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Relationship:
The Correlation
Coefficient

In the preceding chapter the regression coefficient was presented as a measure
of association between two variables. The regression coefficient as a measure
of association is asymmetric and is expressed in the units of measurement of
the variables. It is asymmetric in the sense that its value depends on which
variable is considered as the criterion and which is the predictor. It is
expressed in the units of the variables in that it measures the amount of change
in the criterion as a function of a one-unit change in the predictor.

Sometimes it is not possible to specify which variable is the predictor and
which variable is the criterion. For instance, in measuring the degree of
relationship between reading comprehension and vocabulary skill in school-
children, one variable is not clearly the predictor and the other the criterion,
Also, because the regression coefficient is expressed in the units of measure-
ment of the variables, the strength of association is not very clear. It would be
desirable to obtain & measure of association that was symmetric and expressed
the degree of association between the variables. The correlation coefficient
meets both requirements.

The correlation coefficient is symbolized by the letter r. Because it is a
symmetric measure of association, it follows that r,, = ry.. The correlation
coefficient is by far the most common measure of association used in the
social and behavioral sciences. Only economists use the regression coefficient
more frequently than the correlation coefficient. This is no doubt due to the
fact that the unit of measurement in economics (the dollar) is readily interpret-
able.

As an example for this chapter, the variable of laughter in conversations
will be considered. Duncan and Fiske (1977) coded the nonverbal behavior of
22 pairs of men and women for five minutes. The couples were instructed to
get acquainted with each other. During these conversations, there was occa-
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sional laughter. Table 7.1 lists the number of laughs of each person for the 22
couples over the five-minute period.

Rationale for the Correlation .

Coefficient

TABLE 7.1

The correlation coefficient is a special regression coefficient. Consider the
case in which there are two variables, X and Y. First, the scores for the X and
Y variables are separately standardized. Thus, Z scores are created for each
variable; that is, the mean for the variable is subtracted from each score and
then this difference is divided by the variable’s standard deviation. To com-
pute the regression coefficient, one Z-scored variable js the predictor and the
other is the criterion. The correlation coefficient, symbolized by the letter r, is
the regression coefficient between two variables whose scores have been
standardized.

The correlation coefficient is a symmetric measure of association and so
ryy equals ryy. Unlike the regression coefficient, a corretation coefficient has

Number of Laughs in 22 Conversations

Number Number
of Langhs of Laughs
Couple (Women) (Men)
1 0 0
2 4 1
3 7 9
4 4 4
5 2 0
6 1 0
7 3 1
8 9 5
9 5 1
10 1 ¢
1 4 3
12 8 2
13 4 2
14 0 2
15 6 0
16 12 3
17 8 1
18 3 2
19 5 2
20 7 0
21 5 3
22 8 3

Data were taken from Duncan and Fiske {(1977).
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an upper limit of +1 and a lower limit of —1. A +1 correlation indicates a
perfect positive correlation and a -1 correlation indicates a perfect negative
correlation. In a perfect correlation, all the points fall on the regression line.
The line is ascending if the correlation is +1 and descending if it is —1. Like
the regression coefficient, a zero value indicates no linear association be-
tween the variables. Any nonlinear association may not be reflected by the
correlation coefficient.

Computation

As mentioned above, unlike the regression coefficient, the correlation coeffi-
cient is a symmetric measure of association: ryy = ryy. The relation of ryy to
byy and byy is straight forward. {(Recall from the previous chapter that for byy
the variable Y is the predictor and X the criterion and for byy the variable X is
the predictor and ¥ the criterion.) The formulas for turning b into r are

5
Fxy = byy (—Y]

Sx

\

Ixy bYX (S_X

Sy

In words, the correlation coefficient equals the regression coefficient times
the standard deviation of the predictor divided by the standard deviation of the
criterion. It is also true that

rxy’ = bxybyx

To convert from r to b the formulas are

$x
byy = ryy |—
\ Sy

Sy\
Sy J
In words, a regression coefficient equals the correlation times the standard
deviation of the criterion divided by the standard deviation of the predictor.

More typically, the correlation is computed directly without computing the
regression coefficient. There is also no need to standardize or compuie Z

scores for each person. The correlation coefficient can be computed by the
following formula,

byx = rxy

_ JX-Xr-1)
VX -X)? 3 -¥)?

xy
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The top term of the above formula is, as referred to in the previous chapter,
the sum of cross-products. The denominator is the square root of the product
of the sums of squares of both X and Y. A simpler and more practical
computational formula is

_ 2XY — @X)QY)n
VIZX? - CX)nlEY? - (T¥ Vin]

The computational formula for correlation has the following ingredients: the
sum of the scores for all the subjects on both variables, ZX and ZY; the
squared sum of the scores, (£X)? and (2Y)? the sum of each squared score
for each variable; £X? and Z¥?; and the sum of the product of scores, SXY.
One common computational error in computing a correlation coefficient is to
forget to take the square root of the denominator.

Conventionally correlations are computed to two digits. This is a sensible
strategy in that the third digit is not ordinarily interpretable. So if a correlation
is to be computed and interpreted, rounding to the second digit should suffice.
However, correlation coefficients are often used to compute other statistics,
some of which are presented in Chapter 15. If a correlation is to be used to
compute other statistics, it should be computed to three or possibly four
digits. In this chapter, correlations will be given to three digits.

Table 7.2 displays the computations for the laughing in male-female
conversations. The female laughs are denoted as X and male laughs as Y. The
sum of cross-products of X and Y is as follows:

369 — (116)(46)/22 = i26.4545
The sum of squares for X is
954 — (116)%/22 = 342.3636
and the sum of squares for Y is
198 — (46)*/22 = 101.8181

The comrelation then equals

xy

126.4545
= 677
V/(342.3636)(101.8181)

Not surprisingly, there is a very large correlation in the amount of laughter
between two persons in a conversation. Laughter is indeed contagious.

Fxy =

Interpretation of r

One way to understand what a correlation of a given size means is to examine
various correlations between variables. In Table 7.3 are a set of correlations
taken from research. It contains correlations that are small (.1}, moderate (.3),
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TABLE 7.2 Computations for Laughing Example

X Y x: Y* Xy
0 0 0 0 0
4 1 16 1 4
17 9 289 81 153
4 4 16 16 i6
2 0 4 0 0
1 ] 1 0 0
3 1 9 1 3
9 5 81 25 45
5 1 25 1 5
1 0 1 0 0
4 5 16 25 20
8 2 64 4 16
4 2 16 4 8
0 2 0 4 0
6 0 -36 0 0
12 3 144 9 36
8 1 64 1 8
3 2 9 4 6
3 2 25 4 10
7 0 49 0 0
5 3 25 g 15
& 3 64 _98 24
Total 116 46 954 198 369

and large (.5). Small correlations are the most common correlations in the

" social and behavioral sciences. The reason for so many small correlations is
that most variables are caused by numerous factors, and so any one factor’s
correlation with a variable that it causes must be small. The relation between
stress and physical disease, such as heart trouble, and the relation between
intelligence and a grade in a course are in the .10 range. A moderate
correlation is large enough for laypersons to recognize. An example of
moderate correlation is general sense of self-worth and grade point average.
Large correlations represent very strong correlations, such as the correlation
between intelligence and overall GPA. '

It is important to note that a large comelation is not a correlation of .90,
Correlations of this size are often between two different measures of the same
variable. For instance, the correlation of two measures of intelligence taken a
year apart is about .90 once persons are age six or more. Also such large
correlations often indicate not a meaningful relationship between variables,
but an artificial one. For instance, the .677 correlation between male laughter
and female laughter will be seen to be artificially high.

The differences between small, moderate, and large correlations can also
be seen in their scatterplots. As explained in Chapter 6, a scatterplot is a graph
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TABLE 7.3 Hlustration of Correlations of Various Sizes

Small: .10

Viewing television violence — Aggressive behavior
Stress — Physical illness
Intelligence — Grade in a particular course

Moderate: .30

Psychotherapy — Adjustment
Self-esteemn — Grades in school
Value similarity — Interpersonal attraction

Large: .30

Inteligence — Grade point average

Wife’s satisfaction — Husband’s satisfaction
Father’s occupation — Son’s occupation
Belief in God — Church attendance

in which the two variables form the X and Y axes. The pairs of scores for each
person are plotted in a scatterplot. The scatterplots for .1, .3, and .5 correla-
tions are presented in Figure 7.1. For a .1 correlation, the correlation is not
even visible to the naked eye. For .3 to the trained eye there is the hint of
association. For the .5 correlation the linear relationship is clearly visible.

A correlation coefficient is a regression coefficient between standardized
scores. It can be directly interpreted then as a regression coefficient between
standard scores. If ryy equals .5, then someone who is one standard deviation
above the mean on X would tend to be .5 standard deviation units above the
mean on Y. So a correlation between X and Y measures how many standard
. deviation units above or below the mean a person’s score is on ¥ when the
person is one standard deviation above the mean on X. Because it is a
symmetric measure, it can also be interpreted as the predicted value for X for
someone who is one standard deviation above the mean on Y.

The most common way to interpret a correlation coefficient is by squaring
the correlation and interpreting the result as the proportion of variance that the
two variables share in common. The proportion can be multiplied by 100 to
obtain the percent of shared variance. So, for instance, if high school grades
and college grades correlate .6, then .62 or .36 of their variance is shared in
common. Besides shared variance, the squared correlation can also be in-
terpreted as the proportion of variance explained. So a .6 correlation between
high school grades and college grades implies that high school grades can
explain .36 of the total variance in coliege grades. The squared correlation for
shared or explained variance is often used to trivialize small correlations. For
instance, a .1 correlation represents only .01 shared variance. It should be
noted that the squared correlation represents shared or explained variance and
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FIGURE 7.1 Scatterplots of .1, .3, and .5 correlation coefficients.

not standard deviation. Because variance is in squared units, the meaning of -
explained variance may be difficult to appreciate. For instance, if intelligence
explains 25% of the variance in high school grades, it means that intelligence
explains 25% of squared grade points.

A correlation can be viewed in terms of a probability. Consider two
persons, one, called A, who is one standard deviation above the mean on X
and the other, called B, who is one standard deviation below the mean.on X.
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Person A has a two-standard-deviation advantage on X over person B. If the
correlation between X and Y is known, then the probability that person A
scores higher than B on ¥ can be determined. For instance, assume that
variable X is education and variable ¥ is income. Let one standard deviation
above the mean on education be a master’s degree and one standard deviation
below the mean be a high school education. The issue is the probability of
someone who has a master’s degree earning more money than someone who
has only graduated from high school. This probability will be referred to as
the rwo-standard-deviation advantage and abbreviated as the 2sd advantage.

To determine the probability, it is assumed that both variables are normally
distributed. The normal distribution is discussed in Chapter 10. Rosenthal and
Rubin (1979) make radically different distributional assumptions, yet for r
between O and .5 they obtain virtually the same result. (They assume that X
and Y are dichotomies as opposed to normally distributed variables measured
at the interval level of measurement.)

In Table 7.4 are the 2sd advantage probabilities for correlations of various
sizes.! So for instance, if r is .45, then the probability that someone who is
one standard deviation above the mean on X will score on Y above the person
who is one standard deviation below the mean on X is .762. If the correlation
is negative, the probabilities in the table can be read as the probability of
someone one standard deviation above the mean on X scoring below someone
one standard deviation below the mean on X.

The table is read as follows. First, find the correlation to be interpreted in
the r column. Second, the value in the probability column states the probabil-
ity that a person who is one standard deviation above the mean will outscore

TABLE 7.4 Correlation in Terms of the Two-Standard-Deviation Advantage

r Probability r Probability

.00 .500 .50 193
.05 .528 .55 824
.10 .557 .60 .856
a5 .585 .65 887
.20 .614 .76 917
25 .642 15 .945
.30 672 .80 .970
35 701 .85 .989
.40 731 .90 .998
.45 762 .95 1.000

“ The probability of a person who is one standard deviation above the mean on X scoring higher
on Y than someone who is one standard deviation below the mean on X.

"The 2sd advantage can be shown to equal the probabitity that Z is less than \/§pr1 —-p*
where p is the population comelation and Z is a standard normat variable.
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someone else on ¥ who is one standard deviation below the mean on X. H the
correlation is zero, the 2sd (two-standard-deviation) advantage is .5. That is,
a person with a 2sd advantage on X over another person has only a 50/50
chance of outscoring the other person. Even a seemingly low correlation like
.2 carries with it an impressive probability of .614. Thus, for a correlation of
.2, over 60% of the time person A (who is one standard deviation above the
mean on X ) will outscore person B (who is one standard deviation below the
mean of X) on Y.
The 2sd advantages for small, medium, and large correlations are;

Small (r = .1): .557
Medium (r = .3). 672
Large (r = .5). .793

Factors Affecting the Size of r

Special care must be taken in interpreting correlation and regression coeffi-
cients. At times, a coefficient can be artificially too small or too large.
Various factors are discussed below that must be considered when interpreting
measures of association, especially correlation coefficients.

Nonlinearity

The fundamental definition of a regression coefficient is that of a slope of the
straight line fitted to a set of points. A correlation coefficient is the slope of
the line when the two samples have been converted into Z scores. Both
measures of association assume that the line to be fitted is siraight and not
curved. The association between variables may be systematic, but it need not
be linear. There are two major types of nonlinear associations. They are
nonlinear association in which the function changes direction and nonlinear
association in which the function does not change direction.

In Figure 7.2 are examples of changes of direction. In the top diagram of
the figure, the relationship starts as positive and then turns negative. In the
bottom diagram, the relationship starts negative and then turns positive. Both
of these patterns are called curvilinear association. More precisely, a relation-
ship that begins as positive and turns negative (the upper half of the figure) is
called a convex curvilinear or an inverted U relationship. And a relationship
that begins as negative and turns positive (the bottom half of the figure) is
called a concave curvilinear or U-shaped relationship. For either type of
curvilinear association both the correlation and regression coefficient can be
quite misleading measures of association. These measures may well be zero
even when there is a strong curvilinear association. As an ¢xample of a
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FIGURE 7.2 Examples of curvilinear relationships.

concave curvilinear association, amount of leisure time is curvilinearly related
to age, with older and younger persons having more leisure time than middle-
aged persons.

If the researcher expects that two variables are curvilinearly associated, the
scatterplot should be carefully examined. If the point at which the relationship
changes direction can be determined, a linear measure of association can be
computed before and after that point. If the relationship is truly curvilinear,
then one relationship should be positive and the other negative. For instance,
if a researcher expects that the amount of leisure time begins to increase at age
45, then the correlation between age and leisure time should be negative for
those under the age of 45 and positive for those who are 45 and older.

For the second type of nonlinear association, the relationship does not
change in direction. This pattern is illustrated in Figure 7.3. For these
relationships the direction of the relationship does not change but the strength
does. For the three examples in Figure 7.3 the relationship is pasitive; that is,
as X increases, Y increases. For the top diagram in the figure as X increases,
the relationship between X and Y increases. This is an accelerating function.
For the middle diagram in the figure, as X increases, the relationship between
X and Y decreases. This is a decelerating function. For the bottom diagram in
the figure, as X increases, the relationship first increases and then it decreases.
This type of relationship is called S-shaped. Correlation and regression
coefficients are less affected by this form of nonlinearity than the form in
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FIGURE 7.3 Examples of nonlinear relationships that do not change direction.
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which the relationship changes direction. Nonetheless, it is important to
attempt to straighten out the relationship.

Nonlinear relationships that do not change direction can be turned into
linear relationships by transformation. For instance, for the pattern in the top
of Figure 7.3, the relationship can be made more linear by applying a
one-stretch transformation (square root, logarithm, or reciprocal) to the ¥
variable. For the pattern in the middle of Figure 7.3, the relationship can be
made more linear by applying a one-stretch transformation {square root,
logarithm, or reciprocal) to the X variable. For the pattern in the bottom of the
figure, the relationship can be made more linear by applying a two-stretch
transformation (arcsin, logit, or probit) to the ¥ variable. If the researcher
cannot specify the exact type of transformation, then Spearman’s rank-order
correlation (discussed in the next chapter) may be a more appropriate measure
of association for any nonlinear relationship that does not change direction.
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Unreliability

Measurement in the social and the behavioral sciences is imperfect. Although
every cffort is made to measure persons as accurately as possible, un-
intentional errors of measurement are inevitable. Measurement involves not
only what the researcher hopes to be measuring but noise or error as well. The
first component is called the rrue score and the second is called error of
measurement. The percent of variance of a measure that is due to the true
score is called reliability. Constructs that social and behavioral scientists
measure hardly ever have perfect reliability. Even a variable such as age has
error due to distortion (people lying) and rounding. It is not at all unusual for a
personality test to have a reliability of .80. A reliability of .80 means that 20%
of the variance in the test is attributable to error.

Less than perfect reliability in a measure affects the size of the correlation
and regression coefficients. The effect is one of attenvation. That is, the
estimated size of the coefficient is nearer to zero than it ought to be. A
regression coefficient is lowered only when the predictor variable is unreli-
able. Correlations are attenuated when either variable has less than perfect
reliability.

Aggregation

Sometimes researchers average the scores of a group of persons and use these
averages as the basic data. For instance, students in the classroom are
averaged and the basic analysis is on the classroom averages. When scores are
averaged across persons, the data are called aggregare data. Generally,
correlations computed from aggregate data are larger than what they would be
if the individual scores were used. This increase is in part due to increased
reliability, because aggregate data are generally more reliable than individual
data. Though less likely, aggregation can reduce the size of a correlation.

Because a correlation computed from scores aggregated across persons can
be quite different from a correlation of individual scores, one should never
interpret the aggregated correlation as if it were the correlation from in-
dividuals. To do so would be what is called the ecological fallacy. An
example of the ecological fallacy would be to correlate precinct voting data to
make inferences about individual voting patterns. Correlations computed
using aggregates (precincts) may not resemble correlations based on in-
dividuals (voters).

Part-Whole Correlation

A correlation involves two variables. Sometimes one of the variables is
derived from the other variable. When one variable is derived from a second
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variable, there can be a built-in correlation between the two. The variables
must share variance because one is part of the other. In Table 7.5 the variable
X is used to derive a second vartable, and the direction of bias is indicated. If
the direction of bias is indicated in the table as positive, it does not mean that
the correlation 1s necessarily positive, bul that the correlation is larger than it
should be.

In the first case in Table 7.5, the variable X is used to derive the measure X
+ Y. Because X is present in both measures, there is a built-in positive
correlation. In the second case X is subtracted from Y. In this case the
correlation is negative. One should avoid computing correlations between
variables that have common components.

Restriction in Range

Outliers

Correlations computed from scores that have low variability generally tend to
be small. This phenomenon is called restriction of range. It can be illustrated
graphically as in Figure 7.4. The data in the figure show that the X variable
has been split at the mean and the correlation has been recomputed for those
scoring above and below the mean. Overall the correlation-is .533, but for
those who score below the mean (as is indicated by the dashed line in Figure
7.4) the correlation is .341 and for those who score above the mean, the
correlation is also .341. When a variable has a narrow range of scores,
correlations tend to be small.

Interestingly, restriction in range does not influence the regression coeffi--
cient nearly as much as it does the correlation coefficient. So if the range of a
variable may be restricted, the regression coefficient is the preferred measure
of association.

Extreme values or outliers in the sample can distort the size of a correlation.
For instance, for the following set of data

TABLE 7.5 Part-Whole Correlation

Variable 1 Variable 2 Bias in r

X X+7Y Positive
X Y-X Negative
X+Z X+7Y Positive
X+2Z Y-X Negative
YiX Wix Positive’
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FIGURE 7.4 Effect of restriction of range.
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the correlation is negative even though four of the five persons have the
same score on X and Y. The extreme value of 10 for person 5 on variable X
distorts the size of the correlation. Outliers can also cause a correlation that
is troly zero to appear to be very large. A careful analysis of each variable
should be done to identify outliers. In Chapter 4 an outlier is defined as a
value that is away from the median by more than twice the interquartile range.

It is an outlier that brings about the very large correlation of .677 for the
Yaughing data in Table 7.1. Note in Table 7.1 that couple 3 has the largest
number of laughs for both males and females. In fact, each can be considered
an outlier given the definition given in Chapter 4. What happens to the
correlation coefficient when the data from this one couple is discarded? The
resulting correlation is

216 — (9N(37)21
= .410
V(665 — 99%21)(117 — 37%721)

Fxy =
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Dropping this one observation changes what was an unreasonably large
correlation into a moderate-to-large correlation. Besides dropping the one
observation, an alternative would be to transform the observations. An ex-
amination of the histograms for the observations reveals that both variables
are positively skewed. If the observations are square rooted, the scores for
couple 3 are no longer outliers. The resulting correlation of the square rooted
data is .551.

Correlation and Causality

Conrelations by their very nature seem to give rise to causal statements. I a
newspaper publishes a report that persons who eat carrots live longer, it is a
certainty that more carrots will be sold the following day. Finding out that
carrot eating and longevity are associated inclines persons to jump to the
conclusion that carrot consumption causes longer life. But correlation does
not imply a particular causal relation. Just knowing that carrot eating and long
life are associated does not mean that carrot eating causes longer life. There
are other equally plausible explanations of the relationship. For instance, it
may be that persons with more income tend both to live longer and also to eat
carrots. And so the relationship between carrot eating and longevity may be
due to the third variable of income.

Most of the time correlation does imply causality, but the exact form of the
causality is uncertain. Consider another example. There is a small-to-
moderate positive correlation between preference for violent television pro-
grams and the tendency to be physically and verbally aggressive among
preadolescent males. Thus, boys who get into fights prefer to watch Kojak
and the Three Stooges. The reason for this correlation is not clear. 1t could be
that the violence on television makes the children more aggressive. Or it could
be that being aggressive makes boys seek out more violent television shows.
Or it may be that neither causes the other but both are caused by some other
variable. For instance, parental socialization may affect both television view-
ing and aggressive behavior. It might be that authoritarian parental rearing
leads to aggressive boys who watch violent television shows. Thus, knowing
that there is a correlation between two variables does not tell us what brought
about the correlation. As is often stated, “correlation does not imply causal-
ity.” It is better to restate the maxim as “correlation does not imply one
particular form of causality.” '

Sometimes the source of correlation is not a causal process but is just an
accident. For instance, there is some indication that the economic climate is
negatively correlated with the length of women's skirts. Good economic times

‘have been associated with shorter skirts and bad times with longer skirts.

Surely skirt length does not cause the financial climate. Nor is it likely that the
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financial climate causes the length of skirts. Most likely this correlation is an
accident, a stafistical freak. One way to determine whether the correlation is
just an accident is to check its continuation into the future. If it disappears,
then it is likely an accident.

One shouild not take all that has been said to mean that correlations tell us
nothing about causation. It is true that from correlations it is not possible to
determine the particular causal connections. But if there is reason to believe
that one variable causes the other, then the two variables should be correlated.
Thus, a correlation can be used to verify a causal linkage, but it is indeed
perilous to infer a particular causal linkage from a correlation. Thus, causa-
tion implies a correlation but correlation does not specify the exact form of
causality.

The correlation between two variables is defined as the regression coefficient
computed from two variables’ Z scores. The correlation coefficient, sym-
bolized by r, is a directionless measure of association that varies between —1
and +1.

The formula for a correlation coefficient is

. Sx-X-P
VIE-X)P X -7y

The computational formula for a correlation coefficient is

Ixy

_ 2XY — BX)QYYn
VIZX? - GX)mlZy? — ($Y)%n]

A small correlation is .1, medivm is .3, and large is .5. A correlaton can be
interpreted as a regression coefficient. A squared correlation indicates the
proportion of variance explained or variance shared. A correlation can also be
interpreted as a probability of someone with a two-standard-deviation advan-
tage over another person on one variable outscoring that person on a second
variable.

Correlations are affected by nonlinearity, unreliability, aggregation,
restriction in range, the part-whole problem, and outliers.

Just because two variables are correlated does not mean that one causes the
other. It may be that the two variables are both caused by a third variable. A
correlation indicates some type of causal connection but does not identify the
particular type.

Fxy
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Problems

1. For the data
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compute ryy.

2. Smith finds that the correlation between motivation and performance
equals .3%9]. How would you help her interpret her result?
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compute ryy.
4. Compute the following.

a. byygiventhat ryy = 4, 53y = 2, 5y = 4
b. byy given that ryy = —.3, 5 = 10, 5y = 3
C. ryy given that byy = .1, sx = sy

5. Baxter (1972) used an adaptation of traditional methods to teach clerical
skills to mildly retarded adults. At the end of training, the skill of these
adults in each task was rated by the same standards. The scale ranged
from zero to ten, with zero the lowest possible rating and ten the highest.
Some of Baxter’s results are given below.

Subject Typing Stencils
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—_

Compute the correlation between typing and stencil preparation. Interpret
the result.
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6. Compute r if n = 10, ZX = 20, Z¥ = 40, TX? = 60, 3¥? = 180, and
XY = 90,

7. For the age and memory data presented in Table 6.3 of the preceding
chapter, compute and interpret the comelation coefficient.

8. Below are the life expectancies at birth for males (X) and females (Y) in
six of the less developed countries of the world. Also given are XY, 2X,
3¥, £X2, and 2¥2. Compute the correlation between the life expectancies
of males and that of females.

Life Expectancy (years)

Country Males (X) Females (Y)
India 31 50
Indonesia 45 48
Brazil 58 63
Bangladesh 50 47
Pakistan 49 47
Nigeria 40 43
Total 293 298

IXY = 14,737; X = 14,491; Z¥? = 15,040

9. Below are the life expectancies at birth for males (X) and fernales (¥) in
six of the more developed countries of the world. Also given are ZXY,
2X, TY, ZX2, and Z¥2. Compute the correlation of the life expectancies
of males and females.

Life Expecrancy (years)

Country Males (X ) Females (Y)
France 70 78
U.S.A. 70 78
Japan 73 79
W. Germany 70 76
Italy 70 76
United Kingdom 70 76
Total 423 463

TXY = 32,647; IX* = 29,829; T¥? = 35,737

10. Below are the life expectancies for males and females in the twelve
countries given in problems 8 and 9. '
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11.

12.

Life Ejrpec tancy (years)

Country Males (X) Females (Y)
India 51 50
Indonesia 45 48
Brazil 58 63
Bargladesh 50 47
Pakistan 49 47
Nigeria 40 43
France 70 73
US.A. 70 78
Japan 73 79
W. Germany 70 76
haly 70 76
United Kingdom 70 76
Total 716 761

TXY = 47,384; 2X? = 44,320 T¥? = 50,777

a. Compute the comrelation of life expectancies for males and females.
b. Compare this correlation to the correlation obtained in problems 8 and
9. What caused the correlation to change?

Draw a scatterplot for the data in problem 12 in Chapter 6. Describe the
nonlinearity in the relationship and suggest a transformation to remove it.

For the following studies, state what might affect the size of the correla-
tion, and explain how the correlationr would be affected.

a. using the average score of children in 500 schools, the correlation
between vocabulary and reading comprehension .

b. the correlation between a child’s height at birth and growth in the first
year of life

¢. the correlation of stress in the workplace with physical ailments
among air traffic controllers

d. the correlation between number of calories ingested during the day
and happiness

e. the correlation between intelligence, as measured by ope item of an
1Q test, and a student’s grade-point average
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