Program: HLM 6 Hierarchical Linear and Nonlinear Modeling Authors: Stephen Raudenbush, Tony Bryk, & Richard Congdon Publisher: Scientific Software International, Inc. (c) 2000 techsupport@ssicentral.com www.ssicentral.com ------------------------------------------------------------------------------- Module: HLM2.EXE (6.01.2580.1) Date: 25 June 2005, Saturday Time: 16:27:25 ------------------------------------------------------------------------------- SPECIFICATIONS FOR THIS HLM2 RUN Problem Title: no title The data source for this run = ROMMY The command file for this run = E:\KKC#1\Chapter 7\ROOMY.HLM Output file name = E:\KKC#1\Chapter 7\hlm2.txt The maximum number of level-1 units = 40 The maximum number of level-2 units = 20 The maximum number of iterations = 100 Method of estimation: restricted maximum likelihood Weighting Specification ----------------------- Weight Variable Weighting? Name Normalized? Level 1 no Level 2 no Precision no The outcome variable is SATISFAC The model specified for the fixed effects was: ---------------------------------------------------- Level-1 Level-2 Coefficients Predictors ---------------------- --------------- INTRCPT1, B0 INTRCPT2, G00 # ACT_HOUS slope, B1 INTRCPT2, G10 # PART_HOU slope, B2 INTRCPT2, G20 '#' - The residual parameter variance for this level-1 coefficient has been set to zero. The model specified for the covariance components was: --------------------------------------------------------- Sigma squared (constant across level-2 units) Tau dimensions INTRCPT1 Summary of the model specified (in equation format) --------------------------------------------------- Level-1 Model Y = B0 + B1*(ACT_HOUS) + B2*(PART_HOU) + R Level-2 Model B0 = G00 + U0 B1 = G10 B2 = G20 Iterations stopped due to small change in likelihood function ******* ITERATION 11 ******* Sigma_squared = 1.65301 Tau INTRCPT1,B0 0.94763 Tau (as correlations) INTRCPT1,B0 1.000 ---------------------------------------------------- Random level-1 coefficient Reliability estimate ---------------------------------------------------- INTRCPT1, B0 0.534 ---------------------------------------------------- The value of the likelihood function at iteration 11 = -7.326174E+001 The outcome variable is SATISFAC Final estimation of fixed effects: ---------------------------------------------------------------------------- Standard Approx. Fixed Effect Coefficient Error T-ratio d.f. P-value ---------------------------------------------------------------------------- For INTRCPT1, B0 INTRCPT2, G00 4.790978 0.638676 7.501 19 0.000 For ACT_HOUS slope, B1 INTRCPT2, G10 -0.590827 0.249389 -2.369 37 0.023 For PART_HOU slope, B2 INTRCPT2, G20 0.887773 0.249389 3.560 37 0.001 ---------------------------------------------------------------------------- The outcome variable is SATISFAC Final estimation of fixed effects (with robust standard errors) ---------------------------------------------------------------------------- Standard Approx. Fixed Effect Coefficient Error T-ratio d.f. P-value ---------------------------------------------------------------------------- For INTRCPT1, B0 INTRCPT2, G00 4.790978 0.761592 6.291 19 0.000 For ACT_HOUS slope, B1 INTRCPT2, G10 -0.590827 0.204726 -2.886 37 0.007 For PART_HOU slope, B2 INTRCPT2, G20 0.887773 0.294965 3.010 37 0.005 ---------------------------------------------------------------------------- The robust standard errors are appropriate for datasets having a moderate to large number of level 2 units. These data do not meet this criterion. Final estimation of variance components: ----------------------------------------------------------------------------- Random Effect Standard Variance df Chi-square P-value Deviation Component ----------------------------------------------------------------------------- INTRCPT1, U0 0.97346 0.94763 19 38.63906 0.005 level-1, R 1.28569 1.65301 ----------------------------------------------------------------------------- Statistics for current covariance components model -------------------------------------------------- Deviance = 146.523471 Number of estimated parameters = 2