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Testing Measures
of Association

In Chapters 6 and 7 the two most common measures of association were
presented: regression and correlation coefficients. The regression coefficient,
or b, measures the change in the criterion variable as a function of a one-unit
change in the predictor variable. The correlation coefficient, or r, is a
regression coefficient with both variables standardized (expressed as Z
scores); that is, both variables have means of zero and variances of one. It is a
symmetric measure of association that varies from —1 to +1. For both
measures of association, a value of zero indicates no linear association. In this
chapter, methods are presented to test hypotheses about correlation and
regression coefficients.

The use of the correlation coefficient or r does not require a specification
about the direction of the causal effect. That is, if a researcher correlates the
degree to which a parent uses physical punishment and how aggressive the
children are, there is no need to make any assumptions about which of the
following causal patterns is true.

1. Physical punishment causes aggre:ssion.
2. Aggressive children make parents use physical aggression.
3. Physical punishment and aggression are two signs of a troubled family.

Correlations make no presumption about what is the independent variable and
what is the dependent variable. There is then not a single complete model
when one tests correlation coefficients because there are three distinct ways in
which the correlation could come about. The complete medel then presumes
some unspecified causal network that brings about association between the
variables. The restricted model is that there is no association between the
variables.

A regression coefficient, when used in explanation and not in prediction or
description, does make a clear statement about a causal ordering. The pre-
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dictor variable is the independent variable and the criterion is the dependent
variable. The complete model is

dependent

\ = constant + coefficient
variable

independent residual
variable variable

The coefficient in the model is called the regression coefficient. Both vari-
ables are measured at the interval level of measurement. The complete model
for regression is the same as one-way analysis of variance except that the
independent variable is measured at the interval level. The restricted model is
the same as the complete model, but the independent variable has no effect on
the dependent variable.

In this chapter, first tests of correlation coefficients are presented because
procedures to do so are relatively simpier than tests of regression coefficients.
Then the somewhat more complicated tests of regression coefficients are
described. In the last section of the chapter, rules for determining which type
of test is most appropriate are presented. '

Tests of Correlation Coefficients
In this section, the following tests of correlation coefficients are presented:

1. How to test a single correlation coefficient.

2. How to test whether two correlation coefficients computed from different
samples are equal. Correlations computed using different groups of per-
sons are called independent correlations.

3. Testing more than two independent correlation coefficients.

4. How to test whether two correlations computed from the same sample are
equal to each other.

A Single Correlation Coefficient

Consider two variables: the number of times a person nods his or her head in a
-conversation and the degree to which the person likes his or her partner in the
conversation. The two variables are nods and liking. The two variables are
correlated across 30 pairs of persons and the correlation is .45. The correla-
tion indicates that the more one nods during a conversation the more one likes
one’s partner. However, one might wonder whether the .45 value in the
sample might have just occurred by chance. That is, if there were a thousand
pairs of persons, would the correlation be zero? Is the .45 value due to
sampling error or does it reflect a true positive correlation? A way is needed to
evaluate whether a sample correlation coefficient is significantly different
from zero.

It turns out that the distribution of » does not closely correspond to any of
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the major sampling distributions. However, for a population correlation of
zero, r divided by the square root of 1 — r? is approximately normally
distributed with a mean of zero and a variance of n — 2.

The test of the null hypothesis that a correlation coefficient equals zero is

rvan-2
V1 -r2

tn-2) =
In words, the correlation coefficient is divided by the square root of one minus
the correlation squared, and then this quantity is multiplied by the square
root of the sample size minus two. Under the null hypothesis that the popu-

lation correlation equals zero, this quantity has a ¢ distribution with n — 2 de-

grees of freedom, where r is the number of pairs of scores. So, one computes
rvViin - 2)(1 - ?) and determines whether it equals or exceeds the critical
vatues for ¢ in Appendix D. The degrees of freedom are n — 2 and one rounds
down to the closest value in the first column in Appendix D.

So for the nods and liking example if r = .45 and n = 30, then

A5V
128y = AV = 2.666
V1 - .452 :

which is statistically significant at the .02 level. It would be concluded that
the .45 correlation cannot be explained by sampling error and is significantly
greater than zero.

If the correlation is significantly different from zero, the correlation can be
either negative or positive. If the researcher wishes to allow the null hypoth-
esis to be false in only one direction (e.g., he or she expects the correlation to
be positive}, then the p value should be cut in half and the test is called a
one-tailed test. Most researchers agree that a one-tailed test should not
ordinarily be done because if the cormrelation is very large but in the un-
predicted direction, it would still be deemed statistically significant.

Assumptions. A correlation coefficient as a measure of association pre-
sumes that the relationship is lineac. That is, a change in one unit in the X
variable results in the same amount of change in ¥ regardless of the value of
X. As explained in Chapter 7, other types of relationships are not adequately
captured by a linear measure of association, and some are even totally missed.
The reader is referred to Chapter 7 for a more extensive discussion of the
linearity question.

The second assumption is that each pair of (X, Y) scores is independent of
all other pairs. Such an assumption presumes that person is the sampling unit.
That is, each person provides one and only one pair of scores.

Both variables must be normally distributed. More technically, the two
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variables have a joint normal distribution. Research has indicated that p
values are not considerably altered by the violation of the normality assump-
tion. However, the linearity and the independence assumptions cannot be
violated with impunity.

Interpretation.  The discussion in Chapter 7 concerning the pitfalls in in-
terpreting correlations is relevant. A significant correlation means that the
variables are associated. [t in no way indicates the direction of causation. Of
course, if the researcher believes that the variables are causally related, a
correlation is comforting; however, the correlation does not by itself indicate
the direction of causation.

Power. The power of a test is the probability of rejecting the null hypothesis
when the nuil hypothesis is false. Tests of correlation have moderate levels of
power. For a given value of the population r, a given n, and a given alpha,
power can be determined. Table 16.1 gives the power for the correlation
coefficient for a small, medium, and large cffect sizes. As discussed in
Chapter 7, a small correlation is a value of .1, a medium correlation is a value
of .3, and a large correlation is .5. The values given in Table 16.1 are for the
.05 level of significance. The # in the table is the total sample size or the
number of (X, ¥) pairs. The entry in the table is the power multiplied by 100.
So if a researcher contemplates doing a study with 40 persons and the
correlation is expected to be moderate in size, the probability of rejecting the
null hypothesis is .48. This means that for every two times that the stody is
done, the null hypothesis will be rejected about once.

For a given r, alpha, and level of power desired, the » that is needed for
that power can be determined. These sample sizes are given in Table 16.2. As
an example, consider the n needed to achieve 70% power for a moderate

Power Table® for Correlation Coefficients, @ = .05

Population Correlation

n 1 .3 5
10 6 13 33
20 7 25 64
40 9 48 92
80 14 78 99
100 17 &6 %9
200 29 99 99

*Taken from Cohen (1977).
NOTE: Each entry in the table is the probability of rejecting the null hypothesis times 100 for a
given population correlation and sample size.
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TABLE 16.2 Sample Size Required® for Correlation Coefficients, & =" .05

Population Correlation

Power .1 3 5
.25 166 20 8
.50 384 42 15
.60 489 53 18
.70 616 66 23
.80 783 84 28
90 1046 112 37
.95 1308 139 46
.99 1828 194 63
*Taken from Coher (1977},

NOTE: Each entry represents the sample size needed to achieve a given level of power for a given
population correlation,

effect size of 3. The n would have to be 66 to have a 70% chance of being
significant.

Examp!e. Manning and Wright (1983) investigated the degree to which
learning pain control strategies would reduce the use of painkilling medication
during labor and childbirth. For 52 women who were giving birth, Manning
and Wright correlated how much time the women devoted to learning a pain
control strategy with their use of painkilling drugs during labor. The correla-
‘tion was found to be —.22, and hence the women who learned the pain control
strategy used fewer drugs. The test of that correlation is

—-.22V/50
50) = —————
10 Vi - (-.22)2

which is not significantly different from zero at the .05 level. 1t is concluded
that the population correlation may be zero and that the —.22 correlation is
within the limits of sampling error given a sample size of 52.

= -1.595

Test of the Difference Between Two .
Independent Correlations

Assume that the correlation between nods and liking is computed separately
for male and female pairs. For 15 male pairs the correlation is .13, and for 15
female pairs the correlation is .68. At issue is whether the correlation is
significantly larger for females than it is for males. When the correlations are i
computed from two different samples (e.g., males and females) the two i
correlations are said to be independent. :
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To evaluate whether two correlations are significantly different from one
another, one might be tempted to test this hypothesis by first testing whether
the correlation is statistically significant for males and then testing whether
the correlation is statistically significant for females. The ¢ for males is .473,
which is not significant, and 3.344 for females, which is significant at the .01
level of significance. The fact that the correlation is significantly greater than
zero for females and is not for males does not necessarily mean that the
correlation is significantly larger for females than for males. Statistical logic
does not follow ordinary logic. If the number x is equal to zero and the
number y is greater than zero, then y must be greater than x. This is simple
logic. However, it is not necessarily true that if correlation x is not significant-
ly greater than zero and y is significantly larger than zero, y is a significantly
larger correlation than x. One must explicitly test whether the two correlations
differ and not rely on the significance tests of the correlations calculated
individually. The example illustrates this. Although the .68 correlation is
statistically significant and the .13 value is not, it will be seen that the
difference between the correlations is not statistically significant.

To test whether these correlations are significantly different from one
another, the correlations are transformed. Each correlation must be altered by
what is called Fisher's r to z transformation. This r to z transformation is
defined as

1

—In

2

1 +r
1-r

Actually the transformation is not usually computed by hand or even by
calculator, but rather the value is simply looked up in a table. Table 1 in
Appendix F presents the Fisher z transformation values for correlation coeffi-
cients. To find the Fisher r to z value in Appendix F, locate r in the left
column and then determine its z in the right column. H r is negative, follow
the same procedure but give the z value a negative sign. Table 2 in Appendix
F contains a table for going from z to r. First, round z to two decimal piaces,
and then locate the appropriate value of z in the left column and top row of the
table and find the appropriate value of r.

The r to z transformation has little or no effect on small correlations, but
for large correlations the Fisher z value is larger than r. Unlike r, the Fisher z
has no vpper and lower limit. It is important not to confuse this transformation
with the Z or standardizing transformation. Fisher’s r to z is for correlations
and the Z-score transformation is for a sample of data. Also it should not be
confused with the standard normal or Z distribution. Fisher's r to z
transformation is applied only to correlations.

The effect of this transformation is to make the sampling distribution of the
transformed coefficient nearly normally distributed. When the population
correlation is not equal to zero, the distribution of » is somewhat skewed.
Fisher’s z transformation also makes the variance of correlation coefficient
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approximately the same regardless of the valne of the population correlation.
For a given population correlation, the distribution of the Fisher’s z values
for a sample of size » has virtually a normal distribution with a variance of
1/(n — 3). Thus, the standard error of a Fisher z transformed correlation is
V-3,

If there are two correlations with sample sizes n; and n,, respectively, they
are each transformed into Fisher’s z values. These Fisher z transformed values
are denoted as zy and z;. Under the null hypothesis that the population
correlations are equal, the following has approximately a standard mormal
distribution.

o — 2z

1 1
.+
ﬂ1—3 H2—3

Therefore, if the above quantity is greater than or equal to 1.96 or iess than or
equal to --1.96, the two correlations are significantly different at the .05 level
of significance. To determine the p value, the value of Z is located in
Appendix C. The p value equals twice the quantity of .5 minus the probabil-
ity. So if Z is 1.96 the p value is two times .5000 — .4750 which equals .05.

For the .68 and .13 correlations for females and males, the Z is only 1.71,
which is not significant at the .05 level. Hence sampling error is a plausible
explanation for the difference between the two correlations.

Assumptions. The vse of Fisher’s z to test the difference between correla-

tions requires that the two correlations be independent. One condition re-

quired for independence is that the correlations are computed using two
different sets of persons. If the same persons are used to compuie both
correlations, the correlations are called correlated correlations. This topic is
discussed later in this chapter.

Interpretation and Power. ¥ the Z is statistically significant, then it is
concluded that the population correlations differ in the two groups. If the two
are not significantly different, the null hypothesis that the correlations are
equal is retained. However, the power of the test that compares the correla-
tions between two samples is quite low. For instance, if n; = n, = 50 and
population correlations are .10 and .40, which seems like a large difference,
there is only a 35% chance of rejecting the null hypothesis. There must be
fairly large sample sizes before having a reasonable chance of rejecting the
nuil hypothesis that the two correlations are unequal.

This low power in showing that correlations differ in the two groups has
made it very difficult to show that standardized tests, such as the Scholastic
Aptitude Test or SAT, have differential validity across the races. Some have
argued that standardized tests are less valid for minorities, particularly blacks.
The validity of a standardized test is often measured by a correlation coeffi-
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cient—for example, the correlation between SAT and college grades. Thus,
critics of standardized tests have argued that the correlation is lower for blacks
than for whites. However, because of low power, the null hypothesis of no
difference is very difficult to show to be false, and so very rarely is the null
hypothesis rejected.

Example. Wheeler, Reis, and Nezlek (1983) correlated feelings of loneli-
ness with the extent to which persons felt they had opportunities to disclose or
discuss things about themselves with others. The correlations were computed
separately for 43 men and 53 women. The correlation for the men was —.57
and for women it was —.21. So, persons who were lonely said they had few
opportunities to discuss things about themselves, Using Table 1 of Appendix
F, the z value for the —.57 correlation is —.6475, and for the —.21 correlation
the z value is —.2132. The test that the coefficients differ is

-.6475 — (-.2132
Z= ( ) - ~2.05

1 1
+
\/43-3 53-3

which, from Appendix C, has a p value of .0404—that is, two times (.5000 —
.4798). Becanse the p value is less than .03, the difference is judged statisti-
cally significant at the .05 level. So, loneliness and the absence of self
disclosure correlate significantly more highly among men than women.

More than Two Independent Correlations

Suppose the comelation between socioeconomic status and school achieve-
ment is computed for students for four schools. The null hypothesis to be
tested is that the correlations do not vary across schools. The correlations are
first transformed to Fisher z values. The mean of the z values, z, is computed
weighted by # — 3. So for the example of four schools,

s = zy(m — 3) + zalnz — 3) + z3(n3 — 3) + z4ny — 3)
n1—3+n2-3+n3—3+n4—3

This is the average of the four correlations weighted by sample size. In
general to average correlations, the r’s are converted to Fisher z values and
are multiplied by the sample size less three, these values are summed, and this
total is divided by the number of subjects in all groups less three times the
number of correlations, This z can be converted back into a correlation by
using Table 2 of Appendix F to obtain the average of the correlations.

To test whether the average correlation is significantly different from zero,
the average z is divided by

1
\/n1—3+n2—3+n3—3+n4—3
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which is approximately distributed as Z, the standard normal distribution,
given the null hypothesis of a zero correlation.

A researcher might also wish to test whether correlations, as a group,
significantly differ from one another. Here the null hypothesis is not whether
the average correlation is zero, but that the population correlations are the
same in each group. To do so, the following is computed:

(= 3z — 2P + (= 3)z2 — 2 + (n3 — 3)(z3 — )% + (mg — 3)zg — 2)°

where z is the Fisher’s z average of the correlations. In general, to evaluate
whether correlations computed in k groups are significantly different from one
another, one first averages the Fisher z values, weighting by sample size less
three. One then computes the deviation of each Fisher z from this average,
squares, multiplies by sample size less three and sums. The resulting quantity
is approximately distributed as chi square with k — 1 degrees of freedom, k
being the number of correlations. As described in Chapter 11, chi square
(symbolized by x2) is a positively skewed distribution with a lower limit of
zero and an upper limit of positive infinity. If the chi square value exceeds the
values tabled in Appendix G, it is deemed significant at the appropriate level.
One rejects the null hypothesis that the correlation is the same for all groups.

Example. Consider five hypothetical correlations between ability in
mathematics and in reading in five different countries. The correlations and
their Fisher z values from Table 1 of Appendix F are as follows:

Country r n .z

France .65 55 7753
England .53 76 .5501
Mexico .56 44 6328
Italy 44 68 4722
Canada .74 39 9505

The average z is

52(.7753) + 73(.5901) + 41(.6328) + 65(.4722) + 36(.9505)
524+ 73 4+ 41 + 65 + 36

which equals .6526. Rounding this z value to two decimal places and using
Table 2 of Appendix F, it corresponds to an » of .5717. The test that this
correlation is zero is tested by

Z= 6526 = 10.66

1
\/52+73+41+65+36

which is statistically significant at the .001 level. So, across the five coun-
tries, the correlation between reading and mathematics ability is significantly
different from zero at the .001 level of significance.
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The test that the population correlations are all equal to each other is

52(.7753 — .6526)* + 73(.5901 — .6526)> + 41(.6328 — .6526)*
+ 65(.4722 - .6526)* + 36(.9505 —.6526)* = 6.39

A x* with four degrees of freedom of 6.39 is not significant at the .05 level of
significance. So, the correlation between mathematics and reading skill does
not significantly differ from country to country.

Correlated Correlations

The methods in the previous sections have assumed that when two or more
correlations are being compared, different sets of subjects are being com-
pared. Often there is one set of persons or one sample, and two correlations
are computed from their data, and these two correlations are compared.

Ordinarily when two or more correlations are compared, the same two
variables are correlated. But sometimes correlations involving different vari-
ables are compared. For instance, one might wish to compare the correlation
of mother’s education with child’s verbal skill to the correlation of father’s
education with the child’s verbal skill. So, the variables involved in the
comparison of correlations need not be the same.

The Fisher z transformation cannot be wsed for comparing these two
comrelations because the same persons are used. Consider the correlations
between X, with X5 and X, with X3. If the correlation between X, and X; is
1.00, the correlation between X, and X5 must be the same as the correlation
between X, and X;. This is a mathematical necessity. If the correlation
between X, and X, is —1.00, the correlation between X, and X; must be the
same as the correlation between X and X5 but with the opposite sign. Again
this is a mathematical necessity. Thus, the size of the correlation between X,
and X, influences how similar r;3 and ro3 are. The statistical test must take
into account the degree to which X, correlates with X,. This can be done by
using a procedure known as the Williams modification of the Hotelling test.

For this test variable X; is correlated with two other variables, X, and X5.
There are then three correlations:

ri». correlation between X and X,
ria:  correlation between X, and X,
ra3:  correlation between X; and X,

The test of whether the population correlation between X; and X equals the
population correlation between X» and X5 is

(rz—rxa)Vm- D01+ ?’15)

(n~1)  (rg+ ri)?
\/ZK -3 4

t{n-3) =

(1-r
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where
_ 2 2 2
K=1-rp"~nrs —rs" + 2rprars

The gquantity is distributed as ¢ with # — 3 degrees of freedom given the nuil
hypothesis that the population correlation between X, and Xj; is equal to the
population correlation between X; and X;. If the ¢ is statistically significant, it
is concluded that the difference between the two correlations cannot be
explained by sampling error.

The test just described has one variable (X3) that is in both correla-
tions. Consider a test of the difference between two correlation coefficients
in one sample where none of the variables are the same. There are now four
different variables: X, X,, X4, and X,. They give rise to six different cor-
relations:

ry2:  correlation between X, and X,
rsa: correlation between X5 and X,
ris. correlation between X, and X5
r14: correlation between X, and X,
rz3:  correlation between X, and X5

r24. correlation between X, and X4

At issue is the test that the population correlations between X and X, and
between X3 and X, are equal to each other.

First, the correlations that are being compared are transformed into Fish-
er’s z values: z;; and zz,. The test is

7 = Vi(n — 3212 — z34)
V2 -0 ~ )?

where

Q= (rz—rardrau—rar) + Fu-ranina—rar) + (i —rudtae—rar)
+ (r14 — raar)(raa — raq?)

and
_hat 7
2
This test, called the Pearson-Filon test, is approximately distributed as Z, the
standard normal distribution (not Fisher’s z} under the null hypothesis that the

population correlation between X, and X, is equal to the population correla-
tion between X5 and X,,. This standard normal approximation is quite good if n
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is at least 20. This test was developed by Pearson and Filon (1898) and
modified by Steiger (1980).

Power.  Ordinarily tests of correlations are somewhat more powerful when
computed from a single sample than from muitiple samples. Nonetheless, the
power of the test of the difference between independent correlations is so low
that being more powerful still means the test of cormrelated correlations has
relatively low power. It should be noted that in some special cases, the power
in the one-sample case can actually be lower than in the two-sample case.

Example. The illustration is taken from Jacobson’s (1977) research on the
fear of peers among infants. He studied 23 infants and measured their
cognitive development and their attachment to a parent when they are pre-
sented with a novel stimulus, Research in developmental psychology has
shown that for very young children, intelligence and fear are positively
associated. The child needs to have the intelligence to realize that a stimulus
may be harmful. But as children mature, it is the inteliigent children who are
less afraid and feel less need to seek a parent for comfort. The older children
tealize that the novel stimulus is not harmful.

Two different correlations are to be compared. One correlation is between
cognitive ability and fear for young infants and the second is between the
same two variables for older infants. Jacobson’s study confirms the theory.
The correlation between cognitive ability and fear is .416 for infants of ten
months, which indicates that the smarter children are more afraid. The
correlation is —.413 between cognitive ability at ten months and fear at twelve
months, which indicates that the smarter children are now iess afraid. The
correlation between fear over the two-month period is —.343. Fear at ten
months is denoted as X, fear at twelve months as X5, and cognitive ability as
X;. So the correlations are

iz = —.343
3 = 416
Faa = —.413

These are correlated correlations that share one variable in common and that is
the cognitive development measure. Using the Williams modification of the
Hotelling test, the formula is

(=413 - 416)V22[1 + (-.343)]

22 (~413 4+ .416)% 5
— 1 - (-,
\/;KZO 1 (1 - (-.343)]

1(20) =

where

K = 1 = (=343)% - 4167 — (—.413)* + 2(-.343)(.416)(-.413)
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The valve of X is .657 and the ¢(20) is —2.622, which from Appendix D is
statistically significant at the .02 level. Thus the correlations are significantly
different at the .02 level of significance.

Jacobson also measured cognitive ability at twelve months. So, the correla-
tion between cognitive ability and fear for infants at ten and twelve months
can be compared. The correlation between ability and fear is .416 at ten
months. At twelve months the correlation becomes —.408. These are two
correlated correlations that share no variables in common. The variables are
denoted as follows:

X;: ten-month cognitive ability
X5: ten-month fear

X3 twelve-month cognitive ability
X4 twelve-month fear

The six correlations between the four variables are:

riz2 = 416
rys = —.408
rs = .556
rg = —413
Iy = =015
g = —-.343

The correlations that arc to be compared are .416 and —.408. Their Fisher’s z
values are .443 and -.433, (To increase accuracy, Appendix F is not used and
the z’°s are directly computed.) The average of ry2 and rqy is

416 + (-.408)

004 =
' 2

The value of Q is

[.556 ~ (—.075)(.004)][-.343 ~ (~.075)(.004)]

+ [-.413 — (.556)(.004)][-.075 — (.556)(.004)]

+ [.556 ~ (—.413)(.004)][-.343 — (—.413)(.004)]

4 [=.413 — (~.343)(.004)][-.075 — (~.343)(.004)] = —.319

Now the Pearson-Filon test gives
7 = V20[.443 — (-.433)] _
V2 — (-.319)(1.000)

which from Appendix C has a p value of .0102. Therefore the correlations
between fear and cognitive ability are significantly diffcrent at ten and twelve
months.

2.57
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Test of Regression Coefficients

In this section tests of regression coefficients are presented and the following
cases discussed:

1. a single coefficient equal to zero,
2. two independent coefficients equal to each other, and
3. two correlated coefficients equal to each other.

As will be seen, tests of regression coefficients are more computationally
complex than tests of correlation coefficients.

Single Regression Coefficient

The regression equation in which the variable X is the predictor and the
variable Y is the criterion is

Y=a+beX+e

As an example, consider the number of packs of cigarettes smoked per day as
the predictor variable and life expectancy in years as the criterion variable.
Research has shown that the coefficient is about —4.0. That is, for every pack
~of cigareties smoked per day, one lives on the average four fewer years.
The test that a regression coefficient byy is not significantly different from
Zero is
V' SSy

t(n-2) = b ”XS
¥YX

where sy.x is the standard deviation of the errors (see Chapter 6) and equals

' SSy — byx?SSy
=\ T

The 8Sy and SSy are the sum of squares for variables X and Y, respectively. In
analysis of variance terms, they are the sum of squares total. They equal

SSx = J(X — Xy

and
58y = S(¥ - ¥P
Their computational formulas are
X 2
8Sx = ¥X* - QX7
(3
¥ 2
SSy = ) ¥Y? — (_E___)_

n
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An alternative and simpler way to test byy is to convert byx to ryy by the
formula ,

Sx

Sy

The correlation coefficient can be tested for significance. The resulting 7 value
is the same as would be obtained by a direct test of byy. This fact can be used
for determining the power of the test. One converts b to r and uses Table 16.1
to determine the power and Table 16.2 to determine the 7 necessary to achieve
a given level of power.

If X and Y are reversed by having Y predict X, the test of a regression
coefficient in which ¥ predicts X or byy is

rxy = byx

rn2) = LV
Sx-y
where
SSx — bxy°SSy
Sy = \[—

n—2

The value of 1 will be the same regardless whether the test is of byy, byx, or

Txy-
As an example, assume that byy is 1.5 and S8y 1s 33.5 and SSy is 140.2
and n is 131. The value of sy.;*° is

140.2 — 1.5%(33.5) _

.503
129 >
The test of the slope is
1(129) = L3V335 _ 12.241
vV .503

which is statistically significant at the .001 level of significance.

Two Independent Regression Coefficients

In this case there is a pair of regression coefficients computed from two
different groups of persons. For instance, there are regression coefficients for
both males and females of the effect of cigarette smoking on life expectancy.
The coeificient for males is —4.32 and for females the value is -3.93. That is,
cigareite smoking reduces life expectancy more for males than for females.

The hypothesis of a difference between two regression coefficients is
simnilar to the hypothesis of an interaction in two-way analysis of variance.
Both evaluate whether the effect of one variable changes as a function of
another, In two-way analysis of variance the two independent variables are
measured at the nominal level of measurement. In the regression case one
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independent variable is at the interval level of measurement and its linear
effect on the dependent variable is presumed to change as a function of a
dichotomous independent variable. ‘

In the restricted model there is a single slope, and in the complete model
there is a slope for each group. The regression coefficient in each sample is
computed. These coefficients are denoted as b, and & for the two samples. At
issue is whether the difference between the two coefficients can be explained '
by sampling error.

The test statistic is

by — by

(1 ]
syx\=— + —
"XV Ssy,  SSy,

where SSy and SSy, are the sum of squares for X for the first and second
groups, respectively, and
\/5er + SSy, — 5,288, — b,7SSx,
Sy.x — :
ny + Hy — 4

t(ny+n—-4) =

or, alternatively,

(m — Dsyx? + (1 — Vsy.x,
Syx =
nq + Hay — 4

The formula for sy.x is the pooled error standard deviation. That is, it is a
pooling or averaging of the two error variances, each weighted by its degrees
of freeodm. This test seems to involve quite a bit of tedious computation.
Actually it involves little more than computing and testing two regression
cocificients.

As with the difference between two correlation coefficients, the power of
the test of the difference between two regression coefficients is quite low.
Even if the slopes are quite different, the sample sizes must be quite large
before one has a reasonable chance of detecting that the slopes are indeed
different.

If the null hypothesis that the regression coefficients are equal is not
rejected, the two regression coefficients can be averaged by the fotlowing
formula:

b = b SSy, + bySSy,
77 SSy + S8y,
The term b, is called the pooled regression coefficient. The pooled coefficient

can be viewed as a weighted average where the weights are the sum of squares

of the predictor.
The pooled regression coefficient can be tested for significance using the
formula
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b,\/(SSx, + SSx)

Sy-x

tm+ny4) =

where sy.y is the pooled error standard deviation.

The above formula can be generalized to the case in which there is more
than one regression coefficient. The generalization, which is found in ad-
vanced texts (Winer, 1971), is similar in its computation to a one-way
analysis of variance.

As an example consider a researcher who investigates the effect of attitudes
about wearing seat belts on behavior for those who heard a series of com-
munications about the importance of wearing seat belts and a group who did
not. The criterion is denoted as B for behavior and the predictor as A for
attitude. The results are as follows:

Communication

Heard Did Not

by .58 . .23
S8z 68.1 56.3
S8, 25.0 19.1
R 60 60

The pooled error standard deviation is

68.1 + 56.3 — .58%(25.0) — .23%19.1) _ 996
60 + 60 - 4 T

The test that the slopes differ is

1(116) = 58 - 23 = 1.156

A I 1
996\ — + —
i 250  19.1

This value is not statistically significant at the .05 level. Therefore, the slopes
do not significantly differ. '
The pooled slope is

58(25.0) + .23(19.1) _

42
25.0 + 19.1 s

The test that the pooled coefficient equals zero is

428V (25.0 + 19.1)

(116} = 006

= 2.854

This value is statistically significant at the .001 level. So, attitnde toward seat
belts significantly predicts behavior across both communication groups.
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Twao Correlated Regression Coefficients

This case is identical to the previous case except that the regression coeffi-
cients are computed from the same sample. For instance, does the number of
siblings better predict fourth-grade vocabulary skill than fifth-grade vocab-
ulary skili? If the same persons were measured at fourth and fifth grades, the
regression coefficients are computed from the one sample and are correlated.

To test whether these coefficients are the same, the changes in vocabulary
skill are computed by subtracting fourth-grade vocabulary scores from fifth-
grade scores. This change score would be the criterion, and pumber of
siblings would be the predictor variable in a regression equation. The test of
the coefficient from this regression equation would evaluate the difference
between regression coefficients. So if X; is used to predict X, and X3, to
evaluate the difference between b5, and b3 the regression coefficient b _py; is
computed. As with the paired ¢ test described in Chapter 13, difference scores
can be used to test hypotheses with paired data.

Choice of Test

Throughout the entire chapter an obvious question arises. Should the test of
association be made using a correlation coefficient or regression coefficient?
In the case of a single measure of association, the choice of the significance
test does not matter. That is, the ¢ value is the same regardless of whether r or
b is computed. However, when two or more measures of association are
compared, the result from a test of the regression coefficients differs from the
result from a test of the correlations. Which measure is to be preferred?

There are three important factors that can guide the decision. First, if there
is a clear causal ordering of the two variables, then the regression coefficient
is preferred. Because a regression coefficient assumes a causal ordering (the
predictor causes the criterion) and a correlation coefficient does not, a regres-
sion coefficient is the coefficient of choice when the variables can be causally
ordered. '

Second, if the variances of the variables are not the same in both groups,
the regression coefficient is preferred. As explained in Chapter 7, correlations
are affected by variability. Variables with less variability tend to exhibit lower
correlations. To evaluate whether two variances are equal the following
statistical tests can be employed. For two independent groups, the ratio of
sample variances is computed:

2

5'22

8y

where 5, is greater than s,°. If the variances are equal in the population,
5,25, has an F distribution with , — 1 degrees of freedom on the numerator
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and ny — | degrees of freedom on the denominator. For this test, the p value is
doubled because the F ratio is formed by always putting the larger variance on
the numerator. If there is a single sample and the purpose is to test whether the
variance of X is different from the variance of X,, begin by computing X; —
X, and X, + X5. Then correlate the difference, X; — X, with the sum, X, +
X,, and test whether it is significantly different from zero. The test of this
correlation evaluates whether the two variances are equal.

Third, if the unit of measurement changes from group to group, the
correlation coefficient is preferred. Thus, for example, if the groups are
French and English children and the variables are vocabulary and intelligence,
a correlation should be used because different tests would be used in the
different countries. However, if males and females within a country were
compared, the regression coefficient would be preferred.

Tests of a regression coefficient or a correlation coefficient are accomplished
by a ¢ test with degrees of freedom of sample size less two. Tests of two or
more independent correlations is aided by the Fisher's r to z transformation.
The Fisher’s r to z transformation (not to be confused with the Z or standard
normal distribution) makes the distribution of the transformed cosrelation
approximately normal. The Fisher’s z transformation can be used to pool
correlations computed across different samples as well as test whether the
correlations are equal.

Sometimes one seeks to compare two correlations that are computed from
the same sample. These correlations are called correlated correlations. When
correlations are themselves correlated, the tests are computationally com-
plicated but straightforward. When the correlated correlations involve three
variables, the Williams modification of the Hotelling test is used. When the
correlated correlations involve four different variables the Pearson-Filon test
is used.

A test of a single regression coefficient is identical to the ¢ test of a single
correlation coefficient. Also, two regression coefficients from different sam-
ples can be tested for equality. If they are equal, they can be pooled and the
pooled coefficient can be tested to determine whether it is different from zero.

The decision of whether to test either the correlation or the regression
coefficient is aided by considerations of causal ordering, equal variances, and
unit of measurement.

1. According to Pulling et al. (1980) the correlation between age and
susceptibility to glare is .742 for 148 subjects. Test whether the popula-



the result.
. Convert the following correlations to Fisher z values:

a. =13 b, 07 c. 9 d. .73
e. .41 f. =32 g =21 h. .53

. Convert the following Fisher z values to correlation coefficients:

a. -8 b.-43 c. 91 d. .06
e. .19 f 39 g -25 h -1.03

. Given byy = .31, n = 44, SSy = 31.93, and SSy = 22.41, test whether
the population regression coefficient is significantly different from zero.

. Evaluate whetﬁer the population correlations are equal if r; = .23, r, =
A8, ny = 212, and n, = 136.

. Given rxy = .39 and n = 84, test whether the population correlation is
significantly greater than zero.

- . h s
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11,

12.

13.

14,

15.

16.

Sample Correlation n
1 .69 137
2 46 108
3 .56 132
4 .66 115

Average them using the Fisher r to z transformation. Test whether the
pooled correlation is significantly different from zero. Also test whether
the correlations significantly differ from each other.

Evaluate whether a correlation of .43 is statistically significant with a
sample size of 68.

What is the power of the foliowing tests?

r n
a. .1 10
b. .5 40
c. .3 100
d. .1 200

For the following cases, how many subjects would be needed to achieve
the desired Ievel of power?

r Power
a. .1 .50
b. .5 .25
c. .3 .90
d. .5 50

According to Holahan and Moos (1985), the correlation between seeing
oneself as easy-going and feeling that one’s family is supportive is .21 for
267 men. Test whether the correlation is statistically significant.

A sample consisting of 76 females was tested by Schifter and Ajzen
(1985). These women’s weight loss correlated .41 with the perceived
control in losing weight and .25 with intention to lose weight. The
correlation between intention and control is .36. Test whether perceived
control correlates significantly higher with weight loss than perceived
control correlates with inteniion.

According to Neff (1985), the relationships between education (E) and
the reporting of depressive symptoms (D) are:

Whites Blacks

bpe =023  —.0510
S 47 .59
Sg 2.19 2.20

n 658 171
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a. Test each of the regression coefficients for statistical significance.

b. Test whether the coefficients are significantly different from each
other. ‘ .

c. Pool the coefficients and test whether the pooled coefficient is differ-
ent from zero.

17. Given that 7 = 148 and

iz = .67 Fia = .40 .r23 = .26
Y3y = 21 Yla = .53 Faq .19

Test whether the correlation between variables one and two is significant-
ly different from the correlation between variables three and four.

18. For the following correlations from three different groups of persons

r "
.61 96
.23 39

.15 76

a. Average the correlations using Fisher z.

b. Test whether the average correlation is significantly differeat from
ZET0.

c. Test whether the correlations differ from each other.
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