ry — —
£ ny Az
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was distributed, it could be more precisely estimated how unusual the differ-
ence between the means is relative to its standard error. For the example, the
question is how unusual is —2.914, the mean difference divided by its standard
error. It happens that
X -X
1 1

Ky
? n L3

has a ¢ distribution with n, + n, — 2 degrees of freedom, given a series of
assumptions that are disenssed in the following section.

As discussed in the previous two chapters, the ¢ distribution closely
resembles the Z or standard normal distribution except that it is less peaked
and has fatter tails. The tails are fatter because the denominator of ¢ is the
statistic s, whereas the denominator of Z is the parameter o. How fat the tails
of + are depends on how precise the estimate of the variance is, and that
precision depends on the degrees of freedom. There is then a family of r
distributions, which vary by their degrees of freedom.

For the two-group study, the degrees of freedom are ny + #n, — 2. Because
ny 4 n equals the number of persons in the study, the degrees of freedom are
the total number of persons in the study less two. It is less two because the
means for the two groups are estimated.

In the two-group study, to test the restricted model that the independent
variable has no effect on the dependent variable, the test statistic is computed

X - X,

.1
% " L)

The test statistic is then compared to the critical values, ignoring sign, in
Appendix D for the appropriate degrees of freedom. As is explained in the
previous chapter, if the exact degrees of freedom are not in the table, one
rounds down to the nearest value and then determines whether the test
statistic, ignoring sign, is larger than any critical value for the degrees of
freedom. I it is, the null hypothesis of equal population means is rejected,
and - the test statistic is said to be statistically significant. The p value is
determined by noting the largest value in the table that the test statistic
exceeds. The p level is given by the column heading. If the test statistic,
ignoring sign, is smaller than all values in the table, then the difference
between means is not statistically significant and the null hypothesis of equal
population means is refained.

For the example, the df are eight, and a —2.914 value is statistically
significant at the .02 level of significance. If a computer is used to compute
the test statistic, the exact p value is .0195. The null hypothesis of equal
means is rejected.
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What has just been described is a two-tailed test. The null hypothesis is
rejected if 1 is cither very positive or very negative. Instead, the researcher
may wish to perform a one-tailed test, which requires that he or she specify a
priori which mean should be larger. For the example, theory might say that
fear responses should be lower when a familiar adult is present. If the sample
means confirm the prediction, one proceeds as in a two-tatled test, but the p
value is cut in half. As was explained in Chapter 12, one-tailed tests are not
recommended because the researcher would probably still believe the result
was statistically significant even if the result were not in the predicted
direction. For instance, it could have happened that fear responses increased
when the stranger was present.

Assumptions

There are three major assumptions for the two-group ¢ test, all of which refer
to the residual variable:

1. normal distribution,
2. homogeneous variance, and
3. independence of observations.

The score on the residual variable for a given person is estimated by taking
each perscn’s score and subtracting the group mean.

Normality
The residual term must have a normal distribution for
X - X
1 I
o\ + ™

to have a ¢ distribution under the restricted model. To test this assumption a
histogram is constructed for the set of observations minus the group mean and
determine whether their shape is normal. (The normality assumption refers to
residual variable and not to the dependent variable itself.} If the distribution is
skewed, then the one-stretch transformations discussed in Chapter 5 should be
considered; or if it is bounded on both sides, a two-stretch transformations
may be needed. When any transformation of the dependent variable is con-
templated, it must be determined whether transformation will render the
dependent variable uninterpretable.

In practice, the normality assumption is not usually examined. With small
sample sizes, it is difficult to detect that the distribution is nonnormal. With
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large samples, the effect of nonnormality does not disturb the ¢ test very
much. The reason for this is the central limit theorem: As the sample size
increases, the distribution of X becomes more normal even though the dis-
tribution of the scores may not be normal, Given the central limit theorem, it
is also true that the distribution of X; - X, approaches normality as #, and n,
increase.

Equal Variances

The two-sample 7 test requires a pooling or an averaging of the two-sample
variances, 5;° and s5,°. The equal variance assumption requires that the
population variances of both groups are equal to the same value. Although the
means may differ, the variances are assumed not to. A procedure is needed for
determining whether the sample variances are significantly different from one
another, That is, a way is needed to determine whether the sample variances
differ by more than the amount expected given sampling error. It turns out
that the ratio of the two sample variances is distributed as F given the null
hypothesis that their population variances are equal. The F test is presented in
the next chapter.

If the variances differ significantly, there are a number of strategies
available. First, one might consider transformations to promote equal vari-
ances. For instance, if the data are skewed, the one-stretch transformations
described in Chapter 5 may make the variances in the groups more nearly
equal. Second, if n; is nearly equal to n,, the problem can be safely ignored,
because the 7 test is only slightly affected by unequal variances. However, if
the variances and sample sizes are unequal, caution must be exercised in
interpreting p values. It must be determined which group has the larger
variance. The ¢ test results in too many Type I errors if the group with the
larger variance also has the smaller n. The ¢ test results in too few Type 1
errors if the group with the larger variance has the larger n.

Independence

The scores of persons on the residual variable are assumed to be uncorrelated.
Independence requires that if one residual score is positive, the residual score
of any other observation is no more likely to be positive or negative. There are
a number of factors that aid in determining whether the observations are likely
to be independent from each other. They concern {(a} whether repeated
observations are taken from the same person, (b} what the sampling unit is,
and (¢) whether there is social contact between the persons that generate the
observations. Below is a consideration of each of these conditions.

First, whatever it is that generates the data is referred to as a unit. The unit
may be a person, animal, or group of persons. For the two-group ¢ test each
observation must be from a different unit. So each unit, be it a person or nerve
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cell, is measured only once. There must not be repeated measures from the
same unit. For instance, assume that a persan is measured before undergoing
therapy and after and so each person is measured twice. These two observa-
tions are not likely to be independent. Also, if a behavior modification study
1s conducted using the same person, then the same person provides all the data
and the scores are not likely to be independent. There are analysis procedures
for these kinds of data structures, but they are different from the two-group ¢
test. .

Second, independence can be enhanced through the design of the study.
The sampling unit of the study should be the unit that provides the observa-
tion. That is, each unit should enter the study singly. For instance, if married
‘couples were in the study and both members provide data, then the in-
dependence assumption is likely to be violated because a husband is likely to
be more similar to his wife than to somecne clse’s wife. The observations
must not come in pairs as in couples, friends, littermates, or twins. If they do,
other statistical methods must be used.

Third, to achieve independent observations persens in the study must not
influence others’ responses. Once subjects enter the study, they should, if
possible, be kept isolated so that they do not influence each other. They
should not communicate with each other or know any other subject’s response
on the dependent variable. If they do communicate or observe each other,
their observations are likely to be cormrelated because they may imitate or
influence each other.

The effect of nonindependent observations is to bias the estimate of
residual variance and, therefore, the standard error of the difference between
means. Usually, though not always, the direction of bias in the two-group
design is to make the estimate of the standard error too small, which makes
researchers falsely confident that the means are significantly different. Unlike
the normality and equal varfance assumptions, even moderate violation of the
independence assumption has very serious consequences. The failure to meet
the independence assumption invalidates the p values.

One solution to the problem is to design the research so that observations
are independent. If this is not possible, it may be possible to find a different
way of analyzing the data to meet the assumption. There is one case in which
observations are nonindependent, but data can be reanalyzed to meet the
independence assumption. It is the case of paired observations, which is now
discussed.

Paired t Test

Some two-group studies contain observations in which pairs of observations
are linked. Each observation in one group is paired or linked to one other
observation in the other group. Consider some examples:
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1. Twenty-five persons enter a stop-smoking program. The number of
cigarettes smoked before entering the program and six months after com-
pletion of the program are measured. There are two groups of observa-
tions: those before the treatment and at a six-month follow-up. The
observations are paired, that is, each person provides two scores, one in
the pretreatment group and another in the posttreatment group.

2. A researcher is interested in the different ways in which fathers and
mothers treat their infant children. A total of 40 infants are observed,-each
with its father and mother. Again, the observations are paired. Each infant
provides two data points, one in the mother group and one in the father
group.

3. Pairs of rats from the same litter are used in an experiment on learning.
One rat from the litter has an operation that is supposed to facilitate
learning. The other rat does not have the operation. A total of 20 pairs are
studied. Each litter provides two observations, one of which is in the
operation group and the other in the nonoperation group.

These three examples iHustrate the key element of the paired design. Each
observation is linked to one and only one other observation in the other group.
Thus, each of n observations in one treatment group is linked to one of n
observations in a second group. The degree to which the observations are
linked can be measured by a correlation coefficient.

When observations are linked in this way, the independence assumption is
violated because the Hinked observations are Iikely to be correlated. This lack
of independence makes the two-group analysis that has been described in this
chapter no longer valid because normally the r test will yield more Type 1
errors than it should. It happens that the one-group ¢ test described in the
previous chapter can be applied to the paired two-group design.

The key idea is to compute a difference score, always subtracting the
scores in the same way. For example, the pretreatment score is always
subtracted from the posttreatment score. The test that the mean of the differ-
ence score equals zero is equivalent o the hypothesis that the two groups have
the same mean. The use of the one-sample ¢ test with difference scores is
called a paired ¢ test.

In a paired ¢ test, each of the n pairs of scores is differenced. The mean of
the differences, Xp, and the standard deviation of the differences, sp, are
computed. Then, the quantity

Xp
spf \/;

has a ¢ distribution with n — 1 degrees of freedom, given the restricted model.
Recall that n is the number of pairs and not the number of scores. If the ¢ is
statistically significant, the resiricted model that the independent variable has
no cffect on the dependent variable is rejected.
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Computational Formulas

Earlier 5, was defined as the pooled or average variance across the two
groups. Its formula is
(m — 1s* + (nz - 1s3®
Hy + Ry — 2

Given the definition of 5,% the above formula can be rewritten as

3X2 - GX\)iny + 3X% ~ CXo)¥in,

n1+n2—-2

This is the formula generally used to compute 5,2, So for the example, the
formula for s,? is

126 — 24)%5 + 393 — (43)%5

s+5_2 = 4.25
The formula for 1/r; + 1/np can be more simply computed by
A+ m
nny

These computational formulas can be entered into the formula for ¢ result-
ing in the following formula.

X, - X,
m o+ ) XX2 - (3X i + X2 — (3X5)n,
n iy n + Hy— 2

© Ordinarily ¢ is computed to three decimal places.
The computational formula for the paired ¢ test is

Xp

1 IEDZ - (ED)ZI'H
a(n —~ 1)

where D is the difference between linked scores and » the number of linked
SCOTCS.

Effect Size and Power

Even if the restricted model is rejected, it is not known how large the
treatment effect is. Statistical significance cannot be equated with scientific
significance because statistical significance depends on theoretically un-
important factors such as sample size. For instance, consider two studies that
attempt to reduce cigarette smoking. It is possible for the 1 statistic for one
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study to be 8.433, yet the treatment reduces cigarette smoking by two
cigarettes. Whereas in a second study the ¢ statistic could be only 2.108, yet
the program reduces the level of the smoking by 20 cigarettes. This could
happen if the first study has 16,000 subjects, the second only 10 subjects, and
the pooled standard deviation is 15.

Effect Size

The most commonly used measure of how much the treatment affects the
dependent variable is a measure called effect size or Cohen’s d. The quantity d
is defined as

H1 — fa

o

The numerator is the difference between the population means. The de-
nominator is the standard deviation of the residual variable. The size of 4 can
range from negative to positive infinity, but values larger than two are quite
rare. Most values of 4 vary from zero to one.

Cohen’s d is like a Z score in that its denominator is a standard deviation. It
measures how different the means of the two groups are relative to the
standard deviation within groups. Cohen (1977) describes three different
effect sizes. They are

small d = .2
medium & = .5
large d = .8

A small effect is so small that to detect it one needs a statistical analysis.
An example of an effect size of this magnitude is the difference in height
between 15- and 16-year-old girls (Cohen, 1977). A medium effect is one that
is large enough to see without doing statistical analysis. It is reflected by the
difference in height between 14- and 18-year-old girls. A large effect is so
large that statistics are hardly even necessary. It is reflected by the size of the
difference in height between 13- and 18-year-old girls.

To better understand the meaning of the d measure of effect size, imagine
that you are considering which of two movies to see one night. Assume that
you have access to a survey that was done that measured the extent to which
college students enjoyed each of the two movies. If there was sufficient
information in the survey you could measure the d for the two movies. The
value of d would indicate the degree to which one movie was enjoyed by more
college stndents than the other. If d was small, say .2, that would indicate that
if you saw both movies, the probability that you would prefer the one others
found to be enjoyable would be .56. If d was .5, the probability that you
would prefer the more popular movie would be .64 and if d was .8, the
probability would be .71. {The probabilities of .56 for small, .64 for mod-
erate, and .71 for large are determined from the standard normal distribution.)
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In research areas where empirical data are lacking, one must make an
intelligent guess of the value of d in order to estimate power. If previous
studies have been conducted, 4 can be estimated by

X, -X,

Sp

or the mathematically equivalent formunja of

i 1
Al=—+—
13 iz

When the sample sizes are equal (ny = n; = n), d equals

1]2
t\—
n

So for the example, the effect size equals ~2.914V 2/5, or —1.84. If the paired
t test is used, the estimate of d is

where ¢ is the paired z, r the number of pairs, and r the correlation between the
paired scores.

One reason for determining the value of 4 is that 4 must be known to ascertain
the power of the two-sample ¢ test. In the previous chapter, power is defined
as the probability of rejecting the restricted model when it is false. It also
equals one minus the probability of making a Type II error. The power of the
two-group or two-sample ¢ test depends on three factors: the difference
between means, the residual variance, and the sample sizes. The difference
between means can be increased by choosing more extreme treatments.
Instead of comparing one week of psychotherapy versus none, one year could
be compared to none. Although power can be enhanced in this way,
generalizibility may snffer because extreme groups may be atypical of every-
day treatments.

The residual variance can be reduced by choosing to study persons who are
relatively similar. Animal researchers minimize variability by choosing
organisms from the same strain. Variability can also be reduced by carefully
measuring the dependent variable. A third way to reduce the residual variance
is to use a paired design. The residual variance of the paired design is reduced
to the degree that there is a correlation between paired observations. A paired
design tends to have more power than an unpaired design.
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Increasing sample size enbances power in two ways. First, it increases
degrees of freedom of the ¢ test, so the difference between means need not be
as large to be significant. Second, it reduces the standard error of the mean
because 1/ry + 1/n; is part of the formula. If the total sample size s fixed, the
way to minimize the standard error of the mean difference is by having n,
equal to ny.

For a given value of Cohen’s d, a given n, and a given alpha, power can be
determined. In Table 13.1 is the power for the two-sample ¢ test for small,
medinm, and large effect sizes. They are given for the .05 level of signifi-
cance. The # in the table is the sample size in each of the two groups. So, the
total sample size of the study is 2n. The entry in the table is the power
multiplied by 100. So if a researcher contemplates doing a study with 20
persons in each group and the effect size is moderate, from Table 13.1 the
chances of rejecting the. null hypothesis is .33. This means that for every three
times that the experiment is done, the null hypothesis is rejected once.

For a given d, alpha, and level of power desired, the n that is needed for
that power can be determined. These sample sizes are given in Table 13.2.
For instance, if d is .5 with an alpha of .05 and power of .80, a researcher
would need 64 subjects in each of the two conditions.

Adjustments need to be made to d if a paired ¢ test is planned and Tables
13.1 or 13.2 are employed. In this case ihe new &' value is equal to
d/V(1 - r), where r is the degree of correlation between the paired observa-
tions. Also, if the sample sizes are unequal, the » in the tables must be
adjusted. The new #n, denoted n', equals 2nynof(ny + n2).

Design Considerations

TABLE i3.1

Before the results of a two-group expefiment can be interpreted, various
design issues must be considered. Two important questions are, first, the rule

Power Tables for the Two-Sample ¢ Test,” with Alpha = 05 and n =, = m,

Effect Size (Cohen’s d}

n 2 .5 .8
10 7 18 39
20 9 33 69
40 14 60 94
80 24 28 90
100 29 94 99
200 51 99 99

“Taken ifrom Cohen (1977).
NOTE: Entry in the table is the probability of rejecting the null hypothesis times 100 for a given
effect size and sample size.
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TABLE 13.2 Sample Size Required for a Two-Sample ¢ Test® to Achieve a Given Level of
Power for a Given Effect Size and Alpha of .05

Effect Size {Cohen’s d)

Power 2 5 .8
25 84 14 6
.50 193 32 13
60 246 40 16
70 310 50 20
.80 393 64 26
90 526 85 34
95 651 105 42

.99 920 148 58

“Taken from Cohen (}977).
NOTE: Eniry in the table is the sample size for each of the two groups.

by which persons are assigned to groups and, second, the manner in which the
two groups are formed.

There are two basic ways in which persons are assigned to groups. They
can be assigned randomly or on the basis of some variable.

Random assignment requires that each person has the same probability of
being assigned to a given group. Random assignment can be accomplished by
coin flip, dice roll, or a random number table. With random assignroent, each
person has an equal probability of being assigned to a given group. In the
absence of treatment effects, the difference between the means is totally
explained by sampling error. However, if the means differ by a statistically
significant amount, that difference can be atiributed to the independent vari-
able. The advantage of a random assignment rule is that it is known that the
treatment means differ either due to sampling error or due the independent
variable.

A ponrandom rule is one in which persons are assigned to groups on the
basis of some variable. For instance, persons are assigned to a surgical
procedure on the basis of some clinical test. To analyze the design correctly
with a nonrandom assignment rule, that variable must be controlled in anal-
ysis. One way in which this can be accomplished is through multiple regres-
sion, which is described in advanced statistical texts. Most of the time when
assignment is nonrandom, however, it is not known exactly which variable
made the groups different and so it is not known which variable to control in
the analysis. If the variable that determines assignment to levels of the
independent variable cannot be controlled, then when the means differ it is not
known whether the treatment made them different or whether the variable that
assigned persons to groups made the groups different. A random assignment
rule is preferable to a nonrandom rule in order to establish the causal connec-
tion between the independent variable and the dependent variable.
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It is important to distinguish random assigrment from random selection.
Random selection refers to the entry into the study, whereas random assign-
ment refers to the entry into levels of the. independent variable. Random
selection of persons means that the sample is representative of the population
from which it is sampled. Random assignment yields strong causal inference.

The second major design consideration is the formation of the two groups.
There is more than one way to study the effects of the independent variable.,
For instance, consider a study of the effects of jogging: Two groups of
persons would be formed, a jogging group and the other a control (that is, no
jogging) group. There are many ways to form the two groups:

1. Marathon runners are compared to persons who engage in no physical
exercise.

2. Persons who jog ten miles a week are compared to those who swim four
times a week.

3. Rats who run mazes for two hours a day are compared to rats who are
confined to a cage all day.

The advantage of plan 1 is that the maximum effect of jogging could be
estimated, but the disadvantage is that it does not estimate the potential
benefit of jogging to most persons. Plan 2 would test the effect of jogging
over an alternative exercise plan, but it probably would have very low power,
Plan 3 would allow for randomization and exactly measure the effect of
exercise, but it would have dubious generality to humans. No one plan is best
for all purposes, and each has sericus drawbacks. So, when a two-group
experiment is undertaken, its interpretation depends on how subjects are
assigned to levels of the independent variable and how the two groups are
formed.

Illustrations

In this section four different examples are considered. These examples illus-
trate the computation required for the two-group design.

Example 1

One group consists of ten persons in a smoking cessation program, and the
other group contains ten persons who were put on a waiting list. The two
groups were formed randomly. The dependent variable is the npumber of
cigarettes smoked per day two weeks after the program is completed. The
scores of the treatment group are

0, 15, 12, 9, 10, 0, 0, 25, 5, 3

and the control group
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18, 23, 15, 10, 8, 16, 13, 10, 20, 16

The mean for the treatment group is 7.9, and for the control group the mean is
14.9. The pooled variance is
1209 — 79%10 + 2423 — 149%10
10+ 102

= 43.767

The standard error of the difference between means is

1 1
. — + —| = 2.
\/43 767 o1 0] 2.959

The test of no effect of the treatment is

7.9 -14.9
T2959 —2.366

{18) =
which with 18 degrees of freedom is statistically significant at the .05 level of
significance. Thus, the program lowered the level of cigarette smoking to an
extent that cannot be explained by sampling error. Because groups were
formed randomly, the difference can be attributed to the program and not to
any other variable. The value of Cohen’s d, using the formula rV2/n, is
-2.366V2/10 = -1.06.

Example 2

Five persons undergo a drug treatment to reduce blood pressure and five
others receive an inert drug. There are two groups: a drug and a placebo
group. Their changes in blood pressure are

Drug: -15, -17, -14, -6, 4

Placebo: 0, -6, 8, 9, -7
The means are ~9.6 and .8 for the drug and placebo grovps, respectively. The
sums of squared scores are 762 and 230 in the drug and treatment groups,
respectively. The pooled variance is

762 — (—48)%5 + 230 — 4%5
5+5-2

= 66.000

The ¢ test value is

(8) = 96— 8 = 2.0
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The ¢ value of —2.024 is not significant at the .05 level. It is, however,
significant at the .10 level and some researchers refer to this level of signifi-
cance as marginal significance. There is, then, not very compelling evidence
from this study that the drug reduces blood pressure. The effect size equals
-2.024V2/5, which is —1.28, Even though the effect size is —1.28, the sample
size makes the power so Iow that the result is not statistically significant.

Example 3

Of 28 people involved in a study on attitude change, 13 received a message
from a high-status source and 15 from a low-status source. The resulting
attitude changes for the two groups are

' High-status source: 5, 6, 9, 3, 0, 4, 10, 6, 9, 5, 6, 5, 7
Low-status source; -1, 0, 3, -4, -6, -2, -1,0, 3, 6, -3, -2, -1, -2,

A positive change indicates change in the direction consistent with the
message, whereas a negative change indicates the reverse. The means for the
high- and low-status groups are 5.77 and —.60. The sums of the squared
scores for the two groups are 519 and 131. The pooled variance is

519 — 75413 + 131 — (<9)%15

13 + 15 -2 = 8150
The ¢ test value is
5.77 - (~.60
t26) = ¢ ) = 5.888
1 i
A50|—= + —
8.150 TRET:

This result is statistically significant at the .001 level. There was more attitude
change that was consistent with the message in the high-status than in the
low-status group. The value of Cohen’s d is

1 I 1
5. — 4+ —=2.123
888 13 15

Each of ten six-year-old children interact with a different four-year-old child.
Measured is the degree of social responsiveness by each person in the
conversation. The hypothesis is that six-year-olds are more socially respon-
sive than four-year-olds. The data are paired because two persons of different
ages interact. The scores are

Example 4
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Pdir Six-Year-Old Four-Year-Qld

o OO -] Oh B W
Lh 00 QN W0 3 Qv ~1 Ao th v
O\ U Bty W O L La

10
The correlation between scores is .45. The differences between each four-
year-old and each six-year-old are 1, 1,1, 1,3, 2,1, 3, 2, and 1, and the
mean is 1.2. The variance of the different scores is

_ 2
32 - 1249/10 — 1.956
9
The ¢ test value is
1.2
H9)) = —— = 2.713
V'1.956/10

This value of ¢ is statistically significant at the .05 level. Thus six-year-olds
are more socially responsive than four-year-olds. The value of d is

\ f21 — 45) _
2713\[=—— = .90

(The correlation between the two scores is equal to .45.)

Summary

The complete model for the two-group design involves a dichotomous in-
dependent variable that causes the dependent variable. In the restricted model
the independent variable has no effect on the dependent variable. This model
is evaluated by computing the difference between the means divided by the
standard error of the difference between means. This standard error equals the
pooled standard deviation of the two groups times the square root of 1/#, +
1/n;. When the restricted model is true, the difference between means divided
by its standard error has a z distribution, with n; '+ #, — 2 degrees of freedom.
The test of the restricted model presumes that the residual variable has a
normal distribution, that the variances in the two groups are equal, and that
the observations are independent.

‘When observations are paired, differences are computed and the mean of
the differences evaluates the equality of the group means. The size of the
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treatment effect is measured by Cohen’s d, which is called a measure of effect
size. With the sample size, alpha, and the effect size, the power of the ¢ test
can be determined. The inferpretation of a significant ! test depends upon
design considerations. If the units are randomly assigned to levels of the
independent variable, then significant differences on the dependent variable
can be attributed to the independent variable,

In the next chapter the independent variable may take on more than two
levels.

1. Determine the minimum value of ¢ needed to achieve the given signifi-
cance levels with the corresponding degrees of freedom.

Alpha df
a. .05 26
b. .01 6
c. .10 44
d. .02 62
e. .001 132
f .05 77

2. The following scores are taken from a study that compared two different
methods of increasing vocabulary. The scores of ten persons, five under
each method, are:

A 16, 19, 20, 18, 24
B: 12, 15, 16, 15, 14
Is there any evidence that one method is superior to the other?

3. Compute a paired ¢ test to evaluate the effectiveness of a weight loss

program.
Person Before After
1 163 150
2 149 143
3 236 240
4 189 180
5 176 160
6

216 205
4, For the following ¢ values compute d.

a. #(20) = 1.380, n, = 11, n, = 11
b. #98) = 2.110, n; = 50, n, = 50

it
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. #10) = 1.530, 1, = 8, ny = 4
d. #54) = —.470, ny =30, np = 26

. Determine the power of the following tests.

m=n=220andd=.5

ny=n =10and d = .2

#y = ny;.= 8 and 4 = .8

A =n, = l0andd = .8

e, paired design: d = 22, r = .8, and n = 20
f n =11, nz-—IOO and d = .8

. A program is developed to improve the intelligence scores (IQ) of
preschool children. Two groups of children are randomly formed. Test
whether the program affects 1Q:

Treated group: 109, 123, 141, 119, 133, 117, 118, 120
Contro! group: 106, 103, 114, 120, 116, 107, 93

. Twenty persons are randomly assigned to one of two treatments. In the
treatment group, ten persons are taught a series of strategies to improve
their memory. The control group leamed none of the strategies. The
scores on a memory test are

Memory group: 88, 76, 83, 75, 64, 80, 76, 73, 84, 78
Control group: 84, 73, 84, 78, 68, 78, 71, 70, 80, 79

cao oy

Are the two groups significantly different?

. Describe the advantages and disadvantages of using the control groups in
a study to evaluate the effect of group therapy to reduce cigaretie
smoking.

a. individual therapy
b. hypnosis condition
¢. a film that encourages quitting

. A psychologist studies the degree of happiness of pcople at various stages
in life. His measure of general happiness varies from 0 to 60. In one
study he compared the happiness of married and single men aged 25. Is
there a significant difference between the two groups?

Married Single
58 57
45 44
50 59
54 44
49 39
39 60
50 44
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10.

I1.

12,

13.

14.

Nine persons were asked to rate the taste of cola A and cola B on a scale
from one to ten. Is one drink significantly preferred to the other?

Person Cola A Cola B
1 7 7
2 8 9
3 8 7
4 9 5
5 10 9
b 9 7
7 8 6
8 8 10
9 7 8

For the following studies estimate Cohen’s d.

a +=2910,n =10, n, = 12
b.r=-410,my =5, n,=5

c. a paired design in which t = 5.910, there are 8 pairs, and r = .8
d. = —.970, R = Ry = 80

A researcher wishes to test whether eight-grade girls outscore eighth-
grade boys in vocabulary. She tested 30 boys and 42 girls and found
means of 64.53 for boys and 66.42 for girls. The standard deviations are
12.34 for boys and 12.59 for girls. Compute Cohen’s d for this study and
interpret it. Evalvnate whether the sex difference is statistically signifi-
cant.

The data for Example 1 in the chapter are repeated here: The scores of the
treatment group are
0,15,12,9,10,0,0, 25, 5,3
and for the control group are
18, 23, 15, 10, 8, 16, 13, 10, 20, 16
Compute the standard deviations for group and evaluate in words the
assumption of equal variances and its effect on the p value.

Diehl, Kluender, and Parker (1985) tested for the recognition of auditory
stimuli on two tasks. Each of 13 subjects received a score on each task,
the maximum being 40. Does performance on the tasks significantly
vary?

Task Task
Subject A B Subject A B
DS 20 19 1b 30 24
MM 21 18 RL. 23 18
JH 28 24 TW 25 19
IS 17 6 TA 30 16
MC 15 13 VS 34 29
CM 200 13 Cl 21 20

LG 28 22
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15. For the following effect sizes and designated power, state the necessary
sample size needed in each group.

Effect Size Power
a. 5 .50
b. 8 .80
c. .5 95
d. 2 .25
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