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Two-Way Analysis of
Variance

The preceding chapter discussed ways of evaluating a model in which a
nominal variable affects an interval dependent variable. The method, called
one-way analysis of variance, consists of computing the variability of the
group means weighted by sample size and comparing it to the variability
within leveis of the independent variable. In this chapter the topic is the study
of the simultaneous effects of two independent variables, both measured at the
nominal level. It will be shown that two-way analysis of variance is a
relatively straightforward extension of one-way analysis of variance. Two-
way analysis of variance is sometimes referred to as two-way ANOVA,

Factorial Design

Consider the study by Ball and Bogatz (1970) on the effect of the first year of
“Sesame Street” on preschool children. In their study, they divided children
into four different viewing groups: (a) nonviewers, (b) occasional viewers, (c)
moderate viewers, and (d) heavy viewers. They also classified children as
either disadvantaged or advantaged on the basis of neighborhood. There are
two independent variables: four levels of viewing and two levels of socioeco-
pomic background. One dependent variable that they studied was the number
of letters of the alphabet learned during the six months after “Sesame Street”
went on the air. This variable will be called letters learned.

In Table 15.1 the various combinations of the Ball and Bogatz evaluation
of the television program “Sesame Street” are laid out. The rows in the table
are the two levels of socioeconomic status: advantaged and disadvantaged.
The columns are the four levels of viewing: none, seldom, moderate, and
heavy. Because there are four levels of the viewing variable and two levels of
the socipeconornic variable, there are eight possible combinations, also
shown in Table 15.1. These combinations are called cells. For instance, the
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TABLE i5.1 Factorial Design

Viewing
Socioeconomic Never Seldom Moderate Heavy
Status
Advantaged 10 10 10 10 40
Disadvantaged 10 10 0 10 40
\
20 20 20 20 80

cell in the upper left-hand corner contains those children who come from
advantaged backgrounds and do not watch “Sesame Street.” The cell in the
bottom right-hand comner contzins those children whose parents are dis-
advantaged and are heavy viewers of “Sesame Street.” The creating of all
possible combinations is called factorial design.

In this chapter, the two nominal independent variables are called factor A
and factor B. Factor A has a levels, and factor B has b levels. There are a total
of a times b cells in the study. It is usual practice to have an equal number of
persons in each of the cells. So, for the “Sesame Street” example in which
there are eight cells, if there were 10 children in each cell, there would be a
total of 80 chiildren in the study, as is shown in Table 15.1. A table of the n's
for the cells is helpful in the computation of two-way analysis of variance.

There are two important reasons for having an equal number of subjects.
First, other things being equal, the estimates of the effects of the independent
variable are more efficient when the cell sizes are equal. So, to measure more
accurately the effect of “Sesame Street,” sampling error can be minimized by
having equal cell sizes. Second, the computation of the sums of squares
becomes much more complicated when the cell sizes are unequal. In fact,
there are a number of altemative procedures for estimating the sums of
squares. Thus, for reasons of both efficiency and computational ease, equal
cell sizes are preferred. All of the discussion in this chapter presumes that cell
sizes are equal.

Definitions
The score Xy, refers to score of person i at level j on factor A and at level & on
factor B. There are a levels of factor A and b levels of factor B. There are n
persons in each cell and a total of ab cells in the design. The total number of
scores 15 abn or N.
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To distinguish variovs summation terms, the following convention will be
used in this chapter. The subscript under the summation sign indicates what is
surnimed across. So

indicates the sum of all the observations in the jk cell,

“indicates the sum of scores for level k of factor B, and

173

indicates the sum of all the scores.

Means can be computed for each cell of the design. They are each based on
n observations. The cell mean for level j of factor A and level k of factor B is
equal to

Z lek
— A

n

>l

gk

The means for factor A arc averaged across levels of factor B. Because
there are b levels of factor B, there are a total of bn observations that are
averaged to compute the 2 means for factor A, In terms of a formula, the
mean for level j of factor A is

22 X
X, =ik

S br

The means for factor B are averaged across levels of factor A. Because
there are a levels of factor A, there are a total of an observations that are
averaged to compute the » means for factor B. In terms of a formula, the mean
for level k of factor B is

2 2 X

O —
an
The grand mean is denoted as X andit equals the sum of observations
divided by the total number of observations; that is,
222 X
}_( = P j ok
abn
The means for the levels of factor A, the means for levels of factor B, and
the grand mean can be expressed in terms of the cell means. The grand mean
can be shown to equal



TABLE 15.2

Two-Way Analysis of Variance 249

1. the sum of the cell means divided by ab,
2. the sum of the means for factor A divided by a, or
3. the sum of the means for factor B divided by b.

All of these formulas should yield the same value for the grand mean, and so
they can be used as a computational check.

The mean for the level j for factor A can be computed by averaging ali cell
means at level j. There are & such means. The mean for the level & for factor B
can be computed by averaging all the cell means at level k. There are ¢ such
means. _

It is helpful at times to present the cell means, the means for factors A and
B, and the grand mean all in one table. Such a table is illustrated in Table 15.2
for the “Sesamhe Street” example. The numbers in the table are only hypothet-
ical data.

In the last column are the mean for the advantaged group, 8.9 new letters
learned, and the mean for the disadvantaged group, 6.7 letters learned. In the
bottom row is the set of means for the four viewing groups. They increase
from 6.4 to 9.3. In the bottom right-hand corner is the grand mean of 7.8. The
entries in the cells are the cell means.

The set of cell means can also be graphed. The factor with the most levels
is ordinarily placed on the X axis. In this case that factor would be viewing.
The cell means are then plotted on the graph, and one makes certain to place
the mean in the appropriate place above the X axis. The points are connected
for each level of the second factor (the one not on the X axis). So, as in Figure
15.1, the points for the advantaged groups are connected. To distinguish the
two lines one can be solid and the other dashed, as in the figure.

Hypothetical Table of Means for Two-Way ANOVA

Viewing
Socioeconomic Never Seldom Moderate Heavy
Status
| ‘ ‘
Advantaged 8.0 8.4 9.2 10.0 " 8.9
Disadvantaged 4.8 6.2 7.2 8.6 6.7

6.4 7.3 8.2 9.3 7.8
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Graph of hypothetical means from the “Sesame Strect” evaluation.
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The Concepts of Main Effect and

Interaction

One purpose of conducting a two-way analysis of variance is to measure and
test the effect of each of the two independent variables. So, with two-way
ANOVA, two effects can be tested for the price of one. In two-way analysis
of variance, however, there is more than one way to measure the effect of an
independent variable, For instance, for the “Sesame Street” example, there is
first the program’s effect on advantaged children and second its effect on
disadvantaged children. The main effect of a given independent variable is the
effect of that variable averaged across all other levels of the other independent
variable. One advantage of having equal numbers of subjects in each cell is
that to compute the main effect of one independent variable, one adds the
means across cells of the other independent variable and divides by the
number of cells to compute the means of a main effect.

To interpret the main effect one examines the means for that factor.
Returning to the table of means for the “Sesame Street” example, first the
means are examined for the advantaged and disadvantaged subjects. They
show that advantaged children learned more letters than disadvantaged chil-
dren. To determine the main effect for viewing, the four means in the bottom
row of Table 15.2 are examined. They show that the more often the children
viewed “Sesame Street” the more letters they leamed. )

Alternatively, one can examine the main effects graphically. Retuming to
the “Sesame Street™ example, it can be seen in Figure 15.1 that the line for
advantaged children is always above the line for disadvantaged children.
Thus, advantaged children outperform disadvantaged children at ail four
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levels of viewing. Also the lines for both groups increase as the eye moves
along the X axis. So, children who view more “Sesame Street” learn more
letters.

There are two major purposes in doing a two-way analysis of variance
instead of doing separate studies, one for each independent variable. First, it
is much more economical to have one study with about the same number of
subjects and perform a two-way analysis of variance. One gets two studies for
the effort of one. Second, with a two-way analysis of variance one gets
information concerning the presence of interaction between the two variables.
Two variables are said to interact if the effect of one variable on the
dependent variable varies as a funcition of the level of the other variable.
Consider the effect of “Sesame Street” on the learning of letters as shown in
Table 15.2 and Figure 15.1. If the effect of the program is stronger for Jower
socioeconomic children than for higher socioeconomic children, it can be said
that viewing “Sesame Street” and sociceconomic status interacted in causing
the learning of letters. This is indicated in both the table and the figure. The
effect of “Sesame Street” is greater for disadvantaged than for advantaged
children.

The interaction between factor A and factor B is ordinarily referred to as
the A by B interaction and it is usually symbolized by 4 X B.

Predictions of interaction are very common in the sacial and behavioral
sciences. For instance, one question of particular interest is the interaction
between diagnostic category and form of therapy. If alcoholics were more
helped by group therapy than traditional individual psychotherapy and aeurot-
ics were more helped by individual psychotherapy, it would be said that
diagnostic category (alcoholic versus neurotic) interacts with mode of therapy
{group versus individual).

Another example of interaction might be found when examining the effect
of inhaling one milliliter of a toxic drug in the workplace and having a fuli
versus an empty stomach. It might be found that inhaling a toxic drug with a
full stomach has relatively little harmful effect, whereas the drug is quite toxic
when inhaling it on an empty stomach. In this case, the dmg (none versus
inhaling one ml) interacts with having eaten (empty versus full stomach) to
cause a toxic reaction. '

In discussing an interaction, it is said that the effect of factor A on variable
X varies depending on the level of factor B. Alternatively, it must also be true
that the effect of factor B on variable X varies as a function of the level of
factor A. Thus there is a choice in saying which varjable’s effect changes as a
function of which other variable. If the interest is primarily in factor A, then
the preference is to state that A’s effect changes as a function of B. For
instance, for the “Sesame Street” example, instead of saying that the effect of
the program was greater for disadvantaged children, it could have been stated
that the advantaged children outperformed the disadvantaged children least
when both groups were heavy viewers of the program. Also, if A has more
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levels than B it is probably simpler to say that A’s effect changes as function
of B,

Interactions can also be represented graphically. The dependent variable is
on the Y axis and the independent variable with 2 larger number of levels is on
the X axis. The means of the dependent variable are graphed on the X axis
separately for each level of the other independent vanable. If the distance
between the lines on the graph varies, then an interaction is present. In Figure
15.2 are examples of graphs with interaction and with no interaction. (The
diagrams in Figure 15.2 are idealized in that there is no sampling error;
actually, graphs ordinarily do not show such clear patterns.)

In both graphs in the figure, six means from a 2 by 3 design are plotted.

“There are three Jevels of factor A and two levels of factor B, The X axis is

used to distinguish levels of A and two separate lines are drawn for the two
levels of B. In the graph labeled I, the gap between the pair of B means
increases as one moves along the X axis. It is smallest for Al and largest for
A3. There is then an interaction between the two independent variables. The
difference between the B means varies as a function of A, However, in the
graph on the right labeled I, the gap remains the same.. There is then no
interaction between the independent variables. The effect of B is the same for
the three levels of A.

To understand better the concept of interaction, examine the graph on the
left of Figure 15.3 which is labeled as I. (Again, these are idealized patterns
without sampling error.) The graph very clearly shows that A and B interact.
At Al there is no difference between B1 and B2. But as the eyes move to the
right on the X axis, the effect of B becomes larger. Although the graph on the
left-hand side of Figure 15.3 shows clear interaction, it also shows clear main
effects of A and B. For A, the A3 means are on average larger than the A2 and
Al means, and the A2 means are on average larger than the Al means. For B,
the average of the Bl means is larger than the average of the B2 means. So,
the pattern of means in the left part of Figure 15.3 shows two main effects and
an interaction.

" IHustration of interaction.
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FIGURE 15.3 Second illustration of interaction.

TABLE 15.3

|

Al A2 A3

. In Figure 15.3 the graph on the right shows pure interaction and no main
effects, The distinctive feature about the graph is the crossover of the two B
lines which must be present when there is interaction and no main effects.

Consider a final example based on actual data. West and Shults (1976)
examined how much persons liked male and female names. They determined
the commonness of the name by its frequency of occurrence in a college
yearbook. They asked 148 persons to state how much they liked common
male names such as David and John versus uncommon male names such as
Jerome or Julius. They were also asked how much they liked common female
names such as Mary and Carol versus uncommon names such as Melinda or
Rosemary. There are two factors in this study. They are sex of the name, male
or female, and commonness of the name, common or uncommon. The ratings
were on a five-point scale, where a five is a favorable rating and a one is an
unfavorable rating. The means are presented in Table 15.3.

The results show a main effect of the commonness of the name. Common

Favorableness of Rating

Commonness Sex of Name

of Name Male Female Average
Common 3.540 3,240 3.390
Uncommeon 2.420 2.980 2,700

Average 2.980 3.110 3.045
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names are liked more than uncommon names (3.390 versus 2.700). Although
male names are liked less than females {2.980 versus 3.110), this difference is
too small to be statistically reliable. There is then no main effect for sex of
name. But the two factors do interact. Overall, common names are liked
better than vncommon names by .69 unit. This effect is strong for male
names, a difference of 1.12 units, but the effect is relatively weak for females,
a difference of .26 unit. The two factors clearly interact. The effect of
commonness depends on gender.

Estimation and Definitional Formulas

The complete model for two-way analysis of variance contains many terms.
The dependent variable consists of the following terms:

the constant,

the main effect for factor A,

the main effect for factor B,

the interaction between A and B, and
the residual variable.

bl ol sl

The estimates of these four terms are as follows:

. The constant: the grand mean or )—(_“ _ _

. The main effect for factor A at level j: X; - X
. The main effect for factor B at level &: X , - X
. The interaction between A and B for cell jk:

PR S R

X — )_f; -X .t X,
5. The residual score for person i in cell jk: Xy — X Jk

The sum of squares for any effect involves the squares of all effects times the
sample size that the effect is based on.
It is also necessary to define varicus totals, as follows:

T.jk = EXU’C

T.j. = ?2 Xijk

T = ZZX{#:
i

The F distribution is used to evaluate the plausibility of the restricted
models. There are three restricted models in two-way analysis of variance. In
each, one of the effects (A, B, or A X B) is omitted.
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The Computation of Two-Way Analysis
of Variance

A two-way analysis of variance amounts to little more than parts of three
separate one-way analyses of variance. So, a sound understanding of one-way
analysis of variance is essential for the understanding of two-way analysis of
variance.

First, a one-way analysis of variance is computed for factor A ignoring
factor B. Second, a one-way analysis of variance is computed for factor B
ignoring factor A. Third, a big one-way analysis of variance is computed that
treats the cells as levels of a single factor. This last ANOVA can be viewed as
an analysis of the AB factor. The computation of two-way analysis of
variance consists of the piecing together parts of these three different one-way
analyses.

The sums of squares for the main effects of each of the factors ignoring the
other are taken from the one-way analyses of variance. The sums of squares
interaction is measured by taking the sum of squares from the big one-way
analysis and subtracting the sum of squares for both of the main effects.

To compute the sum of squares for A, B, and A X B the correction term for
the mean or C is needed. It equals

T 4

C
abn

In words, it is simply the square of the sum of all scores, divided by the
number of all the observations in the study.

To compute the sum of squares for factor A, or SS,, each A fotal is
squared, these squares are summed across the e groups, this sum is divided by
the number of observations that the totals are based on, and C is subtracted. In
terms of a formula,

T J_.Z

8§, =4 -
4 bn ¢

k-1

The sum of squares for A using this formula results in the same sum of
squares as would be obtained if B were ignored and a one-way analysis of
variance sum of squares for A were computed.
To compute the sum of squares for factor B, or 88z, each B total is
- squared, these squares are summed across the & groups, this sum is divided by
the number of observations that it is based on, and C is subtracted. In terims of
a formula,

T2
§S5 = X -C
an
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To compute the sum of squares for interaction, or 88,5, the sum of
squares AB, or 5SSz, is computed. This sum of squares is based on a one-way
analysis of variance in which the cell means are treated as group means. Its

formula is
22 Ti
88, = Lkn— -C

The cell totals are divided by n because each cell mean is based on n
observations. The formula for the sum of squares for interaction is

SSAxg = SSA_B - SSA - SSB

The sum of squares for subjects within the AB cells is computed indirectly.
To compute it, first the sum of squares total, or SStor, is computed. Its
formula is

SStor = 3 X X Xul - C
The sum of squares for subjects within cells equals

SSgar = SStor — SSsp

~or, alternatively,

SSsiup = SStor ~ S84 - S8p — SSsxa

There is a general formula for the sum of squares for a main effect. The
formula for the main effect of D is

sum of each of the n each correction
squares = sum| Dtotals | + Dtotal - term for the
for effect D squared is based on  grand mean

First, each D total is squared and summed across the set of D totals. This sum
of totals squared is divided by the sample size of the totals. Finally, C, the
correction term for the grand mean, is subtracted.

As was done with one-way analysis of variance, it is useful to diagram the
partitioning of the sum of squares. In Figure 15.4 the large circle represents
the total sum of sguares. The area on inside the two overlapping circles
represents the sum of squares AB. The area outside the two overlapping
circles represents the SSg,45. It can then be graphically seen that the SSg,45
equals the SStor minus the S8,45.

The area in the overlapping circles can be partitioned. The portion of the
two smaller circles that does not overlap is the sum of squares for A (on the
left) and the sum of squares for B (on the right). Note then that the SS, is not
the entire circle on the left but only the nonoverlapping part.

The part of the two circles that overlaps is the sum of squares interaction.
The diagram illustrates how the sum of squares AB equals the sum of squares
for the two main effects plus the sum of squares for interaction. Thus the
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FIGURE 15.4 Circle diagram for two-way ANOVA.
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diagram illustrates the partitioning of the sum of squares, as well as their
degrees of freedom.

After computing the sum of squares, the next step is to determine the
degrees of freedom, as follows:

de =a-1
dfg =b-1
The degrees of freedom for main effect are as they were for one-way
ANOVA: They cach equal the number of groups less one.
The rule for determining the degrees of freedom for interaction is simple.

The degrees of freedom for interaction equal the product of the degrees of
freedom of its components; that is,

dfaxg = (@ - 1)}b - 1)

The degrees of freedom for subjects within cells equal
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Afsiap = N - ab

where N is the total number of persons in the study. As with the sum of
squares, the degrees of freedom partition in the same way:

dfsius = dfrot — dfas
dfaxz = dfap — dfa — dfy
The dfss equal ab — 1, the number of cells less one.

Each mean square is its sum of squares divided by its degrees of freedom.
The individual mean squares are

MS, = %‘*
MSp = %
MSaxg = %ff
MSsap = %Sfﬁ
For A, B, and A X B, the denominator of the F ratio is MSg.z:
F(‘.I—l’ N—ab) = %
F(b-1, N-ab) = %
F((a—1)(b-1), N—ab) = _ﬂ_i;ﬁ

These F tests evaluate whether a restricted model, one that does not include
the term in the nemerator, is plausible. Note that the df,, differs for these three
F tests if there are a different number of levels of A than B. So, in determining
the statistical significance of the F tests, different values from Appendix E
must be used. A good rule of thumb is that F must be about 4.0 or more to be
significant at the .05 level of significance.

As with one-way analysis of variance, the basic results are summarized in
an analysis of variance table (see Table 15.4). The column headings for
two-way analysis of variance are the same as those for one way analysis of
variance. They are source of variation, sum of squares, degrees of freedom,
mean square, and F. The sources of variation are factor A, factor B, the A by
B interaction, subjects within the AB cells, and total.
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Analysis of Variance Tahle

Source of Sum of Degrees of Mean

Variation Squares Freedom Square F

Factor A 5S4 dfy MS, MS,
MSg4p

Factor B SSs dfs MSg MSg
MSgias

AXB SS4xz dfaxs MSaxg MS,xa
MSs;ap

SUbjCCiS SSSIA.B df:g_;,;g MSSIAB

within

cells (S/AB)

Total (TOT) SSror dfvor

The analysis of variance table neatly summarizes the computation and the
results of the model testing.

Assumptions and Power

The assumptions of two-way analysis of variance are identical to those of
one-way analysis of variance and the two-sample ¢ test. They are {a} normally
distributed residual variable, (b) equal variances in all the cells, and (c)
independence of observations. The reader is referred to Chapter 13 for an
extensive discussion of these assumptions.

~ The considerations for the power in the test of the main effects are the same
as in one-way analysis of variance, presented in Chapter 14. The power of the
test of interaction is ordinarily not as large as that of the main effect. A typical
interaction is one in which the effect of one factor becomes weaker across
Ievels of the other factor. Crossover interactions, as in graph I of Figure
15.3, are not common. Thus an interaction measures not some overall effect
but the variation of an effect. Therefore main effects are tested with more
power than interactions.

Example

Imagine a researcher who wishes to measure the effect of a cigarette smoking
on shortness of breath. She creates three groups of smokers: heavy, light, and
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none. She then divides these three groups by age: 30s, 40s, and 50s. Her raw

data are
Smoking
Level 30s
Heavy 4,56
Light 3,3, 6
None 2, 2,5

She has three persons in each cell of the design.

Some preliminary tables can simplify both the calculations and intetpreta-

tion. The table of n’s for the study is as follows:

Age
30s 405 50s
Heavy 3 3 3
Smoking .
Level Light 3 3 3
None 3 3 3
Total 9 9 9
A table of total scores is as follows:
Age
0s 40s 50s
Heavy 15 21 27
Smoking .
Level Light 12 12 12
None 9 12 15
Total 36 45 54

Total

27

Total

63

36

36

135

These tables of n’s and totals are useful in computing various sums of squares.
Each rtotal squared will be divided by its corresponding n. The means are as

follows:”



Age
30s 40s 50s Average
Heavy 5.0 7.0 9.0 7.0
fcmvff“g Light 4.0 4.0 4.0 4.0
None 3.0 4.0 5.0 4.0
Average 4.0 5.0 6.0 5.0

The correction term for the mean is 135%/27 = 675. The sum of squares for
smoking groups is

632 + 362 + 367

- 675 = 54
9
The sum of squares for age is
’ 367 + 452 + 547
- 675 =18

9
The sum of squares for cells is
1524212 + 277 + 122 + 122 + 122 + 92 + 122 + 152
3

- 675 =74

The sum of squares for interaction is
74 - 54— 18 = 12

The sum of each squared observation is 813. The sum of squares for the total
is then 813 ~ 675 or 138. The sum of squares for persons within cells is 138 —
74 = 54, The analysis of variance table is as follows:

Source of Sum of Degrees of Mean

Variation Squares Freedom Square F
Smoke (S) 54,0 2 27.0 9.0
Age (A) 18.0 2 9.0 3.0
S XA 12.0 4 3.0 1.0
Persons 54,0 18 3.0

within SA

(P/SA)

Total 138.0 26
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Only the main effect of smoking is statistically significant, and its signifi-
cance level is the .001 level. The means show that heavy smokers have more
difficulty breathing.

Generalization to Higher-Order Analysis
of Variance

The generalization to three- and four-way analysis of variance is straightfor-
ward. Again, the independent variables are denoted as A, B, and C. There are
a levels within factor A, b levels within factor B, and ¢ levels within factor C.
There are abe cells, each with n persons. The total number of subjects in the
study, abcn, is N. ‘

The sums of squares for the main effects are computed exactly as they are
compuied in one- and two-way analysis of variance. For each level of a main
effect, the total is squared and summed across levels, and this sum of squared
totals is divided by the number of observations that each total is based on, and
the correction term for the grand mean is subtracted.

To determine the interaction between two factors, three “one-way™ anal-
yses are done for the AB, AC, and BC means. These sums of squares are
denoted as SS.g, SS4c, and SSpc, respectively. The sums of squares for
interaction equal '

SSAxB = SSA_B - SSA - SSB
SSAXC = SSAC - SSA - SSC
SSBXC = SSBC - SS& - SSC

To determine the 884z ¢, first the sum of squares for ABC is computed.

This is a one-way sum of squares in which the abce cells are treated-as groups.
The sum of squares for the A X B X C interaction is as follows:

SSaxaxc = SSapc — SSaxp — SSaxc — 8Spxc — S84 — 885 — S5¢
The sum of squares of subjects within cells equals

SSsapc = SStor — SSa8c

where SSto7 equals the sum of each squared observation minus the correction
term for the mean.

The degrees of freedom for the two-way interaction are computed in the
usual way. They equal the product of the degrees of freedom of the com-
ponents. They are then

dfaxs = (a - Db~ 1}
dfaxc = (@— Dle - 1)
dfsxc = (b= 1){c - 1)

The degrees of freedom for the A X B X C interaction are
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dfaxsxc = (@—- 1) - Dic- 1

Like any interaction, its degrees of freedom are the product of the degrees of
freedom of its components. The formula for dfsaac is

d_f:g,r@c = N —-Vabc

where N is the total number of observations in the study.

As always, a mean square equals its sum of squares divided by its degrees
of freedom. The F test consists of each mean square divided by the mean
square subjects within ABC cells.

As was done with two-way analysis of variance, it is useful to diagram the
partitioning of the sum of squares. In Figure 15.5 the large circle represents
the total sum of squares. The three overlapping circles inside of it represent
the sum of squares ABC. The area outside of these three circles, but still
within the large circle, represents the 885,45 It can then be graphically seen
that the SSSIABC 3quals the SSTOT minus the SSA.BC

FIGURE 15.5 Circle diagram for three-way ANOVA,

AXB
(- 1)b-1)

AXBXC
@—1)b - 1)e -1}

BXC
(- De- 1
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The parts of the threc circles that do not overlap are the sums of square for
A (on the left), for B (on the right), and for C (on the bottom). As with
two-way ANOVA, the main effect for an effect is not the entire circle but only
the nonoverlapping portion. The portion of the three smaller circles that
completely overlaps is the sum of squares interaction of A by B by C. The part
of the A and B circles that overlaps excluding C represents the A x B
interaction. In a similar fashion the B X C and A X C interactions can be
defined. So, the diagram illustrates the partitioning of the sum of squares.

Generalization to a four-way design follows along the same lines. Perhaps
the most difficult aspect of four-way designs is that interactions can be very
difficult to interpret.

‘Repeated Measures Design

The estimation procedures for ANOVA have presumed that the groups are
independent. In Chapter 13, a design is presented in which observations were
matched, paired, or linked in some way. The most common way in which
observations are linked is that they come from the same person. For example,
consider a small study on the effects of psychotherapy on psychological
adjustment. Six subjects were measured before and after psychotherapy on an
adjustment scale. Higher scores indicate greater adjustment. The numbers are:

Subject Before After

i 23 32
2 27 25
3 31 40
4 32 31
5 26 38
6 25 29

This is a paired design because one score in each group is linked to the same
persan.

It is also a two-way design. There are two independent variables. They are
psychotherapy, before versus after, and person, I through 6. It is possible to
compute a mean square sibject, a mean square psychotherapy, and a mean
square interaction. The two-way analysis of variance table is presented in
Table 15.5. The main effect for subject refers to the extent to which subjects
differ from one another across both time points. The subject by treatment
interaction refers to whether the treatment is more effective for some subjects
than others. There is no subjects within cells term that can be used as a
denominator for the F test. Instead the person by treatment interaction is nsed
as the denominator for the F test to test for the presence of treatment effects.
The value of this F exactly equals the value of £ that would be obtained from
the paired ¢ test described in Chapter 13. The equivalence of repeated meas-
ures F and paired 2 occurs when the independent variable in the design has
two Jevels,
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Repeated Measures Example

Source SS df MS F
Treatment (T) 80.08 1 80.08 - 4.80
Person (5) 135.42 5 27.08

SxT 83.42 5 16.68

Total 298.92 11

Wherever there is a series of observations for each person, a two-way
analysis of variance can be computed. Such a design is commonly referred to
as a repeated measures design. This notion of person as variable is a fun-
damental insight in understanding complicated analyses of variance. Subjects
are a very special kind of independent variable, but they are a variable.

Repeated measures designs are very commonly employed in psychological
research. In particular, most research in cognitive psychology uses repeated
measures designs. Persens in these experiments receive stimuli that are
arrayed to represent various levels of a given independent variable. It is not at
alf uncommon in these studies for a single person to provide data for as many
as 25 experimental conditions.

There two major reasons for the popularity of repeated measures designs.
First, with a repeated measures design the researcher needs fewer subjects to
obtain the same number of observations than is the case with an independent
groups design. Second, even if the number of observations is the same for
both designs, a repeated measures design is still usually much more powerful
than an independent groups design. The reason for this is that subject variat-
ion is removed from the residval variance.

Repeated measures designs do have their drawbacks. A complete discus-
sion of these drawbacks can be found in advanced textbooks (Myers, 1979;
Winer, 1971). These drawbacks are linked to the fact that measurements are
almost always sequentially ordered.

In two-way analysis of variance, two nominal variables affect a variable
measured at the interval level. The creation of all possible combinations of
two nominal variables is called factorial design. A particular combination in a
factorial design is called a cell.

The main effect of a factor is the average effect of that factor across levels
of the other variable. An interaction between two factors implies that the
effect of one factor changes as a function of the other. An interaction can be
assessed by an examination of a graph or table.

Sums of squares for the main effects are computed as in one-way analysis
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of variance. The interaction sum of squares equals the sum of squares for cells
minus the sums of squares for main effects. The sum of squares for subjects
within cells is the pooled sum of squares for each cell pooled across cells.
This sum of squares is computed by subtracting the sum of squares cells from
the sum of squares total. The degrees of freedom for interaction equal the
product of the degrees of freedom for the main effects. The mean square for
an effect equals its sum of squares divided by its degrees of freedom.

Hypotheses in two-way ANOVA are evaluated by an F test. The de-
nominator of the F ratio is the mean square ‘of subjects within cells. A
significant F ratio indicates that the term in the numerator must be included in
the complete model. :

Repeated measures design involves having each subject be in each level of
the independent variable. In a repeated measures design the effect of a factor
is tested by using the mean square interaction of subject by factor as the
denominator of the F ratio.

1. Fill in the remainder of the source table from an equal r study with ten
subjects in each cell.

Source of Sum of Degrees of Mean
Variation Squares Freedom Sguare F
A 6.3 3

B 4.3 2

AXB 6.0

Persons

within AB

(S/AB)

Total 89.0

State whether the effects are statistically significant.

2. A pig buyer wants to compare the fat content of bacon and ham in 20
different pigs, 10 from California and 10 from Nebraska. Do a two-way
- analysis of variance and interpret your results. .

Birthplace

Nebraska California
Ham 30, 30, 25, 27, 26 26, 17, 37, 38, 34
Bacon 40, 28, 26, 29, 35 34, 29, 36, 37, 42

3. For the table below do a two-way analysis of variance and interpret your
results.
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w

1 7,965 3,2,1,7 | 7,8,9,3 | 1,3,8,7 1-2,4,3,1

2|43, 1,6 | 4,1,3,5 | 3,1,6,5 1,3,4,2 ] 7,6,5,9

4. A researcher is interested in studying the overjustification cffect. Simply
put, this effect states that people do not enjoy activities that they used to
do solely for fun after they are paid for engaging in the behavior. A
researcher wishes to investigate whether the effect is stronger for younger
than for older children. To study the phenomenon the researcher has ten
younger children (age four) play with a toy as well as ten older children
(age seven). For each of these groups, five of the children were given
candy as an incentive to play with the toy and five were not. The
experimenter then measured the duration of time spent with the toy at a
later period. The resuits are:

Older, rewarded: 44, 110, 12, 44, 59
Older, unrewarded: 79, 120, 112, 68, 39
Younger, rewarded: 64, 10, 34, 119, 78
Younger, vnrewarded: 73, 10, 102, 49, 99

Conduct a two-way analysis of variance to see whether the groups differ.

5. Consider the following table of means.

Al 6.1 5.3 8.0
A2 9.2 8.5 12.1
Bl B2 B3

Interpret the main effects and interaction.

6. Five subjects are asked to learn material over a period of four days. Their
data are
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Subject I 2 3 4

oA WD
p—
<
)
N
b
2
[
Lh

Conduct a two-way ANOVA treating subject and day as factors, Test the
effect of day.

. Complete the following three-way ANOVA table, where there are two

subjects in each cell.

SV 5§ df MS F
A 124 2

B 25 3

C 48 1

AXB 12

AXxXC 19

B xC 14

AXBXC 12

S/IABC

Total 318

. Construct a table of means for an experiment in which both independent

variables have two levels. Designate the factors as A and B. Make the
following three tables.

a. a table with a main effect for B only
b. a table with a main effect for A only
c. a table with an interaction of A with B only

. An experimenter wants to see whether the deleterious effects of alcohol

are increased when one drinks on an empty stomach. He has 20 subjects
learn nonsense symbols in one of four conditions: I: no alcohol, empty
stomach; II: no alcohol, full stomach; II: alcohol, empty stomach; 1V:
alcohol, full stomach. He then measured the number correct out of 13
syllables, with the following results.

I: 14,12, 15, 14, 13 .
IE: 13, 15, 14, 12, 14
m: 8,7,5,9,12
vV: 10, 12, 14, 9, 11
Analyze the data by two-way ANOVA and interpret the results.
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10. A researcher wants to see whether intelligence (IQ) is affected by birth
order, He finds eight families with three children and measures the IQ of
each member. The data are as follows

Birth Order
Family First Second Third
1 130 125 120
2 105 90 75
3 140 145 125
4 80 70 80
5 135 120 115
6 90 80 60
7 110 105 90
8 125 100 110

Test whether birth order affects 1Q.
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